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Abstract— Software-Defined Networking (SDN) has aggres-
sively grown in data center networks, telecommunication
providers, and enterprises by virtue of its programmable and
extensible control plane. Also, there have been many kinds
of research on the security of SDN components along with
the growth of SDN. Some of them have inspected network
policy inconsistency problems that can severely cause network
reliability and security issues in SDN. However, they do not
consider whether a single network policy itself is corrupted
during processing inside and between SDN components. In this
paper, we thus focus on the question of how to automatically
identify cases in which the SDN stack fails to prevent policy
inconsistencies from arising among those components. We then
present AudiSDN, an automated fuzz-testing framework designed
to formulate test cases in which policy inconsistencies can
arise in OpenFlow networks, the most prevalent SDN protocol.
To prove its feasibility, we applied AudiSDN to two widely used
SDN controllers, Floodlight and ONOS, and uncovered three
separate CVEs (Common Vulnerabilities and Exposures) that
cause the network policy inconsistencies among SDN components.
Furthermore, we investigate the design flaws that cause the
inconsistencies in modern SDN components, suggesting specific
validations to address such a serious but understudied pragmatic
concern.

Index Terms— SDN, software-defined networking, network
policy inconsistency.

I. INTRODUCTION

OVER the past years, Software-Defined Network-
ing (SDN) has been one of the most promising network-

ing technologies, which presents a paradigm that emphasizes
the decoupling of the control plane from the data plane, with
a logically centralized control plane operated using (high-
performance) commodity hardware, and it has been widely
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adopted in real-world networking environments, such as data
centers [1], network infrastructure providers, and enterprise
networks [2], [3]. In addition, as SDN has been getting
popular, its security has been getting more attention as well.
Hence, we can easily find many works of SDN security,
trying to secure SDN components such as SDN application,
controller, switch. For example, since FortNox [4] has first
explored the feasibility of SDN-specific attack scenarios, many
researchers have introduced attack scenarios and proposed a
range of defensive measures [5]–[15].

More specifically, researchers have mostly focused on the
security of SDN control plane as it is the most critical part of
SDN, controlling all other components of SDN [7], [9]–[16].
For instance, Flow Wars [7] pointed out several attack sce-
narios against an SDN controller, and Rosemary [9] also
investigated possible critical attacks against existing SDN
controllers, proposing a secure SDN controller. Besides them,
there are many other attack and defense works related to
SDN controllers [9], [10], [12], [16], [17]. Indeed, the majority
of SDN security projects have proposed protections from
the perspective of mitigating system-level concerns, such as
software bugs and application misuse, or the countermeasure
of malicious traffic.

On the other hand, the security community has paid atten-
tion to the examination of the inconsistency of network
policies (flow rules) as well, which are transformed from a
component to another through the SDN stack.1 For example,
pioneering work [18]–[22] aims to address inconsistent poli-
cies that can arise from controller-switch interactions due to
a variety of SDN features, such as asynchronous southbound
operations [19], [23], data-plane implementation heterogene-
ity [20], and reactive policy updates [18], [21], [22]. While
they address the inconsistencies using network-wide invariant
checking, none of them investigates whether the integrity of
a single flow rule is compromised for each processing step
over the SDN stacks. We argue that such network policy
inconsistency issues raise significant reliability and security
concerns in SDN, and a minor syntactic mistake that arises
during the multi-step process of translating SDN application
inputs to instantiated flow rules can even lead to significant

1The paper refers to network policies and flow rules interchangeably,
as network policies represent a semantic instantiation of what is implemented
by flow rules.
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instability in network operations (Examples are presented
in Section II.).

As the scrutiny of those problems and the approaches to mit-
igate them have been poorly studied so far, this paper focuses
on those network policy inconsistency issues, and proposes
a new framework, called AudiSDN, that automatically ana-
lyzes the processes by which administrative SDN policies are
communicated through SDN components and detects incon-
sistencies that arise among those components. In particular,
we present a specialized network policy fuzz-testing module
designed to stimulate opportunities for generating potential
malformed SDN policies, and introduce a detection strategy
for automatically recognizing those inconsistencies in real
SDN controllers. Our detection approach is informed by a
state-transition diagram conception of how SDN flow rules
are relayed among components and across the layered SDN
stack. This model informs the fuzz testing strategy and our
understanding of how to achieve a consistent test coverage
that is generalizable across OpenFlow [24], the most widely
used SDN implementation.

To show its feasibility, we have implemented a prototype of
AudiSDN for OpenFlow and evaluated it with two well-known
open-source SDN controllers: Floodlight [25] and ONOS [26].
Using AudiSDN, we have demonstrated five critical network
policy inconsistency cases that have not been studied before.
In the case of ONOS, we reported our findings to the vendor
and obtained three new CVEs (Common Vulnerabilities and
Exposures) as well. Furthermore, we have categorized the
discovered inconsistencies that were found among Flood-
light and ONOS, and identified the underlying root-cause
design inadequacies that were responsible. While our analy-
sis focused on two SDN implementations, we believe that
AudiSDN is applicable across the breadth of OpenFlow-based
SDN stacks that are implemented and widely deployed
today.

The scope of our project is a narrow but important
and under-studied question: how to mitigate concerns that
programmatic and interface errors among SDN compo-
nents do not produce unexpected network policy inconsis-
tencies. With this objective, this paper makes the following
contributions:

• We present a fuzz-testing methodology to stimulate policy
inconsistency occurrences against SDN stacks.

• We present an SDN policy translation state model and an
inconsistency detection method for automatically identi-
fying which of our test inputs produce potential policy
inconsistencies.

• We present the design and implementation of a new
testing framework, called AudiSDN, which is capable of
automatically generating randomized OpenFlow rules and
detecting flow-rule inconsistencies.

• We evaluate AudiSDN by performing analyses on two
popular and widely deployed OpenFlow controllers:
Floodlight and ONOS, illustrating the effectiveness of
AudiSDN in identifying a range of consistency errors and
design problems in these controllers, obtaining three new
CVE reports based on our analysis.

Fig. 1. SDN architecture overview.

II. BACKGROUND AND MOTIVATION

A. SDN and OpenFlow

Figure 1 provides an overview of the SDN architec-
ture that comprises three SDN components; (i) applications,
(ii) controller, and (iii) switches. Unlike traditional networks,
SDN decouples the control plane (composed of the application
and control layers) that decides how network traffic is handled
in the data plane (also known as, the infrastructure layer)
which implements the packet forwarding policy given by the
control layer. SDN introduces logically centralized network-
policy control, enabling agile and flexible administrative con-
trol over the internal network topology. SDN controllers
can provide an abstraction of the low-level management of
flow rule implementation, providing a network operating sys-
tem (NOS) that allows network programmers to implement
intuitive network functions as an SDN application. The SDN
controller manages network configurations and forwarding
rules to the network forwarding devices (e.g., SDN switches)
through the southbound APIs (e.g., OpenFlow [24]).

OpenFlow is currently the de-facto SDN protocol, defining
the interfaces that enable the controller to interact with the
forwarding devices (OpenFlow-compatible network switches).
OpenFlow-enabled switches maintain a number of flow tables,
containing a set of flow entries in each table. According to
the OpenFlow specification, each flow entry consists of three
main parts; (i) match fields (criteria) that are compared to
incoming packets, (ii) a set of actions (same as instructions)
that define how to process the matched incoming packets, and
(iii) packet/byte counters that calculate the total number of
packets/bytes. When an incoming packet arrives in a switch
and there is no matching flow rule entry, the switch sends a
PACKET_IN message, including the partial information of the
packet to the controller. The controller decides how to handle
the flow (including the given packet), builds a relevant flow
rule, and then sends the rule to the switch as a FLOW_MOD
message. FLOW_MOD messages include the priority,
match fields, actions per rule, enabling the switch to
bind the rule to all subsequent packets that meet the same
criteria. When two or more flow rules have identical match
fields, the higher priority rule takes precedence.
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Fig. 2. The procedure of installing a flow rule to the switch and four different
states of the flow rule.

B. Network Policy Enforcement in SDN

In SDN, each FLOW_MOD message represents a network
security policy decision, and flow rules in the message con-
tain exactly what data will be allowed in and out of the
SDN, which path the packet will traverse, and to which
endpoint (host) the packet will target. A network administrator
has two options in submitting network flow rules; (i) using
an SDN application that computes flow rules dynami-
cally, in response to PACKET_IN messages reactively, and
(ii) proactively requesting the flow rule through the REST
APIs2 or command line interfaces provided by the SDN
applications running in the controller.

The procedure for installing a flow rule into a network
switch in a proactive way (the second option) is illustrated
in Figure 2. (1) An administrator submits a flow rule to
an SDN application through the external interfaces (e.g., the
REST APIs). (2) The application builds a FLOW_MOD
message based on the received request, and (3) it saves the
flow rule in the internal database that the controller manages.
(4) Then, the controller sends the FLOW_MOD message to
the switch. (5) the switch finally installs the flow rule in the
FLOW_MOD message into its flow table. Following this pro-
cedure, we observe that a flow rule is managed at four different
processing points; administrator, application, controller, and
switch. Of interest for this paper, this observation implies that
a network policy can have different contexts (states) at each
processing point. We refer to the concern that such a state
difference may arise during the course of SDN operations as
the policy inconsistency problem.

C. Motivating Example

Let us consider the example of policy inconsistency repre-
sented in Figure 3. The figure illustrates how a missed pre-
condition made by a network administrator causes an error in
the controller that can lead to a policy inconsistency between
the control and data planes. In this example, we assume that

2The REST (REpresentational State Transfer) API provides users with the
interfaces to GET, PUT, POST and DELETE data through HTTP requests.

Fig. 3. This figure illustrates a Floodlight controller bug that an ill-formed
flow rule can cause a CPU burst due to an infinite loop within the controller,
which may result in a switch disconnect.

there is a network topology consisting of one Floodlight SDN
controller and one OpenFlow-enabled switch with two hosts.
The administrator attempts to install a flow rule into the
switch through REST APIs provided by the StaticEntryPusher
application, enabling Host A to communicate with Host B
over TCP port 80. The procedure of installing the flow rule
into the switch is as follows. (1) The network administrator
makes the request for a flow rule in a REST API form and
sends it to the application. (2) Then, the application stores
the flow rule in the policy database and sends the success of
the reception back to the administrator. (3) However, when
the application tries to build a FLOW_MOD message, the
switch is disconnected from the controller due to a processing
error. Finally, although there is no flow rule on the switch, the
controller believes it was successfully installed, which causes
the policy inconsistency between them.

The problem here is that according to the OpenFlow spec-
ification [24], one should specify the IP protocol when the
TCP/UDP port numbers are used in match fields of a flow
rule, but the network administrator did not follow this. Also,
the application did not check for this precondition as well, and
thus tried to build the FLOW_MOD message. This condition is
known to cause a CPU burst due to an internal controller loop,
which may result in the switch disconnecting from the con-
troller. More seriously, the controller returns the result message
(i.e., OK message), indicating that the requested flow rule was
successfully installed while it was not, and the administrator
would believe that the requested rule was properly installed.
Moreover, the controller will preserve the flow rule in its
policy database, which will now affect all SDN applications
operating on the controller. The essential reason causing such
inconsistencies is that the controller implementation did not
properly check the protocol specification and conduct error
handling.

III. SYSTEM DESIGN

This section provides an overview of the design consider-
ations motivating AudiSDN and a detailed description of its
system architecture.
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A. Design Considerations

The motivating example (from Section II) demonstrated how
a simple omission can lead to network policy (flow rule) incon-
sistency between the SDN control and data planes. Manual
detection of such issues is quite error-prone and complicated
for network administrators. Hence, we propose an automated
framework for testing and detecting policy inconsistencies in
SDN stacks based on the following two design considerations.

Automatic Testing. The framework should be highly auto-
mated to minimize the administrator’s intervention and time
needed to generate flow rules for testing. Manually enumerat-
ing all possible network policies (flow rules), that may cause
an inconsistency, is an impractical and arduous task. Thus,
we adopt a black-box fuzzing technique that enables us
to automatically generate various flow rule candidates and
employ a flow-rule dependency tree to increase the probability
of inducing inconsistencies.

Causality Detection. The framework should effectively and
concretely pinpoint the root cause of the SDN flow rule
inconsistency. We begin by designing a flow-rule state diagram
that we use to track the state transition of flow rules from
the network administrator’s request to the installation in the
switch. Using this state model, our approach seeks to identify
the first point where a flow rule inconsistency arises during its
path from formulation to deployment.

B. Problem Scope and Deployment Model

We primarily focus on the investigation of policy integrity
whose corruption may affect the forwarding behavior of data-
plane permanently [20]. Note that temporary inconsistency
between control- and data-plane (e.g., the moment before
a controller receives BARRIER_RESPONSE for flow rule
installation) is out-of-scope in this paper as it is already
discussed in many prior works [19], [23]. In addition, we do
not focus on the rule conflict problem where multiple policies
conflict with each other [27]–[29]. Regarding the deployment
model, we envision that network administrators can use our
framework to verify the correctness of protocol implementa-
tions (e.g., OpenFlow) in SDN controller. This task is crucial
since controllers can interpret the protocol specification in a
different way, producing inconsistency for the same policy
between a network administrator and controllers.

C. System Architecture

This section presents the overall architecture of AudiSDN
and explains its components. As illustrated in Figure 4, our
framework consists of three main components; flow rule
generator, application agent, and inconsistency detector.

Flow Rule Generator. The flow rule generator is composed
of two main modules: the dependency analyzer and flow
request fuzzer. The generator receives a seed file of the flow
rule request, which is given by a network administrator in
a JSON or XML format. The seed file is first forwarded to
the dependency analyzer module. The dependency analyzer
maintains an internal dependency tree (DT) of flow rules.
It inspects the seed flow request based on the dependency tree,
and then decides whether the seed flow request is malformed

Fig. 4. Overall architecture and its workflow of AudiSDN with three
key components: (i) flow rule generator, (ii) application agent, and
(iii) inconsistency detector.

or not. It further determines which elements and values of
the seed flow request will be randomized during test case
generation.

Next, the generator module hands decisions over to the
flow request fuzzer module together with the initial flow
rule request. The flow request fuzzer module generates one
or numerous mutated flow rule requests according to the
decisions received from the analyzer module (i.e., value and
semantics randomization). After randomizing the flow rule
request, the fuzzer module sends all the requests (i.e., original
and mutated ones) to the flow-rule handler module in the
application agent. The detailed fuzzing technique is described
in Section IV.

Application Agent. The application agent runs on the target
SDN controller, so it is dependent on the implementation of
each controller. There are two main modules in this agent;
the flow rule handler and flow rule collector. The flow rule
handler module takes the role of managing flow rules in the
switch through the flow services provided by the controller.
Thus, the handler receives all flow rule requests (including
the original seed request from the flow rule generator). It then
creates flow rules based on each request and stores it in the
controller database. Finally, the handler builds FLOW_MOD
messages, including the created flow rule, which it sends to
the switch together with the BARRIER_REQUEST message
to confirm the flow rule installation by the switch.

The flow rule collector module gathers flow rule states and
relevant message information, which will be used for detecting
flow rule inconsistencies. Specifically, the collector tracks the
process whereby one initial flow request received from the
generator ultimately becomes a flow rule in the switch.
If the flow rule is dropped in the middle, it records where the
rule processing was stopped. Lastly, all records corresponding
to each flow rule are compiled into a rule history, which
includes all the flow rule information from the initial request
by the seed file to the actually installed on the switch, and it
is sent to the inconsistency detector.

Authorized licensed use limited to: Univ Of Incheon. Downloaded on June 17,2022 at 01:44:39 UTC from IEEE Xplore.  Restrictions apply. 



1414 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 3, JUNE 2022

Inconsistency Detector. The inconsistency detector has two
main modules: the inconsistency analyzer and the inconsis-
tency solver. The inconsistency analyzer module investigates
the occurrence of flow-rule inconsistencies by exploring each
rule history based on a flow rule state diagram (SD), which
represents the state transition of a single flow rule from
the network administrator’s request to the installation in the
switch.

The inconsistency solver is a runtime module. Its purpose
is to deal with flow rule inconsistencies detected by the
analyzer module. Since the module considers the database in
the controller as the first priority by default, the module deletes
the inconsistent flow rules in the switch through the application
agent. It attempts to resynchronize the flow rules between the
controller and the switch. However, if the flow rule cannot be
installed because the rule is malformed or the switch cannot
accommodate it, the solver module deletes the flow rule in
the controller as well. In addition, the module leaves the logs
for ex-post-facto analysis. The detection method used in this
component is explained in Section V.

D. System Workflow

Our framework supports two different operation modes.
First, the testing mode aims to detect network policy inconsis-
tency problems in the SDN stack by using fuzzing techniques
as mentioned in the previous section. Second, the runtime
mode enables us to detect inconsistencies through real-time
monitoring.

Figure 4 illustrates how an SDN policy inconsistency is
detected by AudiSDN. First, in the testing mode, (1) the user
inputs a seed file with flow rule requests to the flow rule
generator. The generator analyzes the seed rule based on the
dependency tree and then randomizes the semantics and values
of the seed rule (will be explained in the next section). The
generator sends the mutated flow requests with the original
one to the application agent. (2) The agent processes the flow
rule requests received from the generator in turn. (3) The
agent stores the flow rule in the policy database and sends a
FLOW_MOD message to the switch through the flow service
provided by the controller. (4) The application agent fetches
the installed flow rule in the switch using FLOW_STATS
messages, and (5) then packs all the information about one
flow rule into a rule history and sends it to the inconsistency
detector. (6) The inconsistency detector finally inspects the
rule history based on the flow rule state diagram, and renders
a verdict on the existence of flow rule inconsistencies. On the
other hand, in the runtime mode, instead of steps (1) and (2),
the application agent processes the flow rule request directly
from the network administrator, so the flow rule randomization
is not conducted.

IV. NETWORK POLICY FUZZING

The likelihood of network policy inconsistencies by mal-
formed flow rules is arguably higher than from well-formed
rules. Hence, we adopt a fuzzing technique to randomly
generate malformed flow rules. Our technique uses flow rule
dependency trees to efficiently create such malformed flow

Fig. 5. The partial dependency tree example: white elements are derived
from the OpenFlow specification and grey elements are extended according
to ONOS and Floodlight specifications.

rules that allow us to inspect if the target SDNs are prone to
unexpected inconsistency issues.

A. Flow Rule Dependency Tree

The first step in randomizing flow rules is that of determin-
ing the set of input parameters that must be subject to input
randomization. In our framework, all elements (e.g., match
fields) comprising the flow rule are potential targets. For the
efficient randomization of flow-rule elements, we employ a
flow-rule dependency tree (as opposed to selecting elements
for randomization in an ad-hoc manner).

Figure 5 illustrates the partial dependency tree of a flow rule.
The rectangular nodes and circular nodes stand for the element
and its value type respectively. For example, the table_id
element is of the unsigned byte type, so its value should be
from 0 to 255. In addition, if a child element has a parent
element, there is a dependency between them since defining
the child element semantically requires the parent element
based on the OpenFlow protocol specification. Hence, if a
flow rule wants to filter packets based on the TCP source port
(tcp_src), it should specify the IP protocol (ip_proto)
to 6 in its match fields. The dependency tree is derived from
the OpenFlow specification, but it can be extended for other
SDN controllers according to their implementations (as shown
in the grey nodes in Figure 5).

The dependency-tree-based flow rule fuzzing framework
is divided into the following two subcomponents; (i) value
randomization and (ii) semantics randomization.

Value Randomization. The values of each element in the
flow rule can be simply randomized. For example, based on the
dependency tree, the priority element should be a numeric
value and its range is from 0 to 65535. We can randomize this
value without consideration of ranges to mislead applications
that try to cause the overflow or underflow for the numeric
type (e.g., 65536 or -1). Also, we can manipulate the numeric
type of the element (e.g., type casting) to the string type by
adding double quotation marks (“65535”), or the Boolean
type by changing the value to false. This method makes
an application fail to cast the input value into a suitable type,
generating unexpected values (e.g., null).

Semantics Randomization. In addition to randomizing
the values, we can manipulate the semantics of flow rules
by deleting or adding the inter-dependencies between the
elements. For example, as shown in Figure 6, the ipv4_dst
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Fig. 6. Semantic randomization example in the dependency tree by removing
the element.

element has a dependency on the ethertype element, which
means that if we want to filter IP packets, we should specify
the Ethernet protocol type (e.g., 0× 0800) in the match fields
as well. However, we can eliminate the ethertype element to
see if the controller can properly handle it. Also, it is possible
to append an arbitrary element to the dependency tree in order
to corrupt the processing of building the flow rule.

Algorithm 1 Policy Fuzzing Algorithm
Input:

A dependency tree Td = (Vd, Ed)
A seed flow rule rseed

A target value type type
Output:

A set of mutated trees Tm

1: procedure DEPENDENCYTREEFUZZING(Td, rseed)
2: Tm ← ∅
3: Tseed ← BUILDSEEDTREE(rseed, Td), where Tseed =

(Vseed, Eseed)
4: for v ∈ Vseed where v.type = type do
5: T ← Tseed

6: vm ← RANDOMIZEVALUE(v, v.type)
7: T.modify(v, vm)
8: Tm.append(T )

� Randomizing Values
9: for e ∈ Eseed do

10: T ← Tseed

11: vparent ← GETNODE(e, Type.element)
12: vchild ← GETNODE(e, Type.value)
13: if vparent, vchild ∈ Vseed then
14: T.removeDependency(vparent, vchild)
15: Tm.append(T )
16: else
17: v ← GETRANDOMNODE(Tseed, T ype.element)
18: T.addDependency(vparent, v)
19: T.addDependency(v, vchild)
20: Tm.append(T )

� Randomizing Semantics
21: return Tm

B. Policy Fuzzing Algorithm

To automatically randomize the values and semantics of
flow rules, we present a fuzzing algorithm using tree traversal
and graph matching concepts [30] as shown in Algorithm 1.
This algorithm requires two inputs. The first input is the

Fig. 7. The flow rule state diagram tracks the trajectory of a single flow
rule from a network administrator to switch. The grey color denotes the
critical states where a different rule instance is created for each SDN stack
(i.e., network admin, application, controller, and switch), which are used to
detect the inconsistencies of those instances.

dependency tree Td = (Vd, Ed), where Vd is a set of the
nodes whose types are element and value, and Ed is a set of
dependency relations among Vd. The second input is a seed
flow rule rseed and the last is a target (mutated) value type
type. The output is a set of the mutated flow rule trees Tm.

The algorithm initializes the output Tm as an empty set, and
translates the seed flow rule into a seed tree Tseed (lines 2 to 3).
To conduct the value randomization, the algorithm iteratively
visits all the nodes v of the seed tree, and mutates each value
given a type type. It then modifies the original node v to the
mutated one vm in the seed tree, and appends it to the output
(lines 4 to 8). In the case of the semantics randomization,
the algorithm mutates the seed tree by appending new nodes
or removing existing nodes. To do this, it visits all edges
e of the dependency tree Tseed, and gets an element-value
node pair (lines 9 to 12). If they are included in the seed
tree, the algorithm removes the dependency by removing that
node pair vparent, vchild from the seed tree, and appends it to
the output set (lines 13 to 15). Otherwise, it randomly selects
an element node v from the seed tree, and adds new depen-
dency edges by adding the node between vparent and vchild

(lines 16 to 20).

V. DETECTION OF NETWORK POLICY INCONSISTENCY

This section describes the detection techniques to find any
policy inconsistencies within the SDN components. First,
we derive a flow rule state diagram that represents the state
changes across SDN layers when a flow rule is enforced, and
we analyze the root causes of policy inconsistencies. Lastly,
we introduce a detection algorithm based on the state diagram
and the analysis.

A. Flow Rule State Diagram

In the state diagram as shown in Figure 7, we define 11 dif-
ferent states from S0 to S10, and each edge designates the
specific behavior of the application agent that is responsible
for handling the flow rule. For example, when the application
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agent in state S1 succeeds in creating a flow rule on behalf of
an administrator request, the state of the flow rule transitions
to state S2; otherwise, it moves to state S3. If the application
correctly receives the request in state S2, it updates the policy
database by parsing the request into a data entry and transitions
to state S4. The controller creates a FLOW_MOD message
based on the entry, sends it to a switch, which transitions to
state S6. If a switch rejects the message (S8), the controller
terminates the enforcement procedure. In the case that the
controller receives a BARRIER_RESPONSE message, which
denotes the end of rule installation on the switch, the state
transitions to S9. The rule can be removed by the controller
instruction (S7) or time expiration (S10). If the controller
receives a FLOW_REMOVED message, which means that
the rule is removed on the switch, the controller updates the
database and transitions to S4.

Critical States. We define the following four critical states
that represent locations where a flow rule is committed
to a unique SDN component in the installation procedure:
S1 (admin) state corresponding to an initial request from
the administrator, S2 (application) state following the store
request from the application, S4 (policy database) state mean-
ing that the flow rule has been stored in the policy database,
and S9 state implying the successful flow rule installation in
the switch. While flow rules in state S1 and S2 are transient,
the others in state S4 and S9 are maintained in the controller
and the switch respectively.

Inconsistency Relations. Based on those four critical states
of the flow rule, we specify three types of inconsistency rela-
tions between them; the administrator (S1) and the application
(S2) as IR1, the application (S2) and the controller (S4) as
IR2, and the controller (S4) and the switch (S9) as IR3.

B. Root Cause Analysis

With the definition of the critical states and the inconsis-
tency relations, we analyze the root causes that cause the flow
rule inconsistencies during the flow rule installation from the
network administrator to the switch. Figure 8 illustrates the
steps involved in installing the flow rule from the administrator
to the switch, and we mark the diverse causes that can raise
such flow rule inconsistencies with red circles in this figure.

Administrator (S1) to Application (S2). A network admin-
istrator can create a flow rule using the external interfaces
(e.g., REST APIs or CLIs) exposed by SDN applications.
In the case of the REST APIs, the administrator composes
the flow rule request in accordance with the format desired
by the application, and then sends it to the application through
the HTTP protocol. Then, the application creates the flow
rule based on the request received from the administrator.
At this time, three causes can lead to inconsistency between
the administrator and the application.

(IR1-1) Poor Input Validation 1. After the application
receives the flow rule request as the input through the REST
APIs, it should examine if the flow rule request complies
with its own implementation (and OpenFlow protocol) spec-
ification. For example, it can check if an element value
(e.g., priority) included in the flow rule is within its boundary.

However, if the application has a poor input validation, it could
allow malformed flow rules to be created, leading to flow rule
inconsistencies.

(IR1-2) Incorrect Feedback. The application should provide
the administrator with a correct and detailed feedback service
to inform whether the request has been accepted or not. If the
feedback is simply “failed” when the requested rule is denied,
the administrator cannot exactly figure out the reason for the
fault. Moreover, when the application successfully creates the
flow rule, it should even return the result to the user, including
the created flow rule, for sanity checking.

(IR1-3) Malicious Application. There could be a malicious
SDN application in the controller, which can manipulate the
flow rule request received from the administrator on purpose.
It can also access the database in the controller and then tamper
with the installed flow rules as well. While there have been
some studies that detect and prevent faulty logic in malicious
SDN applications in advance [16], [31], such approaches are
out of scope for our work.

Application (S2) to Controller (S4). SDN controllers
maintain internal databases to manage various network assets.
For example, in the case of flow rules, an SDN application
stores a created flow rule in the controller’s policy database
before sending the flow rule to the switch with a FLOW_MOD
message. Hence, other SDN applications can obtain the flow
rule information from the database to serve their network
functions. However, this may cause inconsistency between
the application and the controller due to the following three
reasons.

(IR2-1) Poor Input Validation 2. Similar to the poor input
validation 1 (IR1-1), the poor input validation 2 could allow
the database to store the malformed flow rule created by an
SDN application. As an SDN application can reactively create
a flow rule for a given PACKET_IN message from the switch,
the input validation should be done before storing flow rules in
the databases. However, in many cases, the flow rule created by
the SDN application is directly stored in the database without
thorough inspection because of the critical assumption, which
most controllers have, that SDN applications are benign and
comply with the OpenFlow specification.

(IR2-2) False Identification. For managing a number of
flow rules in the database correctly, SDN controllers have
their own identification strategy. According to the OpenFlow
specification, a unique flow rule is identified by priority
and match fields. With these two identification items, the
controllers should track which application created flow rules
and which switch they were installed to. However, if the
controllers internally use a non-standard flow ID for managing
the flow rules, there could be an identification gap between the
database and a switch, causing abnormal flow rule operations.

(IR2-3) Improper Overwriting. The inconsistent usage of
flow IDs between a controller and a switch can lead to
unintended flow rule operations. For example, if a flow rule
conflicts with an existing rule in the database (due to the same
priority and match fields), the controller needs to properly
replace the old flow rule with the new one. However, if the
controller uses a weak flow ID that does not follow the
standard, it can unfortunately remove other flow rules or keep
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Fig. 8. The analysis of the flow rule inconsistency in the SDN stacks: four critical states of the flow rule (S1, S2, S4 and S9) and the root causes of the
inconsistency shown in the red points.

the conflicted flow rules together, resulting in an inconsistent
rule state.

Controller (S4) to Switch (S9). Once an SDN switch
receives a FLOW_MOD message from an SDN controller,
it first examines if the message complies with the Open-
Flow specification. Then, it checks if the flow rule can be
accommodated in its flow table. If the flow rule fails to be
installed in the switch during any inspection steps, the switch
sends an ERROR message with a reason for the failure to the
controller. If the flow rule is removed (e.g., timeout expired),
the switch sends a FLOW_REMOVED message to the con-
troller for updating the policy database. Also, the controller
can periodically exchange the FLOW_STATS messages with
the switch to sync up the flow rules between them. In this
step, we found that the following reasons can cause the flow
rule inconsistency between the controller and the switch.

(IR3-1) Disregarding ERROR Message. An SDN controller
should keep track of the ERROR messages received from
the switch and properly handle them. For instance, when
the switch could not install the flow rule received from the
controller due to some reasons (e.g., malformed rule), they
send an ERROR message to the controller. However, if the
controller disregards the ERROR message, the inconsistency
between the controller and the switch can occur as the database
in the controller maintains the malformed flow rule.

(IR3-2) Detrimental Synchronization. As another case, if the
controller finds out a different flow rule between the switch
and itself during exchanging FLOW_STATS messages with
the switch, it first removes the flow rule in the switch. Then,
the controller tries to reinstall the flow rule to the switch.
However, if the flow rule is not subsequently installed in the
switch, the re-installation process will be repeated again and
again. If the controller does not address this situation, it can
affect the performance degradation in the infrastructure layer.

C. Inconsistency Detection Algorithm

To automatically discover the flow rule inconsistencies,
AudiSDN uses a graph-based heuristic. The goal is to locate
any inconsistency between the abstract states of the state
diagram and the concrete values in the flow rule created by
SDN components. The key idea of the algorithm is to build a
rule snapshot that is a currently installed policy on each SDN
component when transitioning to a critical state (e.g., S1, S2,
S4, and S9) and to compare the state with the last snapshot

created in the previous critical state to find out if there are any
inconsistent fields between them.

For those points, we model the flow rule state diagram by
a Mealy machine M = (Q, Σ, δ, q0, F ) where:

• A finite set of states Q
• A finite set of input symbols called the alphabet Σ
• A transition function δ : Q× Σ→ Q
• An initial state q0 ∈ Q
• A set of accept states F ⊆ S

Algorithm 2 illustrates the state traversal algorithm, which
takes the state diagram (Mealy machine) M , the set of critical
states Qcritical, and the input flow rule rinput. It is triggered
when the input flow rule is delivered to the application agent
from an administrator (see Figure 8). The algorithm begins
by transitioning to the state S1 and initializes the variable r′,
which is used for storing the last rule snapshot (lines 2 to 3).
If the current state q is the one of critical states (line 5),
it creates a new rule snapshot r based on the current state q
and the input rule rinput, i.e., CREATERULESNAPSHOT. If the
last rule r′ snapshot exists, the algorithm compares r and r′

if they are different (line 7). If any different fields are found,
the algorithm computes inconsistent fields f and returns them
as an output, i.e., GETINCONSISTENTFIELDS (lines 8 to 9).
Otherwise, the algorithm iterates the state diagram by visiting
the next state (derived based on the current state and the
next controller action), until an inconsistent case is found, i.e.,
DONEXTACTION (lines 10 to 12). The procedure is repeated
until it reaches an accept state (line 13).

VI. IMPLEMENTATION

We have implemented a prototype of AudiSDN using a
combination of Java and Python to verify its feasibility and
effectiveness. AudiSDN currently includes application agents
for two well-known open source controllers (i.e., Flood-
light [25] and ONOS [32]), enabling it to conduct the func-
tions handling the flow rules. To randomly generate various
flow requests in the flow rule generator, we implemented
our fuzzing module with dependency trees and leveraged
FuzzDB [33] for various malformed contents. The dependency
trees are derived from the OpenFlow 1.3 specification [24] and
extended according to the controller implementation, as shown
in Table I. In the case of the OpenFlow, we extracted the
elements of flow rule specified as required in it.
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Algorithm 2 Inconsistency Detection Algorithm
Input:

A flow rule state diagram M = (Q, Σ, δ, q0, F )
A set of critical states Qcritical

An input flow rule rinput

Output:
An inconsistent rule field f

1: procedure RULEINCONSISTENCYDETECTION(M , rinput)
2: q ← S1 � Initialize the current state q as S1

3: r′ ← ∅ � The last rule snapshot
4: do
5: if q ∈ Qcritical then
6: r ← CREATERULESNAPSHOT(q, rinput)
7: if r′ �= ∅∧

r �= r′ then
8: f ← GETINCONSISTENTFIELDS(r, r′)
9: return f

10: r′ ← r
11: a← DONEXTACTION(q, r)
12: q ← δ(q, a)
13: while q /∈ F

TABLE I

THE NUMBER OF ELEMENTS AND DEPENDENCIES IN THE DEPENDENCY
TREES FOR OPENFLOW, FLOODLIGHT, AND ONOS

In summary, to support the design features described in
Section III, we implemented two types of application agents,
a flow rule generator, and an inconsistency detector, in approx-
imately 5K lines of code.

VII. EVALUATION

We conducted a wide range of experiments and performance
evaluations involving the AudiSDN framework. For the test-
bed, we used a Mininet [34] as the infrastructure layer in the
SDN. In the case of the SDN controller, the latest versions of
Floodlight [25] and ONOS [26] controllers were tested.

A. Network Policy Inconsistency Case Studies

This section demonstrates a few case studies of flow
rule inconsistencies that we have identified using AudiSDN.
In each case, we detail how AudiSDN detected the inconsis-
tency and its results.

1) Flow Rule Priority OverFlow (CVE-2019-1010249): An
OpenFlow switch uses the priority value to determine
which flow rule should be applied first when matching an
incoming packet stream. In this instance, we demonstrate how
very large priority values can be translated to an abnormal
one in the switch due to numeric overflows. This leads to a
network policy inconsistency among the switch, the controller,
and the application that had intended to install the highest
priority flow rule. We identified such an inconsistency risk in
the case of the ONOS controller.

Fig. 9. Four different states of the flow rule based on the state diagram
shown in Figure 7 of the ONOS controller.

Detection and Results. After the inconsistency detector
fetches the rule histories from the application agent, it fil-
ters out the abnormal cases first. In this instance, one rule
history was filtered out as the flow rule arrived at state S9.
Unfortunately, its arrival produced no error message feedback,
even though the priority of the flow request in state S1 has
an invalid value (i.e., out of range). However, the detector
compares each flow rule in different states (i.e., S1, S2, S4,
and S9) extracted from the rule history shown in Figure 9.
Thus, it was able to infer that there was a flow-rule inconsis-
tency originating between states S1 and S2. The root cause is
that the invalid priority value in state S1 became 0 in state S2
(i.e., poor input validation (IR1-1)). Contrary to the intent of
the initial flow rule request, the detector discovers that the final
flow rule installed in the switch has the lowest priority value.

2) Improper Flow Rule Association and Overwriting: For
identifying many flow rules correctly, various information
from each flow rule could be used as a flow ID in an
SDN controller such as the priority, match fields, switch ID,
and flow name. However, we discovered that improper flow
association can overwrite other irrelevant flow rules using
AudiSDN. In this example, the test environments consist of
two switches (switch A and B) and one Floodlight controller.

Detection and Results. In this case, the flow rule generator
created two normal flow rule requests, but in state S9, there
was only one flow rule in the switch causing the rule history
to be filtered out first by the inconsistency detector. Then,
an inspection of the rule history revealed the presence of flow
rule inconsistencies between the application and the controller,
as shown in Figure 10. The application agent creates flow
rule A for switch A and installs it in the switch successfully.
But, when the next flow rule (rule B) for switch B is created
and stored in the controller (1), rule A is overwritten by
rule B (2). Thus, the controller sends FLOW_MOD messages
to delete rule A in switch A (3) and then installs rule B into
switch B (4).

The reason is that the Floodlight controller distinguishes
flow rules by flow’s unique name in the database, while
the switches use match and priority fields in flow
table entries according to OpenFlow protocol specification
(i.e., false identification (IR2-2)). In this case, the controller
sets both flow rules’ name property to default. Thus,
although the two flow rules (A and B) have distinct switch
device IDs, match fields, and actions, the inconsistency
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Fig. 10. Illustration of an improper flow rule association discovered in
the Floodlight controller. Flow rule B overwrites flow rule A, although they
correspond to different switch IDs. This example was uncovered by AudiSDN
and illustrates an implementation issue (or error) that exists in the Floodlight
controller.

Fig. 11. A code snippet of the Floodlight controller causing the flow rule
overwriting.

between the application and the controller occurs, causing
network corruption at the switches.

Figure 11 provides a code snippet from the Floodlight
controller that causes such improper flow rule overwriting.
As shown in Figure 11 (A), when the flow name conflicts, the
application checks whether the switch ID is the same along
with the match fields, priority, and cookie. If all the fields
are the same, it just modifies the flow rule with the new one.
However, the problem arises that if at least one of them is
different, it removes the old flow rule (i.e., (B) in Figure 11)
and then installs a new one although the switch ID (DPID)
is different. We argue that flow rules for switch ID should be
maintained independently to avoid such issues.

3) Infinite Synchronization by Broken Precondition
(CVE-2019-1010252): The OpenFlow protocol has evolved
with support for more diverse message types and features
across versions. Thus, when adding a flow rule in the switch,
we should carefully consider which OpenFlow version is
used. For example, the group action, which was added from
OpenFlow version 1.1, is responsible for directing a flow to
a predefined group ID used in the switch. Here, we identified
an infinite flow rule synchronization problem between the
ONOS controller and the switch when an incompatible action
is used due to misunderstanding of protocol versions.

Fig. 12. Different flow rule states between the ONOS controller (S4) and
the switch (S9).

Fig. 13. Illustration of infinite synchronization in the ONOS controller.

Detection and Results. In this instance, the ONOS controller
handshakes with the switch using OpenFlow version 1.0 and
hence the switch cannot interpret the group action. However,
the flow rule generator creates an abnormal flow request that
has the group action using its semantics randomizer. And, the
final flow rule derived from the flow request arrived in state S9,
which is one of the filtering cases for the inconsistency ana-
lyzer. Finally, after inspecting the rule history received from
the application agent, the inconsistency analyzer detects the
inconsistency between the controller and the switch as shown
in Figure 12. The flow rule built from the application agent is
successfully installed in the controller. However, the switch
misinterprets the FLOW_MOD message, so it installs the
drop action. This example illustrates how a flow inconsistency
between the controller and the switch occurs, which can affect
other decisions by applications.

Furthermore, when reproducing this example, we discovered
that messages are continuously exchanged between the con-
troller and the switch [35], (as shown in Figure 13). In the case
of the ONOS controller, to handle the flow rule inconsistency
with the switch, all matching flow rules in the switch are
removed and reinstalled in the switch through FLOW_MOD
messages. This reinstallation process runs every 5 seconds
by default, but administrators can modify the interval time.
The problem is that the flow rule in the controller cannot be
installed in the switch because the switch handshake was for
OpenFlow version 1.0. This repeated reinstallation process can
affect overall network performance.

4) Errors Due to Undefined Elements (CVE-2019-
1010250): When a network administrator manually crafts a
flow rule addition request, there is a potential for “undefined
elements” due to typos in the element name. If there are such
undefined typos in the flow rule, the SDN controller should
not process the rule and should return an error message
to the administrator. However, AudiSDN formulated a test
case illustrating that a simple typo caused by the network
administrator can raise inconsistency issues in the ONOS
controller.
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Fig. 14. Different flow rule states (S1, S2 and S9) from the rule history
caused by the undefined element instruction.

Detection and Results. First, the inconsistency detector
discovered that a malformed flow rule in state S1 was ulti-
mately installed in the switch at state S9 without an error
state transition from the rule history. Figure 14 shows the
different states of the flow rule extracted from the rule history.
In state S1, the flow rule request contains the undefined
element instruction, so it is malformed because the
one defined in the application running on the ONOS con-
troller is the instructions element. Since the application
cannot understand the element, it builds the FLOW_MOD
message by leaving the instructions as an empty field
(S2 in Figure 14). However, the FLOW_MOD message that
has an empty instructions field is recognized as a drop
rule by the OpenFlow specification. Finally, the switch will
drop all the packets received from the physical port number
1. Such undefined elements can be caused by a human error
in the real world. As our results demonstrate, such problems
are not limited to the ONOS controller but also applicable to
the Floodlight controller.

The reason for such flow rule inconsistency between an
administrator and a switch is that an action element in a
request form is undefined in the REST API implemented in
the StaticEntryPusher application [36]. In fact, the user should
have written the request with instructions element
(i.e., the plural form, not instruction) according to the
specification. But, the problem is that there is no way to verify
this flow request form. More seriously, the controller returned
a result message indicating that the requested flow rule was
successfully installed, so the administrator believes that the
requested rule (i.e., forwarding action) was properly installed.
This example is not only the problem of Floodlight but also
applicable to ONOS.

5) Inappropriate Flow Rule Identification: Similar
to the previous improper flow rule association case
(Section VII-A.2), we discovered that improper flow
association case in one ONOS controller by using AudiSDN.
The controller should overwrite an old flow rule with a new
one when they have the same identification (i.e., same priority
and match fields). Here, we identified no overwriting problem
between the application and the ONOS controller due to the
improper flow rule association.

Detection and Results. In this example, we assume there is
already flow rule A in the controller (S4 in Figure 15) that
allows the packets from port 1, and it is actually installed in
the switch as well. Next, the flow rule generator creates flow

Fig. 15. Different flow rule states between the application (S2) and the
ONOS controller (S4) caused by the improper flow rule association.

TABLE II

FLOW RULE INCONSISTENCY CASES IN ONOS AND FLOODLIGHT
CONTROLLERS FOR MAJOR ELEMENTS: NO (NUMERIC OVERFLOW),

IT (INVALID TYPE), AND BP (BROKEN PRECONDITION)

rule B, which has the same identification of flow rule A but has
the drop action, and tries to install it through the application
agent. However, in the case of the ONOS controller, there is
no longer state transition from state S2 in Figure 15. Thus,
the inconsistency detector was able to discover such flow rule
inconsistency.

The reason for such no flow rule overwriting is that the
storage manager in the ONOS controller differentiates flow
rules by the flow ID only. In fact, flow rule A and B have
the same priority value and match fields, so the latest flow
rule B should have overwritten flow rule A. But, the controller
ignored it. Consequentially, if other applications provide the
network functions based on those erroneous flow rules in the
controller, it can mislead the network to be unintended.

In summary, by leveraging the dependency tree, the flow
rule generator in AudiSDN can create four abnormal cases
of flow rule handling as follows; (i) numeric overflow,
(ii) invalid type, (iii) broken precondition, and (iv) undefined
element. The former two cases are instantiated by value
randomization, while the others are created by semantic ran-
domization. Besides abnormal flow requests, the flow rule
generator can also design normal flow requests that can lead to
the unintended network state, as stated in the aforementioned
“false association” case study. We comprehensively evaluated
flow rule handling by 18 major elements using AudiSDN with
respect to ONOS and Floodlight controllers, and the results are
summarized in Table II.

For each element, out of the 18 elements, if there exists
at least one flow inconsistency between the SDN stacks,
we examined it using three types of abnormal flow rule
requests (numeric overflow, invalid type, broken precondition).
For example, in the case of the ONOS controller, an incon-
sistency due to a broken precondition affects 12 out of the
18 elements, but the Floodlight controller has only 6 cases.
Overall, the Floodlight controller has better validation of
abnormal flow requests than the ONOS controller (as shown by
the total count in Table II). Finally, in the case of undefined
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Fig. 16. The measured time to execute one fuzz test cycle as a function of
the number of elements.

elements, we discovered that both of the controllers do not
verify it because they process elements using a whitelist.

B. Performance Measurement

For finding the network policy inconsistency cases, Aud-
iSDN serially randomizes a seed rule in the flow rule gen-
erator and builds a flow rule in the application agent. Upon
completion of each fuzz test cycle, the inconsistency detector
checks if there occurs an inconsistency between the policy
states. Figure 16 shows the amount of time taken to complete
one fuzz test cycle according to the number of selected
elements from a seed rule in randomizing the values and the
semantics respectively, and in this case, this seed rule consists
of 50 elements in total. Overall, we observed that ONOS takes
a longer time than Floodlight. This is because ONOS has more
dependencies than Floodlight; thus, the tree depth significantly
increases for ONOS cases.

The execution time of randomizing the values and semantics
increases in the number of the selected elements. However,
the value randomization takes a longer execution time than
the semantic operations because it tries to explore all the
possible inputs from the selected elements in the seed rule
while the semantic randomization simply cuts off the random
dependency between the elements. However, despite its large
number of inputs in the value randomization, we found that
most of the test cases can be finished in <11 minutes.

VIII. LIMITATIONS AND FUTURE WORK

While we demonstrated that the prototype of AudiSDN can
detect policy inconsistencies among SDN layers, it has several
limitations that should be extended in future work:

Automatic Controller-specific Dependency Analysis. The
current version of the analysis module in AudiSDN primarily
aims to analyze the standard OpenFlow specification to gen-
erate a dependency tree for the policy fuzzing (Section V).
However, as shown in Table I, most SDN controllers often
have their own elements and dependencies beyond the Open-
Flow specification to facilitate their management. Putting those
elements into the dependency tree requires manual analysis
of a target controller by network administrators, which is
time-consuming and error-prone. In the future work, we plan
to extend AudiSDN with a program analysis module that
automatically finds and extracts such unique elements from
controller implementations for building a rich dependency tree.

Moreover, it would also be possible to provide some common
functions of an application agent as libraries for its scalability.

Compatibility with OpenFlow Versions and P4 The
OpenFlow specification has been constantly complicated when
a major release is updated. For example, OpenFlow v1.3
has extended various functional elements and even changed
existing protocol fields, compared to the OpenFlow v1.0:
new protocol messages such as multipart, group, and
meters were added and existing fields such as actions
was changed to instructions. This requires AudiSDN to
periodically track major changes of the specification in future.

Especially, regarding P4 [37], although the overall workflow
can be similar to AudiSDN, there should be a specific module
that interprets the customized protocol written in P4 format.
And, instead of using OpenFlow-related APIs, the P4 Runtime
APIs [38] can be employed to build a flow entry instance and
retrieve the installed one on the switch.

IX. RELATED WORK

Limited prior work on data plane security [10], [39], [40]
largely relied on ad hoc empirical methods to docu-
ment security flaws from diverse perspectives. Moreover,
WedgeTail [41] proposed a methodology that enables detecting
data-plane threats autonomously, which uses an unsupervised
trajectory-based sampling mechanism. In contrast, AudiSDN
systematically and synthetically tests and detects network
policy inconsistency through the SDN stack.

SDN security testing such as DELTA [11] and BEADS [42]
use fuzzing techniques to find bugs and vulnerabilities in
SDNs by manipulating OpenFlow messages. Most similar to
our work, RE-CHECKER [43] and AIM-SDN [12] randomize
the REST-API inputs to check for faulty management logic
in the data store of the SDN controller. However, their work
primarily reports flooding attacks against SDN controllers and
does not reason about the potential policy inconsistency issues
of the SDN stack. Unlike these previous studies, AudiSDN
provides a comprehensive strategy to assess potential network
policy inconsistency problems between network administrator,
application, controller (policy DB), and the data plane.

The problem of issuing consistent updates to the data plane
has been well studied [44], [45]. For example, Veriflow [27],
Header Space Analysis [46], and NetKat [47] provide methods
for analyzing SDN flow rules to detect possible conflicts.
In addition, Ravana [48] and Covisor [49] introduce meth-
ods to update SDN flow rules without conflict. VeriDP [50]
proposes a way of checking the flow rule integrity between
the control- and data-plane. Likewise, there have been some
studies to verify the correctness of SDN applications, flow
rule installation, and desired network policies with formal
methods [18]–[22]. However, they do not consider the problem
of software bugs leading to policy inconsistencies by the
corruption of flow rule context itself between components in
the SDN network.

Recently, Shukla et al. proposed a fuzzing methodology to
verify the consistency of the control-data plane in OpenFlow-
based SDNs [51] and P4-based SDNs [52]. However, while
they mainly focused on the reachability between the source
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and destination via the crafted traffic, AudiSDN randomizes a
flow rule itself by leveraging the flow rule structure analysis
and then checks whether the flow rule maintains its original
meaning from the initial request to the switch installation in
a top-down approach.

X. CONCLUSION

In this work, we have presented AudiSDN, an automated
software framework for identifying deficiencies in real-world
SDN implementations with respect to preventing runtime
network flow policy inconsistencies. Several examples of how
and why such policy inconsistencies may arise are presented,
including an evaluation that utilizes our framework to uncover
some implementation weaknesses in two widely used Open-
Flow controllers. This paper is the first work to present a
fuzz-testing methodology for automatically recognizing when
and where such inter-component policy inconsistencies can
arise in an SDN stack, and it highlights a fundamental security
and reliability concern that has to date been largely understud-
ied. AudiSDN offers a novel reference implementation that can
be applied for testing across the breadth of OpenFlow imple-
mentations used today, and could be extended to analyze other
SDN architectures beyond OpenFlow through the extension of
its flow-state transition model.
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