
Computers & Security 91 (2020) 101720

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

A comprehensive security assessment framework for software-defined

networks

Seungsoo Lee

a , Jinwoo Kim

b , Seungwon Woo

c , Changhoon Yoon

d , Sandra Scott-Hayward

f ,
Vinod Yegneswaran

e , Phillip Porras e , Seungwon Shin

a , b , ∗

a Graduate School of Information Security, School of Computing, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
b School of Electrical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
c ETRI, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
d S2W Lab, 240 Pangyoyeok-ro, Bundang-gu, Seongnam-si, Republic of Korea
e Computer Science Laboratory, SRI International, Menlo Park, CA, USA
f Centre for Secure Information Technologies, Queen’s University Belfast, Belfast, U.K.

a r t i c l e i n f o

Article history:

Received 5 August 2019

Revised 2 December 2019

Accepted 16 January 2020

Available online 18 January 2020

Keywords:

Software-Defined Networking

Security

Network security

Penetration testing

a b s t r a c t

As Software-Defined Networking (SDN) is getting popular, its security issue is being magnified as a new

controversy, and this trend can be found from recent studies of presenting possible security vulnerabil-

ities in SDN. Understanding the attack surface of SDN is necessary, and it is the starting point to make

it more secure. However, most existing studies depend on empirical methods in different environments,

and thus they have stopped short of converging on a systematic methodology or developing automated

systems to rigorously test for security flaws in SDNs. Therefore, we need to disclose any possible attack

scenarios in diverse SDN environments and examine how these attacks operate in those environments.

Inspired by the necessity for disclosing the vulnerabilities in diverse SDN operating scenarios, we suggest

an SDN penetration tool, DELTA , to regenerate known attack scenarios in diverse test cases. Furthermore,

DELTA can even provide a chance of discovering unknown security problems in SDN by employing a

fuzzing module. In our evaluation, DELTA successfully reproduced 26 known attack scenarios, across di-

verse SDN controller environments, and also discovered 9 novel SDN application mislead attacks.

© 2020 Elsevier Ltd. All rights reserved.

1

e

c

e

v

s

D

i

i

o

t

c

e

G

i

h

A

c

S

s

t

v

t

w

c

w

a

d

h

0

. Introduction

Security has been a subject of controversy in many newly

merged networked systems, such as peer-to-peer networks and

loud networks. After their appearance, researchers and practition-

rs have examined their security issues from var- ious angles to

erify their safeness, and this process makes them more secure

o that they can be adapted in a real-world system. Software-

efined Networking (SDN), which manages a network in a central-

zed way, is a recently proposed networking technology, and now

t is endorsed by both industry and academia. As SDN technol-

gy is getting popular, its security problem is being at issue, and

hus researchers are investigating its security issues as they have

onducted in other networked systems (Benton et al., 2013; Hong

t al., 2015; Kreutz et al., 2015; 2013; Porras et al., 2012; Shin and

u, 2013).
∗ Corresponding author.

E-mail address: seungwon.shin@gmail.com (S. Shin).

D

r

f

c

ttps://doi.org/10.1016/j.cose.2020.101720

167-4048/© 2020 Elsevier Ltd. All rights reserved.
Such security-critical reviews of SDNs offer a view into var-

ous breaches, but overall, the attack surfaces thus far explored

ave been quite limited to either highly targeted exploits, such as

RP spoofing or specific vulnerabilities that arise in various SDN

omponents. Each previous result may not be applicable to other

DN environments (e.g., different control planes). Hence, operators

eeking to assess security issues in their SDN environments need

o survey existing SDN security-related studies and determine rele-

ance on a case-by-case basis. Furthermore, an operator may have

o adapt or redesign deployment-specific security test suites.

This paper introduces a new SDN security evaluation frame-

ork, called DELTA, which can automatically instantiate attack

ases against SDN elements across diverse environments, and

hich may assist in uncovering unknown security problems within

n SDN deployment. Motivated by security testing tools in the tra-

itional network security domain (Fyodor, 2020; Security, 2020),

ELTA represents the first security assessment tool for SDN envi-

onments. Furthermore, we enhanced our tool with a specialized

uzzing module (Miller et al., 1990) to exploit opportunities for dis-

overing unknown security flaws in SDNs.

https://doi.org/10.1016/j.cose.2020.101720
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2020.101720&domain=pdf
mailto:seungwon.shin@gmail.com
https://doi.org/10.1016/j.cose.2020.101720

2 S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720

S

R

fl

d

i

a

m

2

2

n

f

c

t

v

d

p

f

o

f

g

c

c

e

a

f

e

m

p

F

o

H

1

o

2

o

S

t

m

t

c

r

a

p

t

a

i

1 In the case of OpenFlow-based SDN networks, the term controller is commonly

used to denote the control plane. This paper uses both terms interchangeably.
In designing DELTA, we first assessed the overall operation of

an SDN by tracking its operational flows. Operational flow anal-

ysis provides a basis for understanding the attack surfaces avail-

able to external agents across an SDN deployment, and is a gen-

erally applicable strategy for approaching any SDN stack. Based on

the popular OpenFlow protocol specification (OpenFlow, 2009), we

categorize operational flows into five categories (see Section 2). In

each category, we explore possible security issues and assess which

ones are covered by existing studies.

Our intent is to design a testing framework that automates the

systematic exploration of vulnerabilities exposed in SDN deploy-

ments from multiple perspectives. Previous studies are limited in

their coverage of the SDN attack surface, in that they usually de-

pend on specific SDN elements or network environments. To over-

come this issue, we devised a method to reveal possible unknown

security problems in an SDN by employing a blackbox fuzzing

technique, which randomizes message input values to detect vul-

nerabilities in the direct interface or failures in the downstream

message processing logic. When generating random test vectors,

DELTA uses the information from the analysis of the SDN opera-

tions and focuses on the cases where vulnerabilities are likely to

be located.

We implemented a prototype framework for DELTA and evalu-

ated it with real-world SDN elements. For each controller, DELTA

is customized with a simple configuration file. The flexible de-

sign of DELTA accommodates both open source and commercial

SDN controller implementations. Our prototype can (currently) re-

produce 26 known SDN-related attack scenarios targeting several

well-known SDN elements, such as ONOS (Berde et al., 2014),

OpenDaylight (ODL) (Medved et al., 2014), Floodlight (Big Switch

Networks, 2020; NTT Communications, 2020), and the commercial

Brocade Vyatta SDN controller (Brocade, 2016). In addition, DELTA

was able to discover 9 new attack scenarios by applying control

flow fuzzing techniques.

The results of our analysis have contributed to the Open Net-

working Foundation (ONF) (Open Networking Foundation, 2020)

technical reports defining best practices for securing SDN environ-

ments. New attack scenarios exposed by DELTA have also been re-

ported to the ONF and, most recently, DELTA has been adopted by

ONOS for integration in the development test suite to profile the

ongoing security of the controller (Secci et al., 2017). Furthermore,

we have shared our findings gained from DELTA with the atten-

dees in Black Hat USA that is one of the influential security confer-

ences in the world (BLACK-HAT-USA-2016, 2020; BLACK-HAT-USA-

2017, 2020; BLACK-HAT-USA-2018, 2020).

This paper describes the following contributions:

• An analysis of vulnerabilities in the SDN stack that can mislead

network operations. Through this analysis, we can reconcile test

input with erroneous SDN errors and operational failures. We

introduce seven criteria for automatically detecting a success-

ful attack scenario from these failure conditions. We then show

how to combine this information for assessing root cause anal-

ysis on successful attacks.

• The development of an automated security assessment frame-

work for SDN capable of reproducing diverse attack scenar-

ios. This framework currently reproduces 26 attack scenarios

against real-world SDN elements with simple configurations

and is readily extensible to support more scenarios.

• The incorporation of blackbox fuzzing techniques into our

framework to detect unknown attack scenarios. To conduct

an efficient fuzz-test, we present an operational state diagram

that describes typical state transitions in OpenFlow protocol.

Based on the derived state diagram, we also propose a fuzzing

algorithm that randomizes OpenFlow control flow sequences.
Through our evaluation, we verified that this technique found

9 new attack cases.

• The demonstration of flexibility of system design by evaluat-

ing it against four popular open-source SDN controllers and one

commercial SDN controller, Brocade Vyatta controller.

The remainder of this paper is structured as follows; In

ection 2 , the background and motivation for this work is outlined.

elated work is discussed in Section 3 . The vulnerabilities in SDN

ows are described in Section 4 . Section 5 introduces the system

esign. The implementation and evaluation of DELTA are presented

n Sections 6 and 7 , respectively. And the limitation and discussion

re described in 8 . Finally, in Section 9 , the conclusions are sum-

arized.

. Background and motivation

.1. SDN And openflow

In traditional networks, a control plane computing sophisticated

etworking functions, and a data plane handling low-level packet

orwarding based on the policies of the control plane, are tightly

oupled and usually colocated within a single device. Since these

wo planes are often embedded within a proprietary network de-

ice, it is inherently challenging to insert new functions into the

evice without specialized knowledge or vendor cooperation.

To overcome this fundamental problem, SDN presents a new

aradigm that emphasizes the decoupling of the control plane

rom the data plane, with a logically centralized control plane

perated using (high-performance) commodity hardware. The key

eatures of SDN are high-level network abstraction providing a

lobal view of the network, and programmability.

OpenFlow: OpenFlow is the de-facto standard protocol for the

ommunication between the control plane (a.k.a., the OpenFlow

ontroller 1) and the data plane, and is widely deployed (Hong

t al., 2013; Jain et al., 2013). Although, OpenFlow does not cover

ll parts of SDN, it reflects the most important part (i.e., an inter-

ace between the control plane and the data plane). Hence, consid-

ring OpenFlow in SDN networks is quite natural, and many com-

ercial deployments have successfully employed OpenFlow as the

rimary interface between those two planes. As a protocol, Open-

low has been rapidly evolving, most recently with the release

f OpenFlow version 1.5 protocol specification (OpenFlow, 2014).

owever, most production deployments rely on OpenFlow 1.0 and

.3 because most network devices (e.g., switches and routers) still

nly support them.

.2. SDN control flows

In addition to the OpenFlow protocol, there are many types

f control messages to operate SDN, and in this work, we call it

DN control flows . The operations of SDN can be classified into five

ypes of control flows as shown in Fig. 1 : (1) symmetric, (2) asym-

etric, (3) intra-controller, (4) inter-controller, and (5) admin con-

rol flow operations.

Symmetric control flow operations: In these operations, an SDN

omponent sends a request to another component and receives a

eply back (i.e., a request-reply pair). Example (1) in Fig. 1 presents

n instance illustrating this operation. Consider a load balancer ap-

lication on a controller that needs switch statistics to distribute

raffic loads. To retrieve statistics from the switch, the load bal-

ncer first issues a statistics request event to the statistics service

n the controller core. Once the service receives the event, it sends

S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720 3

Fig. 1. Examples of the control flows in SDN: (1) symmetric, (2) asymmetric, (3)

intra-controller, (4) inter-controller, and (5) admin.

t

m

S

n

t

o

s

m

fl

p

c

a

t

e

p

p

t

a

i

p

p

t

s

f

a

a

s

c

c

t

f

r

i

A

a

t

o

t

e

p

t

t

n

S

t

Fig. 2. Event Listener Unsubscription attack.

t

t

s

i

(

t

v

m

f

m

k

p

b

2

n

t

n

a

d

t

f

(

a

T

4

s

p

c

fl

t

r

w

a

a

e

t

S

c

b

b

(

w
he STATS_REQUEST message to the switch through an OpenFlow

essage. Then, the switch packs its statistics information in the

TATS_RESPONSE message and returns it to the controller. Fi-

ally, the statistics core service returns the received statistics to

he load balancer application.

Asymmetric control flow operations: In contrast to the previous

peration, some SDN operations only involve unidirectional mes-

aging (e.g., messages that do not require a reply). Technically,

ost SDN control-flow interactions fall under asymmetric control

ows (e.g., control for handling packet arrival and inserting flow

olicy). Example (2) in Fig. 1 represents two kinds of asymmetric

ontrol flows (PACKET_IN and FLOW_MOD). Once a packet arrives

t the switch, the switch first matches the packet with the flow en-

ries in its flow table. If the switch cannot find any matching flow

ntries, it sends a PACKET_IN message containing a portion of the

acket header to the controller. Then, the controller delivers the

acket-arrival event to its applications. The other asymmetric con-

rol flow is started from the application on the controller. For ex-

mple, once a routing application receives the packet arrival event,

t must decide how best to process the event (e.g., forwarding the

acket to somewhere or dropping the packet). After the routing ap-

lication issues a packet-forwarding policy to the flow rule service,

he service sends a FLOW_MOD message to the switch. Finally, the

witch inserts the packet-forwarding policy into its flow table and

orwards the packet.

Intra-controller control flow operations: Unlike symmetric and

symmetric control flows, intra-controller control flows are initi-

ted by applications or core services running on a controller as

hown in Example (3) in Fig. 1 (i.e., control plane). When appli-

ations interact with one another or use the core services of the

ontroller, they do so by employing the APIs exposed by the con-

roller. If a routing application requires the topology information

rom the internal services to compute a dynamic routing path, the

outing application calls an API that returns the current topology

nformation. This API function may in turn invoke several internal

PIs. Finally, the topology information is delivered to the routing

pplication. This call-chain is an example of intra-controller con-

rol flow.

Inter-controller control flow operations: To resolve a single point

f failure problem in one SDN controller, distributed SDN con-

roller designs have been suggested (Berde et al., 2014; Oktian

t al., 2017). The distributed computing is a key to guarantee high-

erformance and fault tolerance in large-scale networks. Such dis-

ributed notion has also emerged as a critical concept in many cus-

omers such as data center and telecommunication operator who

eed a guarantee of availability (ONOS, 2020). In the distributed

DN controllers, it is necessary to maintain the same states among

he individual controller instances organizing a SDN cluster. To do
his, the distributed SDN controller utilizes a west-east protocol

hat provides keepalive messages (Example (4) in Fig. 1), a state

ynchronization, and leader node decisions among the controller

nstances.

Admin control flow operations: By providing external interfaces

e.g., RESTful services), SDN controllers allow network administra-

ors to manage complicated traffic within a centralized network

iew manually as well. As shown Example (5) in Fig. 1 , they can

anually configure network flow-handling policies (i.e., flow rules)

or each network device through the interfaces. Besides, the ad-

inistrators can get the network (device) states by leveraging the

ey features of SDN, which are high-level network abstraction and

rogrammability. With this feature, it enables flow management to

e performed by remote location, offering much greater diversity.

.3. Motivating example

Fig. 2 illustrates how a malicious application could render a be-

ign application incapable of receiving any of the necessary con-

rol messages from a switch. In this example, we assume that a

etwork operator has downloaded and installed a malicious SDN

pplication because an SDN application ecosystem is similar to An-

roid in a sense that anyone can develop and distribute applica-

ions using open APIs.

First, a malicious application (App 1) accesses the list identi-

ying which application receives the PACKET_IN control message

the most important control message in OpenFlow-based SDNs),

nd discovers that App 4 is waiting for PACKET_IN messages (1).

hen, App 1 unsubscribes App 4 from the list (2), and thus App

 is unable to receive any PACKET_IN messages (3). If App 4 is a

ecurity-sensitive application such as firewall, it can cause unex-

ected network states because the application cannot make a de-

ision based on the PACKET_IN messages.

This example shows that abusing the inter-controller control

ows can remove the specific application that wishes to listen

he PACKET_IN message without any constraints. And, this is a

eal working example (applicable to Floodlight (Big Switch Net-

orks, 2020) and OpenDaylight (Medved et al., 2014) controllers),

nd it illustrates how a malicious application confuses a benign

pplication by manipulating the intra-controller control flow op-

ration. The reason why the malicious application can manipulate

he other ones is that there is no mandatory permission system in

DN.

Considering this example, SDN-specific attack and vulnerability

ases are not trivial anymore. Besides, most attack scenarios (will

e described later) are based on SDN control flows, and it cannot

e revealed by existing pen-testing frameworks, such as metasploit

 Maynor, 2011) and nessus (Security, 2020) because those frame-

orks do not know how SDN works. We believe that this example

4 S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720

t

c

o

e

o

a

p

f

p

t

n

i

i

n

(

r

c

e

b

W

d

s

4

i

e

c

f

f

d

t

w

a

a

4

T

v

t

l

t

e

s

i

a

m

w

h

t

d

l

c

n

s

t

o

t

c

I
scenario clearly presents why we need a new pen-testing frame-

work for SDN.

3. Related work

Our work is inspired by prior work in SDN security and

vulnerability-analysis techniques.

SDN Security and Attacks : There have been several studies

(Benton et al., 2013; Kreutz et al., 2015) dealing with attack av-

enues in SDNs. Kreutz et al. argue that the new features and ca-

pabilities of SDN, such as a centralized controller and the pro-

grammability of networks, introduce new threats (Kreutz et al.,

2015). Benton et al. point out that failures due to lack of TLS adop-

tion by vendors for the OpenFlow control channel can make at-

tacks such as man-in-the-middle (MITM) attacks and denial-of-

service (DoS) attacks easier (Benton et al., 2013). Furthermore,

some researchers have raised other issues, such as inter-application

conflicts, access control, topology manipulation, and sharing rela-

tionships (Dhawan et al., 2015; Hong et al., 2015; Porras et al.,

2012; Shin et al., 2014). Röpke et al. (Röpke and Holz, 2015) have

demonstrated that SDN applications can launch stealth attacks and

discussed how such applications can be easily distributed via third-

party SDN app stores, such as the HP App Store (HP, 2020). Even

without delivering malicious SDN applications to SDNs, Dover et al.

have also shown that it is possible to launch DoS and spoofing at-

tacks by exploiting the implementation vulnerability that exists in

the switch management module of Floodlight (Dover, 2013; 2017).

Although there have been several studies on SDN vulnera-

bilities, contemporary controllers remain vulnerable to many of

these attacks. Hence, we proposed a software framework that can

simplify reproducibility and verification of diverse attack scenar-

ios (Lee et al., 2017). Inspired by our effort, recently, several works

for evaluating SDN security have been presented (Jero et al., 2020;

Ujcich et al., 2017). However, while these works have mainly fo-

cused on manipulating OpenFlow messages by sniffing the control

channel between the controller and the switch, DELTA provides

comprehensive security test cases including the vulnerabilities of

the application layer.

Vulnerability Detection Tools and Techniques : Traditional net-

work security testing tools such as Metasploit (Maynor, 2011), Nes-

sus (Security, 2020), and Nmap (Fyodor, 2020) are equipped with

a rich library of vulnerabilities and composable attack modules.

However, because these tools are specialized for legacy and wide-

area networks, they are unsuitable for SDN networks. In a re-

cent BlackHat briefing, the authors explored the SDN attack surface

by systematically attacking each layer of the SDN stack, and then

demonstrating some of the most critical attacks that directly affect

the network availability and confidentiality (Hizver, 2020). This il-

lustrates that SDN-specific security threats are complex and cannot

be revealed by existing network security testing tools as they are

not SDN-aware.

Our goal is to develop an analogous tool for OpenFlow net-

works. Fuzz testing was first proposed by Miller et al. in the early

1990s and has steadily evolved to become a vital tool in software

security evaluation (Miller et al., 1990; Takanen et al., 2020). The

current body of work in black-box fuzz testing may be broadly di-

vided into mutational and generation- (or grammar-) based tech-

niques. While the former strategies rely on mutating input samples

to create test inputs, the latter develop models of input to derive

new test data. DELTA makes use of both strategies, with mutational

being the primary approach.

Examples of mutational fuzzers include SYMFUZZ (Cha et al.,

2015) and zzuf (Hocevar, 2020). Unlike these approaches, our sys-

tem employs a fuzz-testing methodology that is specialized for

SDNs. We recognize that because the operations and topologies

of SDNs are more dynamic than traditional networks, randomiza-
ion of a specific portion of the packets is insufficient. Hence, we

lassify the operations of SDN into three types of control based

n the control flow, and incorporate the features of those op-

rations into DELTA’s fuzzing module. ShieldGen is an example

f a grammar-based fuzzer, that uses knowledge of data formats

nd probing to automatically generate vulnerability signatures and

atches from a single attack instance (Cui et al., 2007). Gode-

roid et al. present a grammar-based whitebox fuzz-testing ap-

roach inspired by symbolic execution and dynamic test genera-

ion (Godefroid et al., 2008). Unlike such approaches, DELTA does

ot require the entire source code of the target system. Scott et al.

ntroduced a troubleshooting system called STS that automatically

nspects vulnerabilities in control platforms using a fuzzing tech-

ique (Scott et al., 2014). The focus of STS is identifying the MCS

minimal causal sequence) associated with a bug. However, DELTA

eproduces known vulnerabilities and even finds unknown ones by

hanging the parameters of its fuzzing modules without MCS. Yao

t al. proposed a new formal model and corresponding systematic

lackbox test approach for the SDN data plane (Yao et al., 2014).

hile this approach mainly focuses on the testing paths of SDN

ata planes, DELTA applies fuzzing functions to discover unknown

ecurity flaws across the SDN stack.

. Vulnerabilities in SDN flows

This section explores how the SDN flow operations described

n Section 2 are related to vulnerabilities that can harm SDN op-

rations. Vulnerabilities related to the SDN control flows are dis-

ussed in Section 4.1 and the locations of vulnerabilities resulting

rom non-flow-related operations are described in Section 4.2 , and

rom the vulnerability discussion we derive the seven vulnerability

etection criteria, which are explained in Section 4.3 .

Table 1 provides a high-level overview of the feasible SDN at-

ack cases against each SDN controller (i.e., control plane). Here,

e tested the control plane attacks against the four most prevalent

nd well-known SDN controllers (ONOS, OpenDaylight, Floodlight,

nd Ryu controllers).

.1. SDN control flow operation vulnerabilities

Symmetric Control flow Vulnerabilities: For the control plane,

able 1 identifies eight symmetric control flow vulnerabilities. Two

ulnerabilities raise in the presence of weak authentication during

he handshake step between the controller and the switch as fol-

ows. First, the Floodlight controller classifies the identification of

he connected switch according to a Data Plane ID (DPID). How-

ver, a MITM concern arises, in which an attacker replays hand-

hake steps with the DPID of an already connected switch caus-

ng Floodlight to disconnect itself from the switch (i.e., SF-1). Next,

s the Floodlight controller manages the connected switch’s infor-

ation in its internal storage, it consumes the memory resources

ithin the host. An attacker can persistently replay meaningless

andshake messages to exhaust the internal storage of the con-

roller (i.e., SF-2). Such an attack could result in a controller shut

own.

Failing to conform to specifications also incurs security prob-

ems in SDNs. In OpenFlow networks, the control and data plane

omponents must exchange HELLO messages to initiate the con-

ection. A handshake process must then be completed before the

pecified timeout and any incomplete controller-switch connec-

ion should be torn down to avoid an adversary taking over the

pen (incomplete) connection. Otherwise, the attacker can exploit

he SDN controllers that allow the initiation of controller-switch

onnections without the exchange of HELLO messages (i.e., SF-3).

n addition, each controller-switch connection should be reliably

S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720 5

Table 1

Summary of known SDN attack cases against control plane: O means the controller is vulnerable to this attack, and X means that it is not vulnerable.

Flow Type

Attack

Code Attack Name

Controller

ONOS OpenDaylight Floodlight Ryu

Symmetric Flows SF-1 Switch Identification Spoofing (Dover, 2017) X O O X

SF-2 Switch Table Flooding (Dover, 2013) X X O X

SF-3 Handshake without HELLO Message (Lee et al., 2020) X X X X

SF-4 Redundant Main Connection Request (Lee et al., 2020) X X X X

SF-5 TLS Connection Misuse (Lee et al., 2020) X X X X

SF-6 Auxiliary Connection Mismatch (Lee et al., 2020) X X X X

SF-7 Malformed Version Number (Lee et al., 2020) O O O O

SF-8 Corrupted Control Message Type (SDNSecurity.org, 2020) O O O O

Asymmetric Flows AF-1 Control Message Drop (SDNSecurity.org, 2020) O O O X

AF-2 Control Message Infinite Loop (SDNSecurity.org, 2020) O O O O

AF-3 Flow Rule Modification (SDNSecurity.org, 2020) O O O O

AF-4 PACKET_IN Flooding (Kotani and Okabe, 2014; Shin and Gu, 2013; Shin et al., 2013) O O O O

AF-5 Flow Rule Flooding (Curtis et al., 2011; Shin and Gu, 2013) O O O O

AF-6 Switch Firmware Misuse (SDNSecurity.org, 2020) O O O X

AF-7 Flow Table Clearance (SDNSecurity.org, 2020) O O O O

AF-8 Eavesdrop (SDNSecurity.org, 2020) O O O O

AF-9 Man-In-The-Middle (SDNSecurity.org, 2020) O O O X

AF-10 Control Message before Connection (Lee et al., 2020) X X X X

AF-11 Unflagged Flow Remove Notification (Lee et al., 2020) O X X X

Intra-Controller

Flows

CF-1 Internal Storage Misuse (Shin et al., 2014) O O O X

CF-2 Application Eviction (Shin et al., 2014) O O X O

CF-3 Event Listener Unsubscription (Shin et al., 2014) X O O O

Non Flow

Operations

NF-1 System Command Execution (Shin et al., 2014) O O O O

NF-2 Memory Exhaustion (Shin et al., 2014) O O O O

NF-3 CPU Exhaustion (Shin et al., 2014) O O O O

NF-4 System Variable Manipulation (SDNSecurity.org, 2020) X O O X

m

m

n

4

O

i

t

(

t

m

O

a

B

F

(

m

i

a

a

s

a

p

p

i

t

(

m

t

m

s

s

fl

fl

(

d

i

o

t

c

f

s

d

a

t

a

t

o

n

t

m

b

t

t

fl

fl

r

f

t

m

fi

c

u

a

t

c

b

u
aintained. However, an attacker could interrupt existing legiti-

ate controller-switch connections by sending out additional con-

ection requests in order to affect the network availability (i.e., SF-

).

For a secure connection between the controller and the switch,

penFlow recommends the use of TLS. However, if this protection

s not in place, it is possible for an attacker to intentionally at-

empt a failed TLS connection to gain an insecure TCP connection

i.e., SF-5). For the high availability, the OpenFlow provides two

ypes of connection; main and auxiliary connections. Thus, if the

ain connection is set to TLS, the auxiliary one should also be TLS.

therwise, data tampering and information disclosure are feasible

t the controller through an auxiliary TCP connection. (i.e., SF-6).

esides, there could be some malformed control message attacks.

or instance, the attacker manipulates the OpenFlow version value

i.e., SF-7) or the header type value (i.e., SF-8) in symmetric control

essages with an invalid value in order to cause an inconsistency

ssue, which may result in a switch disconnection.

Asymmetric Control flow Vulnerabilities: Table 1 identifies 11

symmetric control flow vulnerabilities. Most controllers maintain

 listener mechanism that allows applications to register to receive

pecific messages from the data plane. When a message arrives

t the controller, this mechanism delivers the message to the ap-

licable registered applications, either in sequence or parallel, de-

ending on the implementation of controllers. However, misbehav-

ng or rogue applications can interfere with the order of applica-

ions in the list, and cause the application to drop the message

i.e., AF-1). Also, malicious applications can alternatively imple-

ent an infinite loop to prevent other applications from acting on

he message (i.e., AF-2). Further, a malicious application may also

anipulate resident flow rules in the switch that have been in-

talled by other applications. For instance, although a flow rule in-

talled by a firewall application may instruct the switch to drop the

ows from the malicious host, a peer application could modify the

ow rule to forward corresponding flows from the malicious host

i.e., AF-3).
Controllers and switches are vulnerable to performance degra-

ation by malicious or erroneous applications. One such example

s that an adversary generates a number of meaningless flows to

ther hosts in order to trigger a flood of PACKET_IN messages to

he controller, which eventually degrades the performance of the

ontroller (i.e., AF-4). On the contrary to this, it is also possible

or a malicious application to generate numerous FLOW_MOD mes-

ages to the flow table, which can lead the switch into an unpre-

ictable state (i.e., AF-5). Also, by changing the rules, the malicious

pplication can manipulate the flow table in the switch to make

he switch performance be unstable (i.e., AF-6 and AF-7).

If the control messages between the controller and the switch

re unencrypted, an attacker located between them can confuse

he control plane. For example, the attacker can guess what topol-

gy is constructed by sniffing control messages in a passive man-

er (i.e., AF-8). Moreover, the attacker may also intercept the con-

rol message and then change some field values of the control

essages with malicious intent (i.e., AF-9). In addition, it is feasi-

le for the attacker to send a PACKET_IN message before a connec-

ion between the controller and the switch is established in order

o install an improper flow rule to the switch (i.e., AF-10). For the

ow management, the controller can set the removal notification

ag when installing the flow rule on the switch so that they can

ecognize if the flow rule is expired or not. However, to abuse this

eature, the attacker can send a fake flow removal notification to

he controller so that the controller may have an erroneous flow

anagement view from the switch (i.e., AF-11).

Intra-Controller Control flow Vulnerabilities: Table 1 identi-

es three intra-controller control flow vulnerabilities. Since most

ontrollers do not provide access control mechanisms to limit API

sage among applications, a malicious application may access and

lter network topology data within the internal storage of the con-

roller, impacting all peer applications that derive flow control de-

isions based on this network topology data (i.e., CF-1). In addition,

y abusing those APIs, the malicious application can dynamically

nload a security-sensitive application (e.g., firewall application)

6 S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720

Fig. 3. A partial operational state diagram of typical SDN controller and a fuzzing

vector example.

b

e

a

o

i

s

5

w

w

T

t

t

i

t

r

t

o

b

m

s

r

t

c

r

s

v

s

v

s

v

d

D

t

w

s

s

t

F

m

o
without any constraint (i.e., CF-2). Also, the malicious application

can prevent some applications which want to receive the control

message from being notified of the control message (i.e., CF-3).

4.2. Non flow operation vulnerabilities

Table 1 identifies four non-flow operation vulnerabilities. Al-

though SDN controllers have been referred to as network operating

systems (NOS), most controllers are implemented as general net-

working applications. Thus, controllers are unfortunately subject to

the same vulnerabilities as found in normal applications. For in-

stance, a developer who implements an application running on the

controller could make a mistake inside the application logic, which

can cause the termination of the application. However, since most

controllers employ the multi-threaded programming paradigm, the

termination of the application can mislead the controller into shut-

down (i.e., NF-1). If a target network does not have controller re-

dundancy, this could result in a network-wide outage.

The malicious application can intentionally consume all avail-

able system resources of a controller to affect other applications

or even the controller. For instance, malicious applications can halt

the control layer by intentional unconstrained memory consump-

tion (i.e., NF-2), or by unconstrained thread creation to exhaust

available CPU cycles (i.e., NF-3). System time is also considered a

system resource that is used to check the response time of sym-

metric control flows. If the malicious application manipulates this

system time, the switch connected to the controller could enter an

unexpected state (i.e., NF-4).

4.3. Vulnerability detection criteria

Considering the impacts of the 26 vulnerabilities as de-

scribed above, we derive the following seven vulnerability detec-

tion criteria: (i) a controller crash, (ii) an application crash, (iii)

internal-storage poisoning, (iv) a switch disconnection, (v) switch-

performance downgrade, (vi) inter-host communication disconnec-

tion, and (vii) error-packet generation. By leveraging those criteria,

we judge whether an attack case is feasible against the target SDN

environments when reproducing the known attacks. Moreover, in

addition to the known attacks, it can also be used for discovering

an unknown attack case, which we will detail in later.

5. System design

This section discusses the design considerations motivating our

design and then describes the DELTA system architecture.

5.1. Design considerations

The attacks outlined in Section 4 are a few examples among

the broader set of known SDN vulnerabilities. As possible attack

scenarios increase, so too increases the challenge of determin-

ing how and where to address these threats among the various

deployment-specific SDN instantiations. Today, the cost associated

with conducting security testing within specific SDN network in-

stances is high. SDN security testing is ad-hoc and cumbersome,

as attack scenarios may arise uniquely from different SDN com po-

nents, network configurations, and testing inputs. To help reduce

this cost, we need a generalized SDN penetration testing frame-

work that can automatically reproduce diverse attack scenarios as

we have done in other areas (e.g., web security testing tool), and

this framework should be easy to use.

Given these practical testing concerns, the requirements driv-

ing our penetration framework can be summarized as follows: (i)

it should cover as many attack scenarios as possible, (ii) it should
e highly automated to minimize the human skills and time nec-

ssary to conduct testing, and (iii) it should be inter-operable with

 diverse set of SDN components. In addition, we also require that

ur framework be easily extensible to new test cases, and assist

n the identification of entirely new attack scenarios. The following

ections will consider these requirements in more detail.

.2. Blackbox fuzzing

In addition to the known attack scenarios reviewed in Table 1 , a

ider range of undiscovered attack scenarios against SDNs remain,

hich our framework can help operators to explore and discover.

o identify unknown attack cases, we borrow the notion of fuzz

esting developed in the context of legacy software and protocol

esting. Fuzz testing allows the development of entirely random-

zed testing vectors to determine if program interfaces are subject

o unexpected input handling errors. We choose blackbox fuzzing

ather than whitebox fuzzing, because the former does not require

he source code of target programs, and it can be applied to both

pen source and proprietary SDN components and devices.

State Diagram of SDN Control Messages: A key analysis in

lackbox fuzzing is that of determining the input parameters that

ust be subject to input randomization, which is a central con-

ideration in our framework design. Instead of selecting values for

andomization in an ad hoc manner, we derive those values from

he analysis of SDN control flows. The SDN operations of a typi-

al SDN controller, which employs OpenFlow protocol, can be rep-

esented in an operational state diagram. Fig. 3 shows a partial

tate diagram of typical SDN controller, which specifically is rele-

ant to the symmetric control flows. Although we only present the

tate diagram for OpenFlow v1.0, we have also analyzed OpenFlow

1.3 (OpenFlow, 2011) and it is a straightforward extension. The

tate diagram can be represented by a graph abstraction which has

ertices and edges. Thus, we can formally define it as the following

efinition:

efinition 1. An operational state diagram is a directed graph G

hat consists of V which denotes a set of states (vertices) v , and E

hich denotes a set of transitions (edges) e .

In the state diagram (Fig. 3), label E is an end state and label R
tands for a ready (initial) state to receive or send the control mes-

ages. Each edge’s label designates the type of control message and

he specific controller behavior that triggered the state transition.

or example, as shown in Fig. 3 , when a controller sends a HELLO

essage to a switch for a new connection in R state, the state

f the controller moves to S1 . In S1 , the controller receives the

S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720 7

Fig. 4. Symmetric flow sequence randomization example.

H

I

a

m

t

D

e

t

c

c

g

t

f

f

t

c

a

t

c

s

s

o

c

s

f

w

t

m

h

t

w

fi

c

w

i

c

t

t

t

F

s

t

v

Fig. 5. Asymmetric flow sequence (series) randomization example.

Fig. 6. Asymmetric flow sequence (parallel) randomization example.

Fig. 7. Input value randomization example: left is a header format of FLOW_MOD

message and right represents the flow sequence.

a

t

t

f

P

→

(

s

e

l

P

m

c

m

s

a

t

t

fl

F

t

u

l

m
ELLO message from the switch, causing a state transition to S2 .
f the handshake process with the switch is successful, the state

rrives at S7 and the controller then updates the topology infor-

ation. From this example, we can derive a formal definition of

he transition edges:

efinition 2. A set of state transitions E denotes a set of labeled

dges that represent a combination of a controller’s behavior and

ype of control message.

In addition to the symmetric control flows, we derive other

ontrol flows-related states as well, such as the asymmetric, intra-

ontroller, inter-controller, and admin control flows. This state dia-

ram can clearly describe the points at which the controller takes

he input and how each input induces the state transition. There-

ore, based on such an operational analysis result, we can ef-

ectively perform the input randomization against the SDN con-

rollers.

Based on the state diagram, we investigated (i) the sequence of

ontrol flows, presented in Section 2 , to determine whether there

re candidate control flows for randomization, and then examined

he (ii) input values conveyed in each control flow.

Randomizing Control Flow Sequence: We can randomize the

ontrol flow sequence in two major steps: (i) inferring current

tate of an SDN controller, and (ii) manipulating the control flow

equence.

In the case of the symmetric control flows, the current state

f the controller can be inferred from the control messages inter-

epted from the control channel between the controller and the

witches. For example, as shown in Fig. 3 , the controller states

rom R to S7 represent the OpenFlow handshake process. Mean-

hile, in the case of the asymmetric control flows, the state of

he controller can be detected by not only intercepting the control

essages but also by monitoring the changes in the controller be-

aviors, because some of the state transitions in asymmetric con-

rol flows are triggered by the controller operations. For example,

hen PACKET_IN messages are delivered to applications, it is dif-

cult to detect state transitions within the state diagram by inter-

epting the control messages. Thus, to detect such state transitions,

e monitor any changes in the controller behavior and specifically

n this example deploy an additional application to confirm the re-

eption of PACKET_IN.

Once the state of the controller is analyzed, we can manipulate

he sequence of the control flow. To randomize the sequence of

he symmetric control flows, we intentionally drive an SDN con-

roller to violate the standard protocol (Fuzzing Vector in Fig. 3)

or example, as shown in Fig. 4 , it is possible to manipulate the

equence by omitting a couple of message exchanges (crossed out)

o test if the controller or the switch is vulnerable to such protocol

iolations.
Such control flow manipulation can be also applied to the

symmetric flows. If a PACKET_IN message is sent to the con-

roller by the network device, the controller sequentially delivers

he message to the applications in a specific order. Fig. 5 (Be-

ore) shows the default sequence where App A first receives the

ACKET_IN message, and App D receives the message last (i.e., A

 B → C → D in series). Here, we can change the control flow

i.e., shuffle the order of the applications) randomly at runtime as

hown in Fig. 5 (After) and observe the system behavior.

In addition to the sequential asymmetric control message deliv-

ry mechanism, messages can be delivered to applications in paral-

el as shown in Fig. 6 . For example, when the controller receives a

ACKET_IN message, it can simultaneously deliver the asymmetric

essage to the applications. However, of those applications con-

urrently running on the controller, a certain set of applications

ay be defined to follow a particular order in receiving the mes-

age. In this example, we arbitrarily injected App X, so that this

pplication can receive the message ahead of App B (Fig. 6 (Af-

er)). Again, it is possible to randomize such sequences to observe

he behavior.

Randomizing Input Values: The input values of a control

ow can also be randomized. For example, we can select the

LOW_MOD message as shown in Fig. 7 , which allows the con-

roller to modify the state of a switch. Most fields are defined as an

nsigned integer type, and we can randomize these values to mis-

ead the switch into parsing it (e.g., 0 or maximum). Since control

essages between the data plane and the control plane are com-

8 S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720

Fig. 8. Overall architecture of DELTA with four key components: (i) Agent Manager,

(ii) Application Agent, (iii) Channel Agent, and (iv) Host Agent.

t

E

t

a

a

t

a

r

p

s

m

S

t

a

5

D

d

s

m

d

h

a

a

m

a

i

r

a

e

r

v

i

a

S

s
monly delivered through a plain TCP channel 2 , all field values of

the control messages can be intercepted at the control channel and

manipulated easily, which could result in critical network instabil-

ities. For example, a priority field in a FLOW_MOD message can be

maximized. Such field-value randomization can also be applied to

the other control flows. Most controllers provide their own APIs to

improve the flexibility of intra-controller control flows. These APIs

may be used by any hosted network application, which means that

any application has a chance to change (or randomize) values. Our

framework adopts this idea to randomize input values of a control

flow.

Fuzzing Algorithm: For efficiently randomizing the fuzzing vec-

tors, we design a graph traversal algorithm that explores the oper-

ational state diagram (Fig. 3) as shown in Algorithm 1 . When we

Algorithm 1 Fuzzing Algorithm with the state diagram.

Input:

G

′ is a fuzzing vector (subgraph)

v 0 is an initial state of G

′
1: procedure Initialize (G

′ , v 0)
2: ω ← an empty list

3: γ ← an empty list

4: ControlFlowFuzzer (G

′ , v 0 , ω, γ)

Input:

ω is a transition path that consists of visited v and e

γ is a list of mutated transition paths

5: procedure ControlFlowFuzzer (G , v , ω, γ)

6: append v → ω

7: for all edges e ∈ G.adj acentEd ges (v) do

8: if e.action = recei v e then

9: for all edges e ′ ∈ E where e ′ � = e do

10: result ← SendToController (e ′ .msg)

11: if result = Error then

12: ω

′ ← ω ∪ e ′
13: append ω

′ → γ

14: if u exists, u ∈ G.adjacentV ertex (v , e) then

15: append e → ω

16: γ ′ ← ControlFlowFuzzer (G , u , ω, γ)

17: append γ ′ → γ

18: return γ

choose a fuzzing vector, it is necessary to include the ready state

R as a subset of vertices and the vertices that have all incoming

edges. It guarantees that a target controller reaches all selected

states.

Definition 3. Fuzzing vector is a subgraph G

′ , where selected ver-

tices have all incoming edges and include the ready state R .

The algorithm aims to incrementally mutate state transitions by

visiting each state, taking the chosen fuzzing vector G

′ from the

operational state diagram. The list ω denotes a transition path that

is composed of visited v and e , where v ∈ V and e ∈ E . The list γ
denotes a list of mutated transition paths ω

′ , which is an output

of the algorithm.

The algorithm starts to traverse from the initial state v 0 (line 4).

When the procedure ControlFlowFuzzer visits each state v , it

appends the vertex v to ω to record the traversed states (line 6).

Then, from the current state, the algorithm visits all the adjacent

edges (transitions) and checks the edge’s action field (lines 7 to 8).

If the action field contains receive , the fuzzer selects an abnormal
2 The OpenFlow specification suggests an encryption transport (e.g., TLS) to en-

crypt outgoing messages. However, it is frequently disabled in favor of performance

(Benton et al., 2013).

t

s

C

i

e
ransition e ′ that is not the same with the original transition e from

 . Upon the current state v , the algorithm sends the message e ′ . msg

o the controller and retrieves a result. If the sent message causes

n error, the procedure makes a mutated path ω

′ as a union of e ′
nd ω. Then, the mutated path ω

′ is stored to γ (lines 9 to 13). If

here is an adjacent state u from the current state, the procedure

ppends the current edge e to ω and calls itself to visit all vertices

ecursively (lines 14 to 17).

Finally, the procedure returns a list of the mutated transition

aths γ , which is a set of generated fuzz cases. The unexpected

ituation referred to in the fuzzing algorithm description is deter-

ined based on the seven test criteria that we have defined in

ection 4.3 . If the fuzz cases generated by DELTA result in any of

hese, the test inputs will be flagged for ex-post-facto vulnerability

ssessment.

.3. System architecture

This section presents an overview of the overall architecture of

ELTA and briefly explains each of its components. For a more

etailed description, we point the reader to (Lee et al., 2017). As

hown in Fig. 8 , our framework consists of a centralized agent

anager and multiple agents. The agents are classified into three

ifferent types based on their location: application, channel, and

ost. Those agents are located along the path of SDN control flows

nd implement attack scenarios.

Agent Manager: The agent manager (AM) assumes the role of

 controller that manages all the agents. The AM consists of four

odules: Controller Manager, Attack Conductor, Agent Handler,

nd Result Analyzer. The AM is not coupled with SDN components;

t independently conducts two functions: (i) controls other agents

emotely to replay known attack scenarios or discover unknown

ttack scenarios against the target network, and (ii) retrieves the

xecuted results from each agent.

Remote Agents: The application agent is an SDN application

unning inside the controller. It launches attacks under the super-

ision of the AM. Since an SDN application can be directly involved

n SDN control flows, our framework inserts an application (i.e.,

pplication agent) into a controller to intercept, forge, and change

DN control flows and input variables, as applicable to the attack

cenario. Application agents are controller specific as they must in-

eract directly with each controller API. The application agent con-

ists of four modules: (i) Attack Simulator, (ii) AM Interface, (iii)

ontrol-Flow Fuzzer, and (iv) Value Fuzzer. The attack simulator

ncludes known malicious functions for a target controller, and it

xecutes malicious functions as indicated by the AM. The control-

S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720 9

Table 2

Supported application agents for various controller versions.

ONOS OpenDaylight Floodlight Ryu Brocade Vyatta

Version 1.6 1.9 2.1 Helium Lithium Carbon 0.91 1.1 1.2 4.16 2.3.0

Release Date 12/16/15 03/10/16 04/30/19 09/29 /14 06/29/15 05/26/17 12/30/14 04/17/15 02/07/16 08/02/17 2016

Supported � � � � � � � � � � �

fl

fl

p

(

u

b

d

c

n

i

t

r

t

I

T

m

T

t

b

t

n

c

t

r

d

w

t

a

T

s

t

s

c

S

a

t

6

b

i

J

s

2

k

a

a

t

t

t

t

Table 3

Unknown attack case classification: ASY (Asymmetric),

SYM (Symmetric), INTRA (Intra-controller), INTER (Inter-

controller), and ADMIN (admin) control flows.

Unknown Attack Name Flow Target

Sequence and Data-Forge ASY FL

Stats-Payload-Manipulation SYM FL, ODL

Echo-Reply-Payload-Manipulation SYM ODL

Service-Unregistration INTRA ODL

Flow-Rule-Obstruction INTRA ONOS

Host-Tracking-Neutralization INTRA ONOS

Link-Discovery-Neutralization INTRA FL

Heartbeat-Delay-Randomization INTER ONOS

Missing-Prerequisite ADMIN FL

w

1

n

i

i

d

f

a

p

o

o

n

a

7

m

w

l

t

o

a

w

7

f

t

D

9

T

r

t

7

P

e

b

3 The first 7 unknown attack cases refer to (Lee et al., 2017)
ow fuzzer and value fuzzer are used to randomize SDN control

ows and their input values.

The channel agent sniffs and modifies the control messages

assing through the control channel between the control plane

i.e., controller) and the data plane. As the communication is often

nencrypted, the channel agent can manipulate control messages

y intercepting them. While the application agent is controller-

ependent, the channel agent is SDN protocol-dependent. DELTA

urrently supports OpenFlow 1.0 and 1.3. The modules of the chan-

el agent are the same with those of the application agents.

The host agent behaves as a host (or multiple hosts) participat-

ng in the target SDN network. It is capable of generating network

raffic to any reachable targets (e.g., switch and host), and such a

emotely controllable host is useful for launching some attacks ini-

iated by hosts. The host agent consists of three modules: (i) Flow

nformation Collector, (ii) Flow Generator, and (iii) AM Interface.

he flow information collector captures diverse flow-related infor-

ation, such as latency and the number of sent and received flows.

he flow generator produces network flows under the control of

he AM.

Fuzzing Modules: An administrator who chooses to employ the

lackbox fuzzing functions of our framework can set the AM to ac-

ivate fuzzing functions for the application and channel agents. If

o guidelines are presented to the fuzzing functions, they operate

ontinuously until manual termination. The operator can alterna-

ively supply input to narrow fuzzy testing to a boundary range of

andomization for the specific cases.

Currently, our framework provides two fuzzing module ran-

omizing functions: (i) Control-Flow Fuzzer and (ii) Value Fuzzer,

hich are both located within each agent. As their name implies,

he control-flow fuzzer randomizes SDN control flow operations,

nd the value fuzzer randomizes the input values of each function.

hese modules may operate in tandem or independently.

Whenever a randomization procedure is completed, the test re-

ults will be delivered to the result analyzer in the AM, which

hen analyzes the results to verify the effectiveness of an attack

cenario. This evaluation for detecting new successful attacks is

urrently based on the set of seven test criteria mentioned in

ection 4.3 . If any of these seven outcomes is detected, the result

nalyzer regards this as a new attack and reports the test case to

he operator.

. Implementation

We have implemented an instance of DELTA to verify its feasi-

ility and effectiveness. To support the design features described

n Section 5 , we implemented three types of agents and an AM in

ava, in approximately 12,0 0 0 lines of code. DELTA has been open

ourced as one of ONF’s official open SDN projects (Lee et al.,

020).

DELTA currently includes application agents for four well-

nown open source controllers and one commercial controller, en-

bling it to replay attack scenarios and launch fuzzing functions

s shown in Table 2 . As the controller integration design involves

he user of modular application agents, we are able to minimize

he integration cost (and impact) of extending DELTA to other con-

rollers. The channel agent employs a packet capture library to cap-

ure and modify control messages between a controller and net-
ork devices, and it currently supports OpenFlow version 1.0 and

.3. The host agent is a Java application program that generates

etwork flows by creating new TCP connections or by using ex-

sting utilities, such as Tcpreplay. It can also collect network flow

nformation by passively sniffing network packets. All agents have

irect connections to the AM with TCP connections. We implement

uzzing modules by modifying functions for controlling SDN oper-

tions. In the case of the application agent, the fuzzing modules

arse arguments of each function, track and randomize sequences

f function calls, and randomize arguments or the sequences based

n the information provided by the AM. With respect to the chan-

el agent, the fuzzing modules manipulate OpenFlow messages

nd delay the sequence of message flows.

. Evaluation

We have conducted a wide range of experiments and perfor-

ance evaluations involving the DELTA security assessment frame-

ork with well-known SDN controllers, ONOS (v1.9.0), OpenDay-

ight (Carbon), Floodlight (v1.2), Ryu (v4.16) and a commercial con-

roller (Brocade Vyatta v2.3.0). In this section we present a range

f results illustrating the penetration testing capability of DELTA

cross a diversity of SDN stacks, as per the objective of our frame-

ork.

.1. Use case 1: finding unknown attacks

Among the key features of DELTA is its ability to use specialized

uzz testing to uncover new SDN vulnerabilities. Here, we highlight

his capability using experiments we conducted on ONOS, Open-

ayLight (ODL), and Floodlight (FL) controllers. Table 3 summarizes

 new attack scenarios 3 that were revealed through our evaluation.

hese scenarios span all five SDN control flow categories (symmet-

ic, asymmetric, intra-controller, inter-controller, and admin con-

rol flows).

.1.1. Sequence and data-Forge attack

In the implementation of the Floodlight controller, when

ACKET_IN messages arrive at the controller, it sequentially deliv-

rs the messages to a set of applications that have registered call-

acks. Moreover, any application that receives the messages can

10 S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720

Fig. 9. Fuzz points of the Sequence and Data-Forge attacks.

Fig. 10. Results of the Sequence and Data-Forge attack experiment.

Fig. 11. Results of the Stats-Payload-Manipulation attack experiment.

7

S

f

c

t

t

t

c

w

m

f

m

a

S

a

a

i

7

a

e

c

t

n

t

m

r

t

o

t

c

F

a

E

c

t

(

7

v

i
get , insert , and even remove the payload within a message.

Thus, the combination of these two features can be misused by a

malicious or buggy application (e.g., delivering crafted payloads).

Furthermore, this problem can result in the network entering an

unstable state.

Using the control-flow fuzzer and the value fuzzer in the ap-

plication agent, Fig. 9 illustrates the attack scenario, highlight-

ing the points where the fuzzing modules randomize. Specifi-

cally, the control-flow fuzzer randomizes the delivery sequence of

PACKET_IN messages (A in Fig. 9), and the value fuzzer random-

izes the message payloads (B in Fig. 9). When the fuzz modules

change the sequence and remove all payload bytes in a PACKET_IN

message, DELTA discovers the vulnerability. Due to the removal of

the payload, the Topology Manager (in Fig. 9) is unable to re-

ceive the original payload and thus causes an exception error (e.g.,

NULL pointer exception). As a result, the switch that sends the

PACKET_IN message is disconnected because the controller has no

exception-handling mechanism. Since the switch disconnection is

one of the criteria that determines whether this finding is an un-

known attack, the AM determines that this case is a previously un-

known attack scenario.

Based on the log file generated by the result analyzer in the

AM, we re-examine the unknown case. Fig. 10 illustrates the out-

put of the controller’s console during this analysis process. Initially,

the application agent is located at the end of the sequence (in the

‘Before’ column of Fig. 10). However, after modifying the sequence,

the application agent is moved to the first entry of the ‘After’ col-

umn in Fig. 10 .

Finally, the controller shows a NULL pointer exception because

the Topology Manager cannot properly handle a PACKET_IN mes-

sage, as the application agent removes the payload from the mes-

sage, and then the switch that sent the PACKET_IN message is sub-

sequently disconnected (i.e., criterion (iv) switch disconnection as

defined in Section 4.3).
.1.2. Stats-Payload-Manipulation attack

As mentioned in Section 2.2 , the STATS_REQUEST and

TATS_RESPONSE messages are the representative messages

or symmetric control flows. If an application wants to know spe-

ific flow statistics, the controller sends a STATS_REQUEST message

o solicit switch status information, then the switch responds to

he controller with the STATS_RESPONSE message.

In this case, the DELTA operator first targets symmetric con-

rol flows. Then, the value fuzzer in the channel agent randomizes

ontrol messages passing through the control channel. Technically,

hen the fuzzing module modifies the type of STATS_REQUEST

essage to an undefined value (before fuzzing: flow stats, after

uzzing: undefined), the AM notices the switch disconnection

atched to our criteria.

Fig. 11 shows the results of the Stats-Payload-Manipulation

ttack. When the value fuzzer changes the type of the

TATS_REQUEST message to a randomized value, the switch sends

n error message (see Packet Capture in Fig. 11) to the controller,

nd the switch is disconnected from the controller (see Controller

n Fig. 11), which violates the switch-disconnection criterion.

.1.3. Echo-Reply-Payload-Manipulation attack

In the case of the symmetric control flows, the ECHO_REQUEST

nd ECHO_REPLY messages are popularly used in OpenFlow to

xchange information about latency, bandwidth, and liveness on

onnected switches. If the controller does not receive a reply to

he ECHO_REQUEST in time, it assumes that the switch is discon-

ected.

The operator first selects the symmetric control flows as the

arget flow type. Then, the AM randomly picks the ECHO_REPLY

essage type, and the value fuzzer in the channel agent starts to

andomize the message passing through the control channel. When

he fuzz module in the channel agent randomizes the length field

f the ECHO_REPLY message as an undefined value (before: 8 , af-

er fuzzing: 0), the switch disconnection event is triggered in the

ontroller (i.e., criterion (iv) switch disconnection).

From the log information, we try to reproduce this attack case.

ig. 12 shows the results of the Echo-Reply-Payload-Manipulation

ttack. When the value fuzzer changes the length field of the

CHO_REPLY message to 0 value (Packet Capture in Fig. 12), the

ontroller causes the exception to parse the wrong length value of

he message. Finally, the switch is disconnected from the controller

Controller in Fig. 12).

.1.4. Service-Unregistration attack

OpenDaylight provides a substantial diversity of network ser-

ices, and OpenDaylight-hosted applications can dynamically reg-

ster and use these services. For example, applications can freely

S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720 11

Fig. 12. Results of the Echo-Reply-Payload-Manipulation attack experiment.

Fig. 13. Results of the Service-Unregistration attack experiment.

r

a

c

n

s

a

o

c

c

f

s

u

U

t

m

s

o

(

v

c

i

c

c

7

c

c

w

a

C

Fig. 14. Results of the Flow-Rule-Obstruction attack experiment.

u

p

n

i

a

v

d

a

a

f

t

a

s

F

t

F

t

T

F

F

r

7

t

t

a

t

m

t

fi

v

i

C

a

t

s

t

t

p

f

c

c

f

f

n

s
egister for the DataPacketService to parse control messages

rriving from the switch (e.g., PACKET_IN). While the application

an register these services at initialization, the applications can dy-

amically change the services of other applications without con-

traint, and potentially with malicious intent.

During one experiment, the value fuzzer in the application

gent found that it is possible to unregister certain services from

ther applications resulting in a significant disruption of network

onnectivity. For this experiment, a DELTA operator targets intra-

ontroller control flows and fuzzes only input values. The value

uzzer chooses the DependencyManager , one of the available

ervices to fuzz. While fuzzing input parameters, DELTA will try to

nregister all services of ArpHandler which manage ARP packets.

ltimately, the connection between hosts is disconnected. Since

his fuzz value causes the disconnection of hosts, the AM deter-

ines this case as a newly found attack scenario.

Based on the log file, we can backtrack this attack scenario. As

hown in Fig. 13 , the ArpHandler initially registered three kinds

f services: IHostFinder, IListenDataPacket, and ICacheUpdateAware

Before in Fig. 13). After the fuzzing modules unregister the ser-

ices, the network loses its functionality, since ARP packets play a

ritical role during the initiation of network communications (After

n Fig. 13). Therefore, two hosts that are connected to the switch

annot communicate with each other (i.e., criterion (vi): inter-host

ommunication disconnection).

.1.5. Flow-Rule-Obstruction attack

In the implementation of ONOS, some applications may have

onfiguration properties. For example, if an application de-

lares a specific variable as a configuration property, the net-

ork administrator can change the variable dynamically. In

ddition to manually changing the properties, ONOS provides

omponentConfigService , which tracks and changes config-
ration properties for its applications. While the service allows ap-

lications to dynamically change the configuration of each compo-

ent, it can also change unnecessary configurations.

This attack scenario was discovered by targeting DELTA to the

ntra-controller control flows. The value fuzzer in the application

gent chooses the ComponentConfigService among available ser-

ices for randomizing input values. When the value fuzzer ran-

omizes certain properties of ReactiveForwarding , the default

pplication to send flow rules to the switch, the AM detects notice-

ble performance degradation of the switch. More specifically, the

uzzing module randomizes the Packet_Out_Only property of

he ReactiveForwarding service (default: false, after fuzzing: true),

nd the ReactiveForwarding service sends no FLOW_MOD mes-

ages to the switch.

With the log file, we can verify the feasibility of this attack.

ig. 14 shows the difference of the latencies before and after

he attack. Since the ReactiveForwarding service does not send

LOW_MOD messages to the switch, every new flow arriving at

he switch keeps generating PACKET_IN messages to the controller.

hus, the average of latencies becomes slower (about 4 ms in

ig. 14 bottom) than the average before the attack (about 1 ms in

ig. 14 top) as the workload of the controller increases (i.e., crite-

ion (v): switch performance downgrade).

.1.6. Host-Tracking-Neutralization attack

ONOS keeps track of the location of each end-host connected

o switches through the HostLocationProvider , which main-

ains host-related information (e.g., an IP address, a MAC address,

 VLAN ID, and a connected port). For example, if an end-host at-

aches to a switch, the service identifies this and updates the infor-

ation of the end-host. As mentioned in the previous unknown at-

ack scenario, ComponentConfigService can also change some con-

guration properties belonging to the HostLocationProvider ser-

ice.

An operator can aim DELTA at the intra-controller flows for

nput value fuzzing (not flow sequence), then the Component-

onfigService is selected by the value fuzzer in the application

gent for input-value randomization. While the value fuzzer runs,

he controller receives error messages from the switch. Since the

witch sending error messages to the controller matches one of

he seven vulnerability detection criteria, the AM logs information

hat the fuzzing module randomized the hostRemovalEnabled
roperty of the HostLocationProvider (default: true, after fuzzing:

alse). This change effectively prevents the tracking of end-host lo-

ations. For example, if a host is disconnected from the switch, the

ontroller does not detect this disconnection.

To verify this unknown attack scenario, we analyzed the log in-

ormation and backtracked the attack. Fig. 15 shows the outputs

rom a packet capture tool (Orebaugh et al., 2006) in the chan-

el agent. The channel agent senses the error messages from the

witch, which means that the controller for the flow rules is not

12 S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720

Fig. 15. Results of the Host-Tracking-Neutralization attack experiment.

Fig. 16. Results of the Link-Discovery-Neutralization attack experiment. A circle

(before) represents a live link between two switches, and a dotted line (after) rep-

resents a failed link.

Fig. 17. Results of the Heartbeat-Delay-Randomization attack experiment.

m

n

t

e

f

t

t

m

u

s

w

t

s

s

p

v

s

p

a

a

A

7

u

a

g

t

t

fl

d

a

s

i

t

b

p

n

s

s

W
available due to the invalid host. However, although the commu-

nication ends, error messages are sent to the controller every 10

s until the controller shuts down (i.e., criterion (vii): error-packet

generation).

7.1.7. Link-Discovery-Neutralization attack

Floodlight also provides diverse network services in the con-

troller core for use by applications. Among these services, the

LinkDiscoveryService offers a way of managing the link in-

formation by sending LLDP packets to other applications. For ex-

ample, an application can read what link is connected to a specific

switch, or send LLDP packets to other switches using this service.

We found that an application can prevent the controller from

sending LLDP packets to all switches that are connected to the

controller. This misleads the controller about tracking the link in-

formation. For the discovery, an operator selects intra-controller

control flows as the target to be manipulated by the value fuzzer

module in the application agent (not in the channel agent). The

value fuzzer module feeds all switch information to an API pro-

vided by the LinkDiscoveryService, which suppresses the sending

of LLDP packets.

As a result of this attack, the controller is forced to misinterpret

the link-state information. Using a post-mortem analysis of the log

information, we can reproduce this attack scenario to check if this

attack really violates the criteria (i.e., criterion (iii) internal-storage

poisoning). As shown in Fig. 16 , the controller web UI displays the

correct network topology information (Before in Fig. 16). However,

after the attack is conducted, the topology information is changed,

although the real topology has not been altered (After in Fig. 16).

7.1.8. Heartbeat-Delay-Randomization attack

To implement synchronization among distributed ONOS con-

trollers, they leverage a RAFT algorithm (Ongaro and Ouster-

hout, 2014), which is a consensus algorithm that achieves a leader

selection from those instances. By synchronizing the different state

transitions with the eventual consistency concept, the RAFT en-

ables the instances to decide a single leader per a switch. Thus, the

selected leader has an authority of the switch. Also, for each in-

stance, receiving heartbeat messages from their neighbors through

the east-west interface is important to know whether the neigh-

bors are alive or not. If an instance does not receive the heartbeat
essage, it thinks that the neighbor is dead and tries to elect a

ew leader.

Paying attention to this, using DELTA, we were able to find out

hat there exists a vulnerability of the heartbeat mechanism op-

rated in the distributed ONOS controllers, and its scenarios is as

ollows: the channel agent in DELTA conducts the port scanning

o one of the instances from the cluster first. If the agent detects

he port 9876 (i.e., the default port for ONOS inter-controller com-

unication) of the instance is opened, it assumes that the port is

sed for exchanging the heartbeat messages among the instances,

o the agent starts to sniff the packets going through it. Here,

hen the fuzzing module in the channel agent drops and delays

he messages arbitrarily, the network state becomes unstable as

hown in Fig. 17 . Specifically, each instance cannot keep the link

tates for the entire network, resulting in that all the links disap-

ear from the ONOS cluster database (Controller in Fig. 17), which

iolates one of our criteria (i.e., criterion (iii) internal-storage poi-

oning). Thus, this unstable link information can affect other ap-

lications to make a wrong decision. More seriously, the host

gent cannot communicate each other again although the channel

gent stopped dropping and delaying the heartbeat messages (Host

gent in Fig. 17).

.1.9. Missing-Prerequisite attack

According to the OpenFlow specification (OpenFlow, 2011), If a

ser wants to use the TCP/UDP port numbers in match fields of

 flow rule, she should specify which IP protocol will be used to-

ether, which is called a prerequisite. If they do not comply with

his, the SDN controller should deny such flow rule request from

he users, and then notify them of an error.

In this instance, the DELTA operator targets the admin control

ows first. Then, the value fuzzer in the application agent ran-

omly generates the flow rule request that includes the source IP

ddress and IP protocol as the match fields through the RESTful

ervices. At this time, the flow rule requests are remotely pushed

n the same way that the administrator manually configures. Af-

er receiving the requests from the RESTful services, the controller

uilds the FLOW_MOD messages, but here the fuzzer disrupts the

rerequisite by removing the IP protocol from the match fields. Fi-

ally, when processing the flow rule, the controller disconnects the

witch, the AM notices this disconnection event (i.e., criterion (iv)

witch disconnection).

Fig. 18 shows the results of the Missing-Prerequisite attack.

hen the value fuzzer manipulates the prerequisite of FLOW_MOD

S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720 13

Fig. 18. Results of the Missing-Prerequisite attack experiment.

Fig. 19. Results of the Flow Rule Flooding attack experiment.

m

(

s

F

7

p

o

r

a

a

7

p

l

m

fl

p

R

r

t

c

t

o

fl

c

Fig. 20. Results of the Application Eviction attack experiment.

Table 4

Finding unknown attack microbenchmark.

Control Flow Type Average Running Time

Asymmetric control flow 82.5 sec

Symmetric control flow 80.4 sec

Intra-controller control flow 75.2 sec

Inter-controller control flow 89.2 sec

Admin control flow 76.5 sec

7

d

t

a

d

c

F

a

t

m

fi

t

n

a

c

t

o

7

m

t

s

A

n

p

c

8

F

A

t

i

t

f

o

f

w

t

f
essage by removing the IP protocol field, it causes a CPU burst

CPU Usage in Fig. 18) due to an infinite loop within the controller,

o the switch is disconnected from the controller (Controller in

ig. 18).

.2. Use Case 2: reproducing known attacks

Since the procedures and outputs of known attack scenarios are

re-specified, each agent needs to follow the steps and sequences

f those scenarios with the pre-defined parameters. In the case of

eproducing the known attack scenarios, we will illustrate two ex-

mple cases: Flow-Rule-Flooding Attack and Application Eviction

ttack.

.2.1. Flow rule flooding attack

To issue flow rules on the switches, SDN applications can em-

loy useful APIs provided by SDN controllers. However, the prob-

em is that there are no restrictions on issuing flow rules. Thus, a

alicious application can keep generating flow rules to fill up the

ow tables of SDN enabled switches to mislead the switches into

erformance degradation or unexpected status.

Fig. 19 shows an example of conducting this attack with the

yu controller. It denotes the Ryu web UI (Fig. 19 top) and ping

esults from the host agent (Fig. 19 bottom). When reproducing

his attack, the number of flow rules in the switch significantly in-

reases within seconds (Fig. 19 top), and thus it exhausts the flow

able of the switch. Then, the host agent cannot communicate with

ther hosts (Fig. 19 bottom), because there is no space to add new

ow rules corresponding to the connections of the host agent (i.e.,

riterion (vi) inter-host communication disconnection).
.2.2. Application eviction attack

Most controllers adopt a mechanism that can allow users to

ynamically load and unload an application running on the con-

roller. However, due to no restriction on using this mechanism,

n application can arbitrarily unload other applications. Here, we

emonstrate an attack against the commercial Brocade Vyatta SDN

ontroller (Brocade, 2016), which is based on OpenDaylight.

Once the target controller has been initialized, as shown in

ig. 20 (A), the application agent and the target application to evict

re up and running (both are in ACTIVE state). Here, we attempt

o evict the flowmanager application, which plays a critical role in

anaging flow rules on the switches. Then, once the target is con-

rmed, the agent executes the attack to stop the target applica-

ion. As a result, one can see that the flowmanager application is

o longer in an ACTIVE state after the attack (Fig. 20 (B)).

The demonstration of this range of attack cases (both known

nd unknown) across the diversity of commercial and open source

ontrollers illustrates the flexibility of DELTA design, and the po-

ential for its use in security testing across an even broader range

f controllers.

.3. Performance

For finding unknown attack cases, DELTA serially executes fuzz

odules in each agent. Upon completion of each fuzz test cycle,

he analyzer in AM checks if the attack was successful. Table 4

hows the amount of time taken to complete one fuzz test cycle.

ctually, it can be dependent on the scale of the testbed and the

umber of the fuzz points. But, the results in Table 4 take the sim-

le test topology as shown in Fig. 9 and one fuzz point per each

ycle.

. Limitation and discussion

Like other research work, our system also has some limitations.

irst, some testing cases require installing a specified agent (i.e.,

pplication Agent) to an SDN controller. For example, reproducing

he Internal Storage Misuse attack in each controller requires the

nstallation of our Agent Manager for each controller. This limita-

ion may slow the adaptation of our tool to diverse control plat-

orms. However, currently our framework covers most well-known

pen source controllers, and we will provide an interface module

or other control platforms to easily integrate or extend our frame-

ork.

Second, some operations require human involvement. We have

ried to minimize the amount of human interaction, and our

ramework can be operated with simple configurations. However,

14 S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720

D

H

H

H

H

J

K

K

M

M

M

N
O

O

O

O

O

O

P

L

S

S

S

some cases, such as adding new attack scenarios, require manual

modifications to some parts of the framework. This situation hap-

pens when our framework discovers a new type of attack through

the fuzzing module. In this case, we can understand an attack sce-

nario through the log information, but this may require a new way

to handle SDN control flows or messages. We will revise this in the

near future to automatically handle all (or most) operations.

9. Conclusion

This paper describes an important first step toward developing

a systematic methodology for automatically exploring the critical

data flow exchanges that occur among SDN components in search

of known and potentially unknown vulnerabilities. To our knowl-

edge, this framework, called DELTA, represents the first and only

SDN-focused security assessment tool available today. It has been

designed for OpenFlow-enabled networks and has been extended

to work with the most popular OpenFlow controllers currently

available. We also presented a generalizable SDN-specific blackbox

fuzz testing algorithm that is integrated into DELTA. This fuzz test-

ing algorithm enables the operator to conduct in-depth testing of

the data input handling logic of a range of OpenFlow component

interfaces. We demonstrate the effectiveness of this fuzz testing al-

gorithm by presenting 9 previously unknown attack scenarios that

were detected by our tool.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgment

This work was supported by Institute for Information & com-

munications Technology Promotion (IITP) grant funded by the Ko-

rea government (MSIT) (No.2018-0-00254, SDN security technology

development).

References

Benton, K. , Camp, L.J. , Small, C. , 2013. Openflow vulnerability assessment. In: Pro-
ceedings of the second ACM SIGCOMM workshop on Hot topics in software de-

fined networking (HotSDN’13). ACM .

Berde, P. , Gerola, M. , Hart, J. , Higuchi, Y. , Kobayashi, M. , Koide, T. , Lantz, B. ,
O’Connor, B. , Radoslavov, P. , Snow, W. , et al. , 2014. Onos: towards an open, dis-

tributed sdn os. In: Proceedings of the third workshop on Hot topics in software
defined networking (HotSDN’14). ACM .

Big Switch Networks, Floodlight. http://www.projectfloodlight.org/floodlight/ .
BLACK-HAT-USA-2016, Delta: Sdn security evaluation framework. https://www.

blackhat.com/us-16/briefings/schedule/index.html .

BLACK-HAT-USA-2017, Attacking sdn infrastructure: are we ready for the next-gen
networking? https://www.blackhat.com/us-17/arsenal/schedule/index.html .

BLACK-HAT-USA-2018, The finest penetration testing framework for software-
defined networks. https://www.blackhat.com/us-18/briefings/schedule/index.

html .
Brocade, 2016. Brocade SDN Controller. http://www.brocade.com/en/

products-services/software-networking/sdn-controllers-applications/

sdn-controller.html/ .
Cha, S.K. , Woo, M. , Brumley, D. , 2015. Program-adaptive mutational fuzzing. In: Proc.

of the IEEE Symposium on Security and Privacy .
Cui, W. , Peinado, M. , Wang, H.J. , Locasto, M.E. , 2007. Shieldgen: Automatic data

patch generation for unknown vulnerabilities with informed probing. In: Secu-
rity and Privacy, 2007. SP’07. IEEE Symposium on. IEEE, pp. 252–266 .

Curtis, A.R. , Mogul, J.C. , Tourrilhes, J. , Yalagandula, P. , Sharma, P. , Banerjee, S. , 2011.
Devoflow: scaling flow management for high-performance networks. In: ACM

SIGCOMM Computer Communication Review, 41. ACM, pp. 254–265 .

Dhawan, M. , Poddar, R. , Mahajan, K. , Mann, V. , 2015. Sphinx: detecting security at-
tacks in software-defined networks.. NDSS .

Dover, J. M., 2013. A denial of service attack against the Open Floodlight SDN con-
troller. Dover Networks, Tech. Rep.
over, J. M., 2017. A switch table vulnerability in the Open Floodlight SDN
controller. url: http://dovernetworks.com/wpcontent/uploads/2014/03/

OpenFloodlight-03052014.pdf .
Fyodor, Nmap security scanner. http://www.nmap.org .

Godefroid, P. , Levin, M.Y. , Molnar, D.A. , 2008. Automated whitebox fuzz testing.. In:
NDSS, 8, pp. 151–166 .

Hizver, J., Taxonomic modeling of security threats in software Defined. Blackhat
2015. https://www.blackhat.com/us-15/briefings/schedule/index.html .

ocevar, S., zzuf. https://github.com/samhocevar/zzuf .

ong, C.-Y. , Kandula, S. , Mahajan, R. , Zhang, M. , Gill, V. , Nanduri, M. , Wattenhofer, R. ,
2013. Achieving high utilization with software-driven wan. In: ACM SIGCOMM

Computer Communication Review, 43. ACM, pp. 15–26 .
ong, K. , Xu, L. , Wang, H. , Gu, G. , 2015. Poisoning network visibility in software-de-

fined networks: New attacks and countermeasures. In: Proceedings of the 22nd
Annual Network and Distributed System Security Symposium (NDSS’15) .

P, HP SDN App Store. https://marketplace.saas.hpe.com/sdn .

Jain, S. , Kumar, A. , Mandal, S. , Ong, J. , Poutievski, L. , Singh, A. , Venkata, S. , Wan-
derer, J. , Zhou, J. , Zhu, M. , et al. , 2013. B4: Experience with a globally-deployed

software defined wan. In: ACM SIGCOMM Computer Communication Review,
43. ACM, pp. 3–14 .

ero, S., Bu, X., Nita-Rotaru, C., Okhravi, H., Skowyra, R., Fahmy, S., Beads: automated
attack discovery in openflow-based sdn systems.

Kotani, D., Okabe, Y., 2014. A packet-in message filtering mechanism for protection

of control plane in openflow networks. In: Proceedings of the Tenth ACM/IEEE
Symposium on Architectures for Networking and Communications Systems.

ACM, New York, NY, USA, pp. 29–40. doi: 10.1145/2658260.2658276 .
reutz, D. , Ramos, F.M. , Verissimo, P. , Rothenberg, C.E. , Azodolmolky, S. , Uhlig, S. ,

2015. Software-defined networking: a comprehensive survey. Proc. IEEE 103 (1),
14–76 .

reutz, D. , Ramos, F.M.V. , Verissimo, P. , 2013. Towards secure and dependable soft-

ware-defined networks. In: Proceedings of ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (HotSDN’13) .

Lee, S. , Yoon, C. , Lee, C. , Shin, S. , Yegneswaran, V. , Porras, P.A. , 2017. Delta: A security
assessment framework for software-defined networks.. NDSS .

aynor, D. , 2011. Metasploit Toolkit for Penetration Testing, Exploit Development,
and Vulnerability Research. Elsevier .

edved, J. , Varga, R. , Tkacik, A. , Gray, K. , 2014. Opendaylight: Towards a model–

driven sdn controller architecture. In: 2014 IEEE 15th International Symposium
on. IEEE, pp. 1–6 .

iller, B.P. , Fredriksen, L. , So, B. , 1990. An empirical study of the reliability of unix
utilities. Commun. ACM .

TT Communications, Ryu. http://osrg.github.io/ryu/ .
ktian, Y.E. , Lee, S. , Lee, H. , Lam, J. , 2017. Distributed sdn controller system: a survey

on design choice. Comput. Networks 121, 100–111 .

ngaro, D. , Ousterhout, J. , 2014. In search of an understandable consensus al-
gorithm. In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14),

pp. 305–319 .
NOS, Cord: Reinventing central offices for efficiency & agility. https://opencord.org .

Open Networking Foundation, https://www.opennetworking.org/ .
OpenFlow, 2009. OpenFlow Specification version 1.0.0. Technical Report. http://

archive.openflow.org/documents/openflow- spec- v1.0.0.pdf
penFlow, 2011. OpenFlow Specification version 1.3.0. Technical Report.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.3.0.pdf
penFlow, 2014. OpenFlow Swtch Specification version 1.5.0. Technical Report.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

rebaugh, A. , Ramirez, G. , Beale, J. , 2006. Wireshark & Ethereal network protocol
analyzer toolkit. Elsevier .

orras, P. , Shin, S. , Yegneswaran, V. , Fong, M. , Tyson, M. , Gu, G. , 2012. A security en-

forcement kernel for openflow networks. In: Proceedings of the first workshop
on Hot topics in software defined networks (HotSDN’12) .

Röpke, C. , Holz, T. , 2015. Sdn Rootkits: subverting Network Operating Systems of
Software-defined Networks. In: Research in Attacks, Intrusions, and Defenses.

Springer, pp. 339–356 .
ee, S., Yoon, C., Shin, S., Scott-Hayward, S., DELTA: SDN SECU-

RITY EVALUATION FRAMEWORK. http://opensourcesdn.org/projects/

project- delta- sdn- security- evaluation- framework .
ecci, S., Attou, K., Phung, D., Scott-Hayward, S., Smyth, D., Ve-

muri, S., Wang, Y., 2017. ONOS Security and Performance
Analysis: Report No. 1. https://www-phare.lip6.fr/ ∼secci/papers/

ONOS- security- and- performance- analysis- brigade- report- no1.pdf .
cott, C. , Wundsam, A. , Raghavan, B. , Panda, A. , Or, A. , Lai, J. , Huang, E. , Liu, Z. ,

El-Hassany, A. , Whitlock, S. , et al. , 2014. Troubleshooting blackbox sdn control

software with minimal causal sequences. In: Proceedings of the 2014 ACM Con-
ference on SIGCOMM. ACM, pp. 395–406 .

SDNSecurity.org, SDN Security Vulnerabilities Genome Project. http://edisonchicken.
cafe24.com/vulnerability/attacks/ .

Security, T. N., Nessus. http://www.tenable.com/products/
nessus- vulnerability- scanner.html .

hin, S. , Gu, G. , 2013. Attacking software-defined networks: a first feasibility study

(short paper). In: Proceedings of ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (HotSDN’13) .

Shin, S. , Song, Y. , Lee, T. , Lee, S. , Chung, J. , Porras, P. , Yegneswaran, V. , Noh, J. ,
Kang, B.B. , 2014. Rosemary: A robust, secure, and high-performance network

https://doi.org/10.13039/501100010418
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0002
http://www.projectfloodlight.org/floodlight/
https://www.blackhat.com/us-16/briefings/schedule/index.html
https://www.blackhat.com/us-17/arsenal/schedule/index.html
https://www.blackhat.com/us-18/briefings/schedule/index.html
http://www.brocade.com/en/products-services/software-networking/sdn-controllers-applications/sdn-controller.html/
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0006
http://dovernetworks.com/wpcontent/uploads/2014/03/OpenFloodlight-03052014.pdf
http://www.nmap.org
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0007
https://www.blackhat.com/us-15/briefings/schedule/index.html
https://github.com/samhocevar/zzuf
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0009
https://marketplace.saas.hpe.com/sdn
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0010
https://doi.org/10.1145/2658260.2658276
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0013
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0013
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0013
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0013
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0017
http://osrg.github.io/ryu/
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0019
https://opencord.org
https://www.opennetworking.org/
http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0803
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0803
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0803
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0803
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0024
http://opensourcesdn.org/projects/project-delta-sdn-security-evaluation-framework
https://www-phare.lip6.fr/~secci/papers/ONOS-security-and-performance-analysis-brigade-report-no1.pdf
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0025
http://edisonchicken.cafe24.com/vulnerability/attacks/
http://www.tenable.com/products/nessus-vulnerability-scanner.html
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0027

S. Lee, J. Kim and S. Woo et al. / Computers & Security 91 (2020) 101720 15

S

T

U

Y

operating system. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS’14) .

hin, S. , Yegneswaran, V. , Porras, P. , Gu, G. , 2013. Avant-guard: Scalable and vigilant
switch flow management in software-defined networks. In: Proceedings of the

20th ACM Conference on Computer and Communications Security (CCS’13) .
akanen, A., Demott, J. D., Miller, C., Fuzzing for Software Security Testing and Qual-

ity Assurance. http://www.mcafee.com/us/products/network-security-platform.
aspx .

jcich, B.E. , Thakore, U. , Sanders, W.H. , 2017. Attain: An attack injection framework

for software-defined networking. In: Dependable Systems and Networks (DSN),
2017 47th Annual IEEE/IFIP International Conference on. IEEE, pp. 567–578 .

ao, J. , Wang, Z. , Yin, X. , Shiyz, X. , Wu, J. , 2014. Formal modeling and systematic
black-box testing of sdn data plane. In: Network Protocols (ICNP), 2014 IEEE

22nd International Conference on. IEEE, pp. 179–190 .

Seungsoo Lee is a Ph.D. student in Graduate School of In-
formation Security at KAIST working with Dr. Seungwon

Shin in NSS Lab. He received his B.S. degree in Computer
Science from Soongsil University in Korea. He received his

M.S. degree in Information Security from KAIST. His re-
search interests include secure and robust SDN controller,

and protecting SDN environments from threats.

Jinwoo Kim is a Ph.D studnet in the School of Electri-
cal Engineering at KAIST. He received his M.S degree in

Graduate School of Information Security from KAIST, and
his B.S degree in Computer Science and Engineering from

Chungnam National University. His research topic mainly

focus on Software Defined Networking (SDN) security, de-
signing a network security system, and an applied net-

work theory.

Seungwon Woo is a researcher at ETRI. He received his
M.S degree in Graduate School of Information Security

from KAIST, and his B.S degree in Computer Science and
Engineering from Chungnam National University. He is in-

terested in SDN security and blockchain area.

Changhoon Yoon is a director of research in S2W Lab.
He received his B.S degree in Computer Engineering from

the University of Michigan, Ann Arbor in 2010 and his M.S
degree in Information Security from KAIST in 2014. He re-

ceived his PhD degree in Information Security from KAIST

in 2019.
Dr. Sandra Scott-Hayward , CEng CISSP CEH, is a Lecturer

(Assistant Professor) in Network Security at Queen’s Uni-
versity Belfast. In the Centre for Secure Information Tech-

nologies at QUB, Sandra leads research and development
of network security architectures and security functions

for software-defined networks (SDN) and network func-

tions virtualization (NFV). She has presented her research
globally and received Outstanding Technical Contributor

and Outstanding Leadership awards from the Open Net-
working Foundation (ONF) in 2015 and 2016, respectively.

Vinod Yegneswaran received his A.B. degree from the
University of California, Berkeley, CA, USA, in 20 0 0, and

his Ph.D. degree from the University of Wisconsin, Madi-
son, WI, USA, in 2006, both in Computer Science. He is a

Senior Computer Scientist with SRI International, Menlo

Park, CA, USA, pursuing advanced research in network
and systems security. His current research interests in-

clude SDN security, malware analysis and anti-censorship
technologies. Dr. Yegneswaran has served on several NSF

panels and program committees of security and network-
ing conferences, including the IEEE Security and Privacy

Symposium.

Phillip Porras received his M.S. degree in Computer Sci-

ence from the University of California, Santa Barbara, CA,
USA, in 1992. He is an SRI Fellow and a Program Di-

rector of the Internet Security Group in SRI’s Computer

Science Laboratory, Menlo Park, CA, USA. He has partic-
ipated on numerous program committees and editorial

boards, and participates on multiple commercial company
technical advisory boards. He continues to publish and

conduct technology development on numerous topics in-
cluding intrusion detection and alarm correlation, privacy,

malware analytics, active and software defined networks,

and wireless security.

Seungwon Shin is an associate professor in the School
of Electrical Engineering at KAIST. He received his Ph.D.

degree in Computer Engineering from the Electrical and

Computer Engineering Department, Texas A&M Univer-
sity, and his M.S degree and B.S degree from KAIST,

both in Electrical and Computer Engineering. He is cur-
rently a Research Associate of Open Networking Founda-

tion (ONF), and a member of security working group at
ONF. His research interests span the areas of Software De-

fined Networking (SDN) security, IoT security, and Botnet

analysis/detection.

http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0028
http://www.mcafee.com/us/products/network-security-platform.aspx
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0030
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0030
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0030
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0030
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0030
http://refhub.elsevier.com/S0167-4048(20)30007-9/sbref0030

	A comprehensive security assessment framework for software-defined networks
	1 Introduction
	2 Background and motivation
	2.1 SDN And openflow
	2.2 SDN control flows
	2.3 Motivating example

	3 Related work
	4 Vulnerabilities in SDN flows
	4.1 SDN control flow operation vulnerabilities
	4.2 Non flow operation vulnerabilities
	4.3 Vulnerability detection criteria

	5 System design
	5.1 Design considerations
	5.2 Blackbox fuzzing
	5.3 System architecture

	6 Implementation
	7 Evaluation
	7.1 Use case 1: finding unknown attacks
	7.1.1 Sequence and data-Forge attack
	7.1.2 Stats-Payload-Manipulation attack
	7.1.3 Echo-Reply-Payload-Manipulation attack
	7.1.4 Service-Unregistration attack
	7.1.5 Flow-Rule-Obstruction attack
	7.1.6 Host-Tracking-Neutralization attack
	7.1.7 Link-Discovery-Neutralization attack
	7.1.8 Heartbeat-Delay-Randomization attack
	7.1.9 Missing-Prerequisite attack

	7.2 Use Case 2: reproducing known attacks
	7.2.1 Flow rule flooding attack
	7.2.2 Application eviction attack

	7.3 Performance

	8 Limitation and discussion
	9 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References

