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Abstract—Software-Defined Networking (SDN), which sepa-
rates the control and data plane of network, is strongly considered
as a promising future networking architecture. Compared with
legacy networking architecture, it allows to enable a variety of
innovative network functions at much less cost and effort. Ac-
cordingly, each component of SDN is also being rapidly realized,
and one of the most noticeable SDN component implementations
would be SDN controllers, such as ONOS or Floodlight. One
advantage of these SDN controllers is capability of hosting various
network applications to enable innovative network functions;
however, it is crucial to analyze these applications before the
actual deployment as they may directly affect the performance of
the managed network. To be more specific, SDN applications may
contain performance bugs that unnecessarily consume significant
system resource or produce critical bottlenecks in the controller.
In this paper, we introduce an automatic SDN application
profiling framework, SPIRIT, which reduces the human effort
in revealing any performance bugs that might exist in SDN
applications. In order to show the effectiveness of our framework,
we reveal new performance bugs exist in ONOS and Floodlight
applications.

I. INTRODUCTION

One of the distinctive advantages of SDN over legacy net-
working is that SDN monitors and manages all the underlying
network devices in a centralized manner. In particular, such
centralized architecture offers a bird’s eye view of the network
infrastructure, and accordingly, it is possible to easily compute
optimal network paths. Meanwhile, it introduces disadvantages
as well. One disadvantage is that the control plane itself
becomes a potential bottleneck or a single point of failure, and
any performance overhead caused within the control plane will
directly affect the quality of network services provided in the
managed network.

Some researchers have already noticed this performance
issue, and they have investigated the performance of SDN by
measuring the performance of several SDN control planes (or
network operating systems, NOS) [1]. Their results present that
one NOS instance can handle more than millions of new flows
in a second [1], and it implies that the performance issue of
SDN is not so significant. However, surveying their results, we
notice that there is a missing point that should be considered.
Most previous studies investigating the performance of SDN
have measured the performance of SDN, when they run
quite simple network applications, such as layer-2 switching.
Indeed, SDN can manage a network with such simple network
applications, but in reality, network administrators would use
more advanced network applications (e.g., load balancing and
cost-based routing) as well as those simple applications. What
if a network administrator deploys a much complex and heavy
network application? Would it be able to handle multi-millions
of new network flows as the layer-2 switching application was
capable of?
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These questions could be regarded as trivial as a simple
technical issue; however, they lead to a more fundamental
research question - how can we understand the performance
of NOS and its applications in detail? The answers to this
question will allow us to design more efficient and effective
SDN applications and also help us to understand how to
properly operate our SDN networks. This has motivated us to
propose an automatic SDN application profiling framework -
with the name of SPIRIT - that can analyze the operations
of each network application and NOS itself automatically.
Basically, SPIRIT employs the concept of dynamic program
analysis (or profiling) to investigate the operations of NOS and
applications minutely, and it provides a convenient and flexible
environment to make the analysis process simple and easy.

With SPIRIT, people can understand the overall perfor-
mance of the current adopted applications on NOS and monitor
other critical features (e.g., hotspot and critical path of an
application) clearly, and our tool enables people to do this
job without much complexity. This kind of analysis usually
requires setting up a test environment by emulating a real
world scenario. For example, we need to construct a network
topology and generate network traffic to induce Packet-In
messages. SPIRIT relieves people from the burden of these
cumbersome tasks, and it helps them to solely focus on the
analysis itself.

To verify the effectiveness and efficiency of SPIRIT, we
have analyzed real world NOSs and their applications (e.g.,
Floodlight controller and its topology managing application)
with our tool. Through this analysis, we discover the bottle-
necks in the target network applications, and we draw ideas
of reducing the effect of bottleneck based on the analysis.
Our work is still in progress, and we are planning to improve
SPIRIT to provide more useful information and even suggest
an idea of how we can enhance the performance of the
analyzed application.

In summary, the contributions of this paper are as follows:

• We suggest the methodology for profiling SDN appli-
cations, and we design a framework that automatically
profiles SDN applications without the human intervention.

• We investigate the performance and operations of several
well-known SDN controllers with advanced and compli-
cated network applications.

• We reveal the bottlenecks (or hotspots) exist in SDN
applications and discuss about the results.

II. PROBLEM STATEMENT

A. Motivating Example

Understanding the performance of a network application
running on an SDN environment is very important, because the
overall network throughput highly depends on the performance
of a network application. In this context, there are previous



studies discussing about this issue [1], yet they mostly check
the performance of a simple network application (i.e., learning
switch). Then, what about the performance of other applica-
tions? and are they similar or different to each other?

To understand any possible performance gaps among differ-
ent network applications, we measure the performance of two
different network applications - learning switch and forwarding
with routing path calculation - that are provided by Floodlight.
In this experiment, we use cbench [2] to emulate a network
with 64 switches and generate control traffic. The result of
the experiment is presented in Table I, and the learning switch
application outperforms the forwarding application by three
times. As shown, the performance of SDN applications differs
from each other, and it is not surprising because each applica-
tion has different computational logics and bottlenecks. Thus,
to enhance the overall network performance, each application
must be carefully analyzed and any bottlenecks exist in the
application must be revealed and improved.

Application Throughput
Learning Switch 130,804.35 responses/sec

Forwarding (routing path) 48,328.79 responses/sec

TABLE I. THROUGHPUT OF FLOODLIGHT APPLICATIONS

B. Research Challenge

In this paper, we aim to profile basic applications of some
well-known NOSs to reveal their bottlenecks. Not reinventing
the wheel, we have attempted to profile applications leveraging
existing profiling tools; however, we have noticed that such
tools are not suitable for profiling SDN applications due to
the following reasons:

1) The Network Composition Challenge: Since most of
SDN applications operate reactively to the network events
generated from the data plane, the performance of SDN appli-
cations basically depends on the network status. Therefore, in
order to properly profile the applications, they must be profiled
under various network topologies using network emulation
tools and manually generated network traffic, which is a time-
consuming and daunting task.

2) The Language-Specific Challenge: Most existing soft-
ware profiling tools are specialized in analyzing the programs
written in a certain programming language. If the user wants
to use the existing tool for profiling the SDN application, the
user have to check if the tool supports the language of target
NOS as each NOS is written in different languages, such as
C, Java, or Python.

3) The Information Sharing Challenge: Most of the popular
NOSs implement fundamental network management services,
and SDN applications often leverage those services to carry
out various tasks. For example, ONOS has a dedicated device
management service by default and most ONOS applications
use that service to access and control the network devices. In
other words, such core services are commonly used by various
applications. If a performance bug exists in one of those core
modules, the bug will repeatedly appear in the diagnosis results
for different SDN applications. Thus, such redundant detection
results make the profiling process inefficient.

In order to solve the aforementioned challenges, a new
type of automated profiling framework for SDN application
must be presented to enhance the user satisfaction. Thus, we
aim to suggest a new automated profiling framework, which
is specialized on SDN in this research.

Network Operating System (NOS)
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& Executor
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Data Analyzer
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Fig. 1. Architecture of the SPIRIT

III. SYSTEM DESIGN

A. Overall Architecture

The basic idea of the SPIRIT is to automatically analyze
the bottleneck of SDN applications running on NOS and
provide the information about found critical path and hotspot
of SDN applications to the user. As shown in Figure 1, our
framework consists of seven modules. We detail the operation
of each module as follows.

User Interface principally provides a graphical interface for
the user to help him use intuitively. The user can set the config-
uration information about target NOS, network topology and
so on. When the user completes their own environment setting,
the user can initiate the profiling of the SDN application from
SPIRIT.

Command Parser & Executor is kind of a command center.
It parses the user inputs received by user interface module,
and then executes modules of the SPIRIT for profiling with
sending the input variables to each module.

Profiling Tool Agent manages a well-known profiling tool
and adopts some APIs provided by the tool for profiling target
NOS. When command parser & executor module executes this
agent, it is attached to the instance of target NOS automatically
to collect profiling data of the SDN application. Then, it
measures the latency time and CPU resource usage of each
application. These measured data are stored as XML file
automatically.

Flow Generator consists of a flow initiator and an ARP
responder. The flow initiator generates the distinct flow per
second to the network based on user demands continuously.
The ARP responder sends proper response messages to the
captured ARP request packet because the flow initiator first
requests a mac address of destination before the sending
packets.

Network Emulator Agent manages a well-known network
emulator and adopts some APIs provided by the emulator.
It provides the environment for automatic configuration the
virtual network by constructing the virtual network what user
wanted easily. After the virtual network is configured by the
user, the agent tries to create the virtual network and connect
to the NOS.

Data Analyzer parses the XML file generated by the
profiling tool agent, which contains profiling information about
target NOS. To find the hotspot of the each SDN application,
we have applied Algorithm 1 and 2 on this module. We
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will detail these algorithms in the next subsection. Also, this
module analyzes the basic context of found critical path and
hotspot automatically.

Report Generator module sends the query to an external
database to check whether the same hotspot information exists
or not. If the information is found, this module will get the
information and displays it to the user.

Operational Scenario. After the user completes setting
configuration through User Interface module, the Command
Parser & Executor conducts profiling target NOS. First, it
executes the profiling tool, Profiling Tool Agent module. Then,
SDN application needs the network flow for profiling, Flow
Generator module creates and sends the network packet to the
configured network. Because most of the NOS pull down the
rule to the network devices based on the knowledge learned
from ARP service, Flow Generator module also automatically
responses to the arp packet that is coming from the network
for imitating the real network environment. And then, attached
profiling tool starts profiling when flow generating is started,
and profiling data is stored as XML file if profiling is ter-
minated. The saved XML file is parsed by Data Analyzer
module. This module finds the critical path and hotspot of the
desired application automatically, which need to be profiled
by the user. Also, it analyzes the context of the found hotspot
and critical path based on each class specification. When
the critical path and the hotspot of the specific application
are found completely, Report Generator module explores the
external database that stores the various findings about hotspots
by many researchers for finding whether information about
found hotspot is stored or not. If information exists about found
hotspot on the external database, Report Generator module
carries it to the SPIRIT and informs to the user.

B. Profiling Methodology

SDN application profiling methodology is not differed
significantly from the general method of application profiling.
However, because SDN application is kind of network pro-
gram, some steps have to be added to profiling methodology.
The overall state diagram that we have performed for profiling
SDN application is shown in Figure 2, and description of each
step is following.

(1) The first step for the SDN application profiling is to set
the environment. For doing that, we first run the NOS such as
Floodlight [3] and ONOS [4]. Then, we attach a profiling tool
to the running instance of the NOS and organize the virtual

Algorithm 1 Find the Ciritical Path of each NOS Application
procedure FINDCIRITICALPATH(Node)

Highest = null
Child = null
if Node.NumberOfChild == 0 then return
for each integer i in Node.NumberOfChild do

Child = Node.ChildNode[i]
if i == 0 then

Highest = Child
else if i > 0 then

if Highest.totaltime < Child.totaltime then
Highest = Child

CriticalPath.Element+ = Highest
F indCriticalPath(Highest)

network topology for imitating the realistic network. Also,
we construct the not only network topology but also network
conditions (e.g., a link up/down), because network condition
may affect SDN application performance. After the network
configuration is completed, we generate distinct flow to the
network and start the recording of CPU.

(2) The second step is to figure out the critical path of
the specific applications by analyzing the profiling data to find
out performance critical applications. The Algorithm 1 is a
pseudo code for discovering the application’s critical path on
the entire call graph. A brief word of the Algorithm 1 is just
searching a node on the entire call graph that has the highest
total execution time among the same level nodes and adding
the found nodes to critical path from the root node to the leaf
node repeatedly.

(3) The third step is identifying any hotspots on the critical
path. This step is divided into four detailed work phase. The
first phase is the call graph pruning that removes unnecessary
nodes on the entire call graph. The second phase is getting
subgraphs to get the call path of major SDN application. The
next phase is to find the critical paths of the applications based
on the color information of the function node, and the last
phase is about to find the hotspots based on the total time of
each node.

(4) The last step is analyzing the found hotspot of each
application for understanding the context.

All profiling step has to be repeated a few times with
varying the number of network nodes to identify the critical
hotspots of each application that get hotter respect to the size
of a network. The critical path of some applications can be
presented as the same result regardless of network conditions,
in this case, the Algorithm 2 shows the example of how to
figure out the most hotspot on two distinct critical paths which
one is found at small network and another is extracted from
the large network environment. Conceptually, the Algorithm
1 performs finding the node, which has the highest value
by subtracting the inherent time of each node between two
distinct critical paths. And conversely, it is possible that some
applications have different critical path according to change
the network size. In this case, the user has to find the critical
path on the large network profiling data firstly, and then, find
the same critical path on the small network profiling data. The
process of the finding the hotspot, in this case, is same as the
Algorithm 2.

In order to avoid any redundancy of manual profiling



Algorithm 2 Reveal the Hotspot on Two Distinct Critical Path
procedure FINDOUTHOTSPOT(Path1, Path2)

HotSpot = 0
Temp = 0
if Path1.Nodes == Path2.Nodes then

Temp = Path1[0].Inherent− Path2[0].Inherent
for each integer i in Path1.NumberOfNode do

Sub = Path1[i].Inherent−Path2[i].Inherent
if Temp < Sub then

Temp = Sub
HotSpot = i

return Path1[HotSpot].Node

steps, we develop a new automated SDN application profiling
framework, which profiles SDN applications without human
intervention and offers flexible profiling environment to the
user. Furthermore, this framework could be extended to suggest
possible improvements that could be made to reduce the impact
of the bottlenecks. The summarized contributions of the our
framework are as following.

• Our framework offers easy and comfortable SDN
application profiling environment by providing auto-
mated SDN application profiling process. With the
existing profiling tool, user has to conduct annoying
tasks manually for SDN application profiling, such as
attaching the profiling tool to NOS, organizing the
network, creating the flow and analyzing the profiled
data. However, our framework performs all of the
things automatically.

• Our framework provides flexible profiling environ-
ment. While user has to find profiling tool that can
support written programming language of NOS pre-
viously, such work does not necessary anymore using
the our framework.

• Our framework offers a possible solution to enhance
the performance of detected hotspot using information
sharing system. Information sharing system in the
our framework stores the possible solution that is
suggested by others and if the someone detects same
hotspot when they do profile SDN application, user
can know solutions about found hotspot easily through
the stored possible solution at the our framework.

Simple description of how we have implemented automatic
profiling framework is introduced in the following subsection
IV-A.

IV. EVALUATION

In this section, we elaborate on the implementation of
SPIRIT and demonstrate the effectiveness of SPIRIT by real
use cases. Then, we measure the performance overhead that
SPIRITaffects to NOS.

A. Implementation

To verify the feasibility of SPIRIT, we have implemented
a prototype system. It is written in Java language to leverage its
rich functionalities, user-friendliness and portability. SPIRIT
is fundamentally based on JProfiler v9.0.1 [5], which is a well-
known Java application profiling tool. In order to implement
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Fig. 3. Test Environment

our prototype system, we extend JProfiler to profile SDN
network applications. In this paper, we only focus on profiling
Java applications as most of the SDN controller implementa-
tions and applications available today are written in Java. Note
that our tool can be easily extended to support other language,
and we are looking forward to support different programming
languages as a future work.

In order to construct an automated profiling platform,
Mininet v2.0 [6], which is a well-known network emulator, is
used for automatically creating a functional network environ-
ment. Our system also includes a program that uses libpcap [7]
library to continuously capture and generate distinct network
flows (test traffic generator).

The profile data analysis, which is a key feature of our
system, involves hotspot and critical path examination. Here,
our Profiling Tool Agent module parses the data collected from
the profiler, and it uses Java DOM Parser since the data is
stored as an XML file. To determine the specific hotspot of
the target SDN application, we implement Algorithm 1 and
Algorithm 2 in the Data Analyzer module of SPIRIT. Finally,
to analyze the context of the found hotspot and critical path,
we take advantage API description of the each NOS.

Currently, our prototype system only supports some of the
SDN environments, such as Floodlight and ONOS, but we
look forward to extend this prototype to cover various SDN
controller implementations.

B. Test Environment

For the accurate evaluation of SPIRIT, two different
physical machines are used; a desktop and a laptop. We run
the network emulator and the flow generator on the laptop
machine, while running the rest of the component of our
system on the desktop machine. Such separated deployment
scheme significantly improves the accuracy of the profile
analysis result as it eliminates any potential interruptions
caused by test modules. Thus, the test components, such as
network emulator and flow generator, are deployed to the
separate laptop machine. Figure 3 illustrates our experimental
environment.

C. Use Case: Topology Application

As aforementioned, we analyze the default applications
that comes with open source NOS distributions. Specifically

These applications are mostly basic network applications (e.g., network
routing) that are usually enabled by default on boot.



in this use case scenario, we inspect the default topology
applications, which maintain network topology information
base, of Floodlight version 1.0 and ONOS version 1.1.

Here, we attempt to find the hotspots that are the most
critical in terms of performance under consistently changing
network environment. In order to create such dynamic network
environment, we have composed four test cases, each emulat-
ing 4, 8, 16, 32 switches to effectively identify the hotspots
that are sensitive to the size of network. Furthermore, we also
periodically connect and disconnect one of the network links
to artificially unstabilize the emulated network. To generate a
natural flow, we have configured the flow generator module to
generate one distinct flow per second. The duration of each
test case was 60 seconds.

(2) topology.TopologyManager.updateTopology

(3) topology.TopologyManager.createNewinstance

(4) topology.TopologyInstance.compute

(6) topology.TopologyInstance.dijkstra

(1) topology.TopologyManager.UpdateTopologyWorker.run

(5) topology.TopologyInstance.calculateShortestPathTreeInClusters

Fig. 4. Critical Path of the Floodlight(Topology Application)

1) Floodlight: When we have profiled Floodlight and its
basic applications using the SPIRIT, we have found one
critical path within the entire call graph and a hotspot.

Critical Path. Figure 4 depicts the critical path of the
Floodlight, which is extracted by the SPIRIT. The critical
path of the Floodlight is taken to draw the network topology
newly to their internal storage and calculate the shortest
paths between each node on the newly drawn topology for
updating the network topology. The detailed descriptions of
each node on the path are summarized : When the Floodlight
receives a control message that informs network link state is
updated, (1) thread for recomputing topology detects network
link state is changed. Then this thread calls (2) the entry
point method that starts updating the stored network topology
information at their internal storage. And then, this method
calls (3) a method that creates a new instance of changed
network topology. The updated network topology information
is reflected in their internal storage, and it is used to create the
new instance of network topology as parameters of topology
instance constructor. Once the new instance is created, this
method calls (4) a method that construct clusters of updated
network topology. If making clusters is done, this method calls
(5) the method that compute shortest path trees in each cluster
for unicast routing. For doing that, this method calls (6) the
function that implements Dijkstra algorithm.

HotSpot. To correctly identify the critical hotspots that get
hotter respect to the size of a network, we have measured the

(1) onosproject.fwd.ReactiveForwarding.ReactivePacketProcessor.process

(2) onosproject.net.topology.impl.TopologyManager.getPaths

(3) onosproject.store.trivial.impl.SimpleTopoloyStore.getPaths

(4) onosproject.store.trivial.impl.DefualtTopology.getPaths

(5) onlab.graph.DijkstraGraphSearch.search

Fig. 5. Ciritical Path of the ONOS(Topology Application)

taken time by each method on the critical paths by varying the
number of switches.

One of the critical hotspots is observed at the very last
method on the critical path. Of those methods along the critical
path, the most dramatic increase in taken time is found at the
very last method. As shown in Figure 6, latency time of found
hotspot is increased linearly and take up to 1274 milliseconds
when we have experimented with 32 switches. Furthermore,
the resource consumption percentage of the found hotspot on
the Floodlight is measured up to 32 percentage.

This result can be implied that calculating the shortest path
of every nodes in their network using the Dijkstra algorithm
whenever network topology is changed will likely add even
more latency to the overall operation time of the Floodlight
for a choppy network.

2) ONOS: We have found one critical path within the entire
call graph and a hotspot through the SPIRIT.

Critical Path. Figure 5 shows extracted critical path via
SPIRIT on the ONOS. The presented critical path is taken
to calculate shortest paths for forwarding the packet from
the source to the destination whenever the ONOS receives a
Packet-In control message. The detailed descriptions of each
node on the path are summarized : Whenever the Packet-In
control message coming up to the ONOS from their network
node, (1) ReactiveForwarding application, which is installed
on the ONOS for simple reactive forwarding, receives context
of incoming Packet-In control message through this method.
This method plays a role as finding a reachable and reasonable
path for forwarding packets along their paths and installing
rules to network by calling other methods. So, first of all, this
method has a necessary to know all shortest paths between the
source and destinations of received packet on current network
topology. For that reason, this method call (2,3,4,5) methods
that calculate the all possible shortest paths between the source
and destinations using Dijkstra algorithm.

HotSpot. We have found a hotspot of the ONOS in the
same way as the Floodlight use case. The hotspot of the
ONOS has been found at the very last method on the critical
path, which performs the same function as the hotspot of the
Floodlight.

Figure 6 represents the how much time and resources
are taken on the hotspot of the ONOS when the number of
switches is increased. Found hotspot takes the latency time



up to 8977 milliseconds and consumes the resources of the
ONOS up to approximately 54 percentage with the number of
32 switches. The latency time graph of the ONOS can be seen
as it is increased exponentially in accordance with the number
of switches. Also, the hotspot of the ONOS has the higher
latency time than the case of the Floodlight hotspot although
it performs the same function.

These results tell us that computation the shortest path
for forwarding the packet whenever Packet-In control message
comes up to the ONOS will surely impose very large overhead
to the ONOS for a larger network. Even more, we can know
that kind of adopted solution on ONOS to calculate the shortest
path for forwarding incur much higher overhead than the
solution of the Floodlight case.

Without SPIRIT helping us identify the hotspot and ana-
lyze the context of the found hotspot automatically, it is hard
to know why the found hotspot affects the overall performance
degradation of the controller.
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Fig. 6. Latency and Resource Consumption of each NOS Hotspot

D. Use Case: Debugcounter Application

We introduce another use case of SPIRIT that determines
critical paths and hotspots of a NOS when a large number
of requests were made by the data plane. For the testing, we
generate diverse network flows to invoke Packet-In messages,
which will ultimately arrive at the our target NOS. Due to
page constraint, we only introduce the Floodlight case in this
paper.

Critical Path. One critical path is discovered in this case,
and the detailed descriptions of the path are as follows: (1) The
Forwarding application receives a Packet-In message. (2) If
Packet-In is verified to represent a valid network flow, it passes
the analyzed information to the Routing module. (3) The
Routing module attempts to issue the flow rule via OFMes-
sageDamper of the Util package. (4) The OFMessageDamper
module writes a rule to switch through OFConnection, which
is one of the Floodlight core modules. (5) Before enforcing
the rule to switch, the OFConnection module calls the method
of Debugcounter application for updating OpenFlow counters.
(6) Debugcounter application updates the value of the counters.
Each counter indicate that the information how many each type
of rule is enforced to the switch and when is the last seen
time of each type of rule on that connection for collecting the
statistics.

HotSpot. The most critical hotspot turns out to be the last
method on the critical path shown in Figure 7. Of the meth-
ods executed within the path, DebugCounterImpl.increment
method recorded the highest execution time for DebugCounter
application.

Debugcounter application implements a central store that
maintains all of the counters for the system debugging pur-
pose. To be more specific, increment method, which is
a hotspot, is called by Debugcounter application is a simple
method that increments the counters that counts the number of
each type of OpenFlow messages observed on each connection
between the NOS and switch. At the same time, it also keeps
a record of last seen time of each OpenFlow message by
invoking System.currentTimeMillis() function. Although such
operation is not very heavy, performing the operation for
each OpenFlow message may significantly impact the overall
performance of the system.

To understand how much overhead that this hotspot adds to
the overall performance of Floodlight, we have measured the
total time spent on getting system time within Debugcounter
application. As a result, the application solely spent 2,139
milliseconds (7 percents of total time) on system time deter-
mination in 30 seconds. Therefore, we recommend to avoid
using Debugcounter application if the network is performance-
sensitive.

(2) forwarding.Forwarding.doForwardFlow

(3) routing.FowardingBase.pushRoute

(4) util.OFMessageDamper.write

(6) debugcounter.DebugCounterlmpl.increment

(1) forwarding.Forwarding.processPacketInMessage

(5) core.OFConnection.write

Fig. 7. Critical Path of the Floodlight(Debugcounter Application)

E. Overhead

In order to determine the performance impact of SPIRIT
that may affect the performance of NOS, we measure and
compare the throughputs of Floodlight and ONOS under
two different environment; with and without SPIRIT. In this
experiment, we emulate 4 dummy switches to generate the
control traffic using cbench with throughput mode enabled, and
each test case is executed for 10 seconds. The same machine
shown in Figure 3 is used, and the experiment is repeated 10
times to improve the data quality.

As shown in Figure8, ONOS achieved 70,217 re-
sponses/sec and Floodlight achieved 117,689 responses/sec on
average without SPIRIT. Meanwhile, with SPIRIT, ONOS
and Floodlight achieved 5,907 responses/sec and 10,623 re-
sponses/sec respectively.

The performance evaluation indicates that SPIRIT may



significantly degrade the overall performance of NOS; how-
ever, the result is not surprising at all. JProfiler, which SPIRIT
employs to profile Java-based NOS, attempts to collect detailed
timing information about every method calls invoked within
the JVM that hosts NOS, and this is an obvious extremely-
heavy task. In addition, to improve the accuracy, our prototype
system uses the instrumentation profiling method that dynam-
ically injects code to time each method call, and it makes the
profiling process even more costly.

Meanwhile, such performance degradation does not affect
SPIRIT’s accuracy in determining critical paths or hotspots.
Although the numbers measured by our system do not repre-
sent the actual performance of NOS, the relative comparison of
those numbers is still meaningful and valid to discover critical
paths and hotspots. Furthermore, the performance impact to
NOS caused by our system is not a concern, since it is a
testing tool, which is not supposed to be attached to the NOS
that is deployed to real networks at real time.
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Fig. 8. Throughput Results

V. DISCUSSION

Profiling NOS and its applications is useful in understand-
ing their operations and performance bottleneck points, and
it will provide many insights that can guide us to devise
more efficient and robust NOS and network applications. In
addition, this kind of approach can be used in other areas, such
as security and capacity planning. Hence, although not much
attention has not been put on this area so far, soon researchers
and practitioners dive into this area.

However, as we have presented here, profiling NOS and its
applications is not an easy job, and requires many annoying
things. Moreover, it is very hard to apply existing profiling
tools to this area without changes due to the differences
between the operational characteristics of NOS (and its ap-
plications) and those of legacy OS and applications.

To the best of our knowledge, this work is the first trial
to profile NOS and its applications in an (nearly) automatic
fashion (minimizing human intervention). Of course, we are
not in the final stage yet, and we need to improve our proposal
in many places. We do not think that this job is done by a small
community, and thus we will open this tool soon in public to
get more feedbacks from diverse communities.

VI. RELATED WORK

Enhancing the SDN performance: In the SDN environ-
ment, performance is the most critical problem because the
controller must handle the amount of large flow. Understanding
these problems, the most of recent research trends in the
leveraging performance of the controller is based on their
architectural design. Centralized controller architecture such
as the Beacon [8] and Floodlight [3] are designed as a highly
concurrent system that is based on multi-thread in order to
accomplish the desired throughput. Some research showed that
such a single NOS is enough for supporting the amount of
large flow [1]. However, these results have a limit on that
they tested only with pretty simple network applications. Many
researchers point out the limitation of that and thought a
single NOS is not enough to manage the large network. To
cover the performance issue of a single NOS, latest released
controller, such as OpenDaylight [9],ONOS [4] have been
adopted distributed-controller architecture, which binds multi-
ple physical controllers as a single logical controller. Contrary
to the centralized controller, distributed controller can increase
the overall network performance through load balancing with
other clustered NOS.

SDN diagnostic framework: In the SDN community, var-
ious diagnostic frameworks have been researched. Frameworks
such as VeriFlow [10], Header Space Analysis(HSA) [11] and
VeriCon [12] are the very recent SDN diagnostic framework,
however, those cannot analyze the SDN performance because
they are focused on the network correctness. In the research
area of the SDN network diagnosing, some researches are
focused on the debugging the SDN network, for example,
ndb [13], NetSight [14] and OFRewind [15]. While they
cannot analyze the deep inspection of the SDN application,
SPIRIT can analyze the SDN application with source code
level automatically.

Application profiling: Coppa et al. [16] have proposed a
profiling methodology to discover hidden inefficiencies in the
code and Zhuang et al. [17] presented an approach to build the
calling context tree for constructing accurate profiles. However,
these previous works did not consider the data from the net-
work. ProfileDroid [18] and ARO [19] suggested application
profiling tools to locate the performance bottlenecks of the
application by considering the multi-layer that includes the
network. Although these works considered the data from the
network for profiling the application, these are not suitable
for SDN application profiling because it has to be considered
the various network events. On the other hand, our framework
SPIRIT is specialized on SDN application profiling by taking
into account the various network events.

Profiling technology: Profiling technology has been re-
searching continuously. In case of the JAVA, there is some
JVM profiling technology. For example, JVMPI [20] is the
basic technology for profiling the JVM, which is available from
the SDK(Software Development Kit) version 1.1.0. Various
JAVA profiling tools were developed by using this technology,
such as JavaTreeProfiler [21] and DJProf [22]. However,
JVMPI is an old technology now. Currently, more recent
technology than the JVMPI, which is called JVMTI [23],
replaces the JVMPI. JVMTI adopts dynamic bytecode instru-
mentation methodology for profiling, and it provides all of the
functional capabilities of the JVMPI. JVMTI is available from



the SDK version 1.5.0, and many JAVA profiling tools have
been developing based on JVMTI. JProfiler that is adopted on
our prototype of SPIRIT is also developed based on JVMTI.

VII. CONCLUSION AND FUTURE WORK

While the networking community considers SDN as com-
ing under the spotlight and future networking technology, SDN
falls short of performance to deploy on the real network for
now. To improve the SDN performance, most of the previous
approaches focused on NOS platform design, the performance
of devices and architectures. However, there was no research
that analyze and optimize the SDN application to improve
the performance of the SDN until now. This is regrettable for
ours because SDN performs many control-plane functions as
software application.

In this work, we do not analyze comprehensive applications
of NOS, but we investigate the performance of default applica-
tions in some well-known NOSs - Floodlight and ONOS. Also,
we suggest new framework - SPIRIT for providing comfort-
able SDN application profiling environment. We believe that
methods and findings presented in this paper can encourage
the SDN researchers or developers to devise more and better
SDN applications.

In the future, we desire to investigate the performance of
more comprehensive SDN applications on various controllers.
Speaking more specifically, extending the SPIRIT to support
the OpenDaylight is our ongoing project. This project is
almost finished now, so we expect that we can profile the
comprehensive application of the OpenDaylight in the near
future. Moreover, we have a plan to adding the functions to the
SPIRIT for supporting the commercial controller, such as HP
VAN SDN [24], by providing our custom API or application.
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