
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Secure Inter-Container Communications
Using XDP/eBPF

Jaehyun Nam , Seungsoo Lee , Phillip Porras, Vinod Yegneswaran, and Seungwon Shin , Member, IEEE

Abstract— While the use of containerization technologies for1

virtual application deployment has grown at an astonishing rate,2

the question of the robustness of container networking has not3

been well scrutinized from a security perspective, even though4

inter-container networking is indispensable for microservices.5

Thus, this paper first analyzes container networks from a6

security perspective, discussing the implications based on their7

architectural limitations. Then, it presents Bastion+, a secure8

inter-container communication bridge. Bastion+ introduces (i)9

a network security enforcement stack that provides fine-grained10

control per container application and securely isolates inter-11

container traffic in a point-to-point manner. Bastion+ also sup-12

ports (ii) selective security function chaining, enabling various13

security functions to be chained between containers for further14

security inspections (e.g., deep packet inspection) according to15

the container’s network context. Bastion+ incorporates (iii) a16

security policy assistant that helps an administrator discover17

inter-container networking dependencies correctly. Our evalu-18

ation demonstrates how Bastion+ can effectively mitigate several19

adversarial attacks in container networks while improving the20

overall performance up to 25.4% within single-host containers21

and 17.7% for cross-host container communications.22

Index Terms— Container security, network sandboxing, policy23

enforcement, security function chaining, XDP/eBPF.24

I. INTRODUCTION25

AMONG the leading trends in virtualization is26

containerized application deployment at industrial27

scales across private and public cloud infrastructures.28

For example, Google has spawned more than two billion29

containers per week [1]. Yelp uses containers to migrate30

their code onto AWS and launches more than one million31

containers per day [2]. Netflix spawns more than three million32

containers per week within Amazon EC2 using its Titus33

container management platform [3].34

With this growing attention toward the large-scale instan-35

tiation of containerized applications also comes a potential36

Manuscript received 16 October 2021; revised 22 March 2022
and 23 August 2022; accepted 10 September 2022; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor Y. Liu. This work was supported
by the National Research Foundation of Korea (NRF) Grant through the Korea
Government, Ministry of Science, ICT (Information and Communication
Technology) and Future Planning (MSIP), under Grant 2022R1C1C1006093.
(Corresponding author: Seungwon Shin.)

Jaehyun Nam is with the Department of Computer Engineering,
Dankook University, Yongin 16890, South Korea (e-mail: jaehyun.
nam@dankook.ac.kr).

Seungsoo Lee is with the Department of Computer Science and Engi-
neering, Incheon National University, Incheon 22012, South Korea (e-mail:
seungsoo@inu.ac.kr).

Phillip Porras and Vinod Yegneswaran are with the SRI International,
Menlo Park, CA 94025 USA (e-mail: porras@csl.sri.com; vinod@csl.sri.com).

Seungwon Shin is with the School of Electrical Engineering, KAIST,
Daejeon 34141, South Korea (e-mail: claude@kaist.ac.kr).

Digital Object Identifier 10.1109/TNET.2022.3206781

for even small security cracks within the container software 37

ecosystem to produce hugely destructive impacts. Tripwire’s 38

container security report [4] found that 60% of organiza- 39

tions already had experiences of security incidents in 2018, 40

assessing that these incidents arose primarily due to the 41

pressures to achieve deployment speed over the risks from 42

deploying insecure containers. Also, container hijacking for 43

cryptocurrency mining [5] has emerged as one of the recent 44

plagues in which computing resources, rather than user data, 45

are being harvested en masse across the Internet. In recognition 46

of such risks, several efforts [6], [7], [8] have arisen to help 47

identify and warn of possible vulnerabilities in containers. 48

In addition, the shared kernel-resource model used by 49

containers also introduces critical security concerns regarding 50

the ability of the host OS to maintain isolation once a single 51

container is infected. Indeed, many researchers (and industry) 52

have proposed strategies to address the issue of container 53

isolation. For example, AppArmor [9], Seccomp [10], and 54

SELinux [11] can provide much stronger isolation of contain- 55

ers by preventing various system resource abuses. 56

However, while a variety of approaches to secure container- 57

ized applications continue to emerge, less attention has been 58

paid to bounding these applications’ access to the container 59

network. Specifically, there has been significant adoption of 60

containers as microservices [12], in which containers are used 61

to create complex cloud services. Although current container 62

platforms often utilize IP-based access control to restrict each 63

container’s network interactions, there are still limitations in 64

such controls that offer opportunities for container abuse. 65

In this work, we first discuss several security challenges 66

that arise from the current reliance on the host OS net- 67

work stack and virtual networking features to provide robust 68

container-network security. In the discussion, we present 69

five examples of inherent limitations that arise in using the 70

Host-OS-based networking features to manage the communi- 71

cations of container ecosystems as they are deployed today. 72

Informed by these existing limitations, we then introduce 73

Bastion+, a new inter-container communication bridge. First, 74

Bastion+ instantiates a security network stack per container, 75

offering isolation, performance efficiency, and a fine-grained 76

network security policy enforcement that implements each 77

container’s least privileged network access. This approach also 78

provides better network policy scalability in network policy 79

management as the number of hosted containers increases. 80

Second, Bastion+ supports a security function chaining mech- 81

anism that allows an administrator to deploy various security 82

functions on-demand and forces inter-container network traffic 83

to selectively pass through the security functions according to 84

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8907-5495
https://orcid.org/0000-0002-6883-1869
https://orcid.org/0000-0002-1077-5606


2 IEEE/ACM TRANSACTIONS ON NETWORKING

its network context for further security investigations. Lastly,85

Bastion+ provides a security policy assistant to facilitate the86

identification of inter-container networking dependencies.87

The paper explains how Bastion+ mitigates a range of88

existing security challenges while also demonstrating that89

Bastion+ can improve the overall performance up to 25.4%90

within the same host and 17.7% across hosts.91

Contributions. Our paper contributions are as follows:92

• The security assessment of container networks, illus-93

trating security challenges in current container network94

stacks and security mechanisms.95

• The novel security-enforcement network stack for con-96

tainers, which restricts the network visibility of containers97

and isolates network traffic among peer containers.98

• The security function chaining mechanism specialized99

for containers, enabling additional security inspections100

in inter-container communications through the function101

chains selectively chosen based on their network context.102

• The security assistant for the policy enforcement between103

the containers, which helps administrators recognize104

inter-container networking dependencies.105

II. BACKGROUND AND MOTIVATION106

Here, we introduce the state of container security. We then107

provide the background of container networks and identify108

how the underlying architectural limitations of current con-109

tainer networks impact container environments.110

A. Today’s Container Security Solutions111

Containers are widely utilized to decompose complex pro-112

duction Internet services into manageable microservices. The113

need to harden containers to resist compromise and ensure114

their application integrity is of critical importance. Hence, var-115

ious security solutions have been explored, broadly focusing116

on three aspects of the container ecosystem.117

(1) Container Image Integrity. A container image is a118

self-contained package of software that includes everything119

needed to run an application (e.g., code, libraries, and con-120

figurations). Image management, tamper resistance, and con-121

figuration validation are foundational services upon which all122

other subsequent security features must rely. Here, two forms123

of image protection services have been released. One form is124

that of solutions like Docker Content Trust (DCT) [13], which125

verifies container images at image repositories (e.g., Docker126

Hub [14]) with the digital signatures of image owners. The127

second form is represented by security scanning solutions [6],128

[7], [8], which inspect known vulnerabilities in container129

images using CVE databases.130

(2) Container Isolation. Once a container is deployed,131

three Host OS security mechanisms are used to implement132

application isolation and enforce least privilege access on the133

container application: namespace, cgroups, and capabilities.134

Since multiple containers share the same host kernel, AppAr-135

mor [9], Seccomp [10], and SELinux [11] are used for further136

restrictions on system resources (e.g., kernel calls). Also,137

there are several solutions (e.g., Lic-Sec [15] for AppArmor,138

Udica [16] for SELinux, Speaker [17], and Confine [18] for139

Seccomp) to automatically generate the security profiles of140

Fig. 1. Overview of docker bridge networking. Upper panel: a conceptual
microservice architecture involving two independent services. Lower panel:
separate bridged networks are instantiated to manage container network flows.

those Linux security mechanisms for containers based on 141

container and application configurations. 142

(3) Run-time Threat Detection. Several commercial 143

products [19], [20], [21] have introduced container security 144

frameworks that monitor the behavior of containers, detect 145

runtime policy violations, and conduct anomaly detection. 146

This paper aims to complement the above services’ protec- 147

tions by addressing a fourth significant aspect of container 148

security enforcement: network security enforcement during 149

inter-container communications. The primary service used to 150

enforce network security policies in container networks is 151

through ACL-based IP rules. We will discuss the limitations 152

of these services and identify how the current underlying 153

architectural limitations impact container environments. 154

B. Current Container Networks 155

We provide a brief overview of how current container net- 156

works are structured using two of the most prevalent container 157

systems used today: Docker [22] and Kubernetes [23]. 158

Docker Platform: Docker [22] is a platform for distrib- 159

uting and running containers. In Docker, bridge networks are 160

used as default container networks. Independent Docker con- 161

tainers are, by default, connected to a bridge called Docker0. 162

However, when multiple containers are created using docker- 163

compose [24], a new bridge (network) is automatically created 164

and assigned to manage the traffic for those containers. As an 165

example, Figure 1 illustrates the architecture of two microser- 166

vices. The microservice chains that compose a network service 167

are shown in the upper panel, while the logical networking 168

of the microservice containers, which are networked under 169

separate bridges, is depicted in the lower panel. To provide 170

network flow control, Docker applies network and security 171

policies into bridge networks using iptables [25]. 172

Kubernetes Orchestration System: Kubernetes [23] is 173

an open-source container orchestration system that manages a 174

large number of containers across multiple nodes and enables 175

them to work together logically. Thus, while containers in 176

Docker bridge networks operate within the same host (node), 177

containers in Kubernetes are located across multiple nodes. 178

Kubernetes uses various overlay networks (e.g., Flan- 179

nel [26], Weave [27], Calico [28]) to provide inter-container 180

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



NAM et al.: SECURE INTER-CONTAINER COMMUNICATIONS USING XDP/eBPF 3

Fig. 2. Five critical challenges in container networks: (1) Limitation of
packet-based source verification, (2) Limitations of IP-based access controls,
(3) Lack of application-level security inspections, (4) Unrestricted host
accesses, and (5) No restriction on network-privileged containers.

connectivity across multiple nodes. For example, in the Weave181

overlay network, each node has a special bridge interface,182

named weave, to connect local containers, and the weave183

bridges in all nodes are logically linked as a single net-184

work. While Kubernetes uses Docker Containers, it does185

not utilize Docker networking features to manage network186

flow control. Rather, it separately applies network policies187

using iptables. Calico [28] similarly applies network and188

security policies using iptables. If operators want further189

security enforcement, they may use Cilium [29], a security190

extension that conducts API-aware access control (e.g., HTTP191

method) by redirecting network traffic to its security container.192

Network-privileged Containers: Besides the typical use193

of containers, there are special cases in which an operator194

wants to expose containerized services directly using the195

host IP address (e.g., HAProxy [30], OpenVPN [31], and196

MemSQL [32]). In such cases, by sharing the host namespace197

with a container, the container is provided access to the host198

network interfaces and directly exposes its services. In this199

work, we refer to such cases as network-privileged containers.200

C. Challenges in Container Networks201

While current container platforms utilize OS-level net-202

working features provided by the Linux kernel to support203

inter-container connectivity and IP-based access control (e.g.,204

iptables) to enforce container network security policies,205

there are significant limitations in their ability to constrain206

the communication privileges of today’s container topologies.207

The following are five concerns that arise from these current208

OS-level architectural limitations.209

(1) Limitation of packet-based source verification:210

Figure 2 shows that each container has its virtual interface,211

but this interface is only visible in the container’s network212

namespace. Thus, container platforms effectively create a twin213

virtual interface corresponding to it on a host. This virtual214

interface is connected to the bridge, enabling connectivity215

with others.216

However, one security-relevant problem of this design is that217

each packet produced by a container will lose its association218

with the source container at the moment that it transitions219

into the host networking namespace. Hence, all decisions220

for further security inspection and packet forwarding would221

be solely made based on the information in packet headers.222

Unfortunately, a malicious container can directly forge packets 223

on behalf of other containers, allowing lateral attacks and 224

traffic poisoning when any container is compromised. 225

(2) Limitation of IP-based access controls: The primary 226

method for imposing network flow control among container 227

platforms is through iptables, an IP-based access control 228

mechanism provided by the Linux kernel. Unfortunately, the 229

IP addresses of containers can be dynamic, and adjustments 230

are then required whenever containers are spun up and down. 231

Thus, it can be challenging to specify security policies for 232

either case since these policies must be updated when con- 233

tainers are re-created. Even though operators enforce various 234

security policies with high-level labels for containers instead 235

of specific IP addresses, such labels are eventually converted to 236

IP addresses, so we still have the same challenge. In addition, 237

container networks are still vulnerable to layer-2 attacks due 238

to the limited scope of the IP-based access control mechanism. 239

(3) Lack of application-level security inspections: 240

Although the IP-based access control can restrict malicious 241

network connectivity among containers, it cannot control mali- 242

cious contents among benign containers, which raises signif- 243

icant concerns as a malicious container can conduct lateral 244

attacks against dependent containers without any restriction. 245

In addition, unlike legacy networks where we can deploy 246

various middleboxes or virtualized network functions (VNFs) 247

between networked entities (e.g., switches and hosts), contain- 248

ers communicate in multiple networks logically created using 249

OS-level networking features within the same host. Thus, 250

applying security functions (e.g., deep packet inspections) per 251

logical network inside a host is difficult. 252

(4) Unrestricted host access: Each container network has 253

a gateway interface for external accesses connected to the host 254

network, as shown in Figure 2. Unfortunately, an inherent 255

security concern arises as a container can thus access a service 256

launched at the host-side through the gateway IP address. 257

In Kubernetes, containers can even access all other hosts 258

(nodes) through the gateway IP addresses. In the worst case, 259

a malicious container can exploit the service in a manner that 260

can subvert/harm the host’s availability. 261

(5) No restriction on network-privileged containers: 262

While a network-privileged container can gain a performance 263

advantage as its traffic does not pass through additional 264

network stacks (e.g., container networks), such a container 265

also raises significant concerns for operational isolation. 266

Since network-privileged containers share the same network 267

namespace with the host, they can access not only the host 268

network interfaces but can also monitor all network traffic 269

from deployed containers in the host (through the virtual inter- 270

faces for the containers) and are unrestrained in their ability to 271

inject malicious packets into container networks. Furthermore, 272

current security solutions do not consider security policies for 273

such containers; hence, operators must design and specify a 274

security policy configuration for the containers by themselves. 275

III. SECURITY ANALYSIS OF CONTAINER NETWORKS 276

This section explores the attack surfaces in container net- 277

works and introduces an example scenario that illustrates the 278

viability of the network threats abusing the attack surfaces. 279

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE/ACM TRANSACTIONS ON NETWORKING

A. Assumptions and Threat Model280

Assumptions: Consider the case of containers connected281

to operate as microservices using Docker or Kubernetes net-282

work configurations. Let us assume that an attacker possesses283

enough skill (e.g., gaining a remote shell to execute arbitrary284

commands inside a container [34], [35]) to perform a remote285

hijacking of an Internet-accessible container application oper-286

ating as part of a microservice using published container287

vulnerabilities [36], [37], [38]. Note that there is no particular288

difference between typical and containerized applications. The289

only difference is that containerized applications are the typical290

applications packaged by containerization techniques, meaning291

that any vulnerabilities in typical applications are also in the292

corresponding containers. With this fact, we consider what an293

attacker may do after getting into the subverted container.294

Threat Model: The scope of threat models considered in295

this work focuses on network-based lateral attacks launched296

from a compromised container rather than system-based297

attacks that may occur within a container. Unlike network-298

based attacks, system-based attacks have been actively299

explored in other work, such as abusing privileged and unpriv-300

ileged containers [39] and modifying Linux capabilities within301

a container [40], and defense techniques based on status302

inspection of namespaces [41]. Thus, we believe that an oper-303

ator would properly deploy containers with system-wide secu-304

rity policies, and we, therefore, do not consider system-wide305

threats (e.g., attacks against the host kernel).306

Here, a specific attack case involves one in which a com-307

promised container is employed “as is” as the launching308

point for these lateral attacks, where no privilege escalation309

is required within the container to conduct further exploita-310

tion. Also, an attacker can acquire a base understanding311

of the compromised container’s network configuration by312

investigating several system files (e.g., /proc/net/arp,313

/proc/net/route) and environment variables and may314

download malicious binaries to the /tmp directory in a315

container, as this directory has global read or write permissions316

for all processes.317

B. Attack Surfaces in Container Networks318

Attacks against container networks can be categorized into319

two main classes: (i) attacks that reveal topology information320

of the container networks (topology visibility attacks) and (ii)321

attacks that perform illicit monitoring or modifying of network322

traffic within container networks (traffic visibility attacks).323

In the topology visibility attacks, network probing and host324

exploit attacks are possible in current container networks.325

Network probing attacks are performed by probing containers326

using TCP/IP packets (e.g., TCP-flag-based scans) or via ARP327

requests. Although an operator can adopt IP-based access328

controls to avoid scanning, an attacker may still employ an329

ARP scan method (bypassing iptables-like protections). The330

host exploit attack accesses the host upon which the compro-331

mised container runs. Accessible host services are scanned for,332

which may later be exploited to compromise the host further.333

Container systems employ different network namespaces to334

isolate different networks. However, container systems also use335

a bridge interface to integrate different network namespaces, 336

and an attacker can abuse this bridge to access the host. 337

In the traffic visibility attacks, first, the ARP poisoning 338

attack can overwrite ARP caches in the containers. By sending 339

fake ARP responses, the attacker can redirect network traffic 340

between a target container and the gateway of the target net- 341

work (or another target container) to their containers. Second, 342

the attacker can capture the network traffic between a container 343

and the gateway (or another container) through packet sniffing 344

and extract sensitive information (e.g., user credentials, tokens, 345

and even confidential files). Third, the attacker can inject 346

malicious packets into a target container (IP spoofing attack). 347

The two remaining cases involve TCP session manipulation. 348

In the fourth attack, one can disrupt existing sessions by 349

injecting fake packets with proper SEQ and ACK numbers 350

because one can observe the SEQ and ACK numbers of the 351

sessions through sniffing TCP packets. Even when an attacker 352

does not know the SEQ and ACK numbers, such an attack 353

remains possible using a predictive attack [42]. An attacker 354

can terminate existing sessions by injecting a TCP packet with 355

the RST flag (TCP reset attack). Fifth, attackers can create 356

fake sessions with other containers or external entities (fake 357

session attack). An attacker can observe network traffic toward 358

a target container and then reverse the injected packet target to 359

the external connection point rather than the victim container. 360

C. Limitations of Container Network Plugins 361

Here, we briefly discuss the limitations of current container 362

network interface plugins. Table I presents the feasibility of 363

network threats discussed in Section II-C. 364

Docker, Flannel, WeaveNet: Docker [22], Flannel [26], 365

WeaveNet [27] operate on bridge-based L2 forwarding, which 366

is tightly coupled with the networking features and the 367

IP-based access control provided by the host OS. Hence, they 368

have the same security challenges discussed in Section II-C 369

and are vulnerable to all network threats in Table I. 370

Calico: Calico [28] employs IP-in-IP-based L3 routing 371

and uses a single MAC address (EE:EE:EE:EE:EE:EE) for 372

all containers, which makes L2 attacks infeasible. However, 373

it remains vulnerable to L3/4 attacks (e.g., TCP SYN floods, 374

DNS reflection attacks, ICMP spoofing attacks etc.) since 375

Calico mainly focuses on packet routing and IP-based access 376

control while paying less attention to security mechanisms 377

that protect against L3/4 spoofing attacks. In addition, while 378

the host-service abuse is infeasible because Calico uses a 379

virtual gateway IP address (169.254.1.1) for all containers, 380

it does not provide security mechanisms that guard against the 381

host network namespace abuse. 382

Open vSwitch: Open vSwitch (OVS) [33] provides more 383

flexible networking features than the host OS; thus, it might 384

be viewed as an alternate solution for bolstering container net- 385

work security. OVS can derive which virtual port a container is 386

connected to, which could be used to prevent spoofing attacks. 387

However, one critical concern is that OVS does not support a 388

NOT operation. It means that we need to install all possi- 389

ble flow rules from each container to other containers, which 390

at least contain (the virtual port and the MAC/IP addresses 391

of a source container, the IP address and the service port of 392

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



NAM et al.: SECURE INTER-CONTAINER COMMUNICATIONS USING XDP/eBPF 5

TABLE I

POTENTIAL OF NETWORK THREATS ACROSS CONTAINER NETWORK INTERFACE PLUGINS. FEASIBLE (●): NETWORK ATTACK CAN BE SUCCESSFULLY
EXECUTED OVER THE CONTAINER NETWORK INTERFACE PLUGIN. PROBABLE (▲): NETWORK ATTACK REMAINS POSSIBLE, BUT MAY BE

BLOCKED WITH APPROPRIATE NETWORK SECURITY POLICIES. INFEASIBLE (✕): NETWORK ATTACK IS ALWAYS BLOCKED

Fig. 3. An example attack scenario within a Kubernetes environment.
A compromised container from one service conducts a series of network
attacks to hijack communications between other containers in a peer service.

a destination one) matching fields for source verification and393

spoofing attack prevention. In addition, frequent rule updates394

are inevitable (as in the case of iptables) whenever containers395

are spun up and down. While OVS may block unauthorized396

host IP address accesses, it still allows containers to access397

host services using gateway IP addresses since OVS is located398

at the host network namespace. Unfortunately, OVS would still399

need a large number of security policies against all possible400

host accesses from each container. In addition, OVS does not401

protect network-privileged containers.402

Cilium: Cilium [29] operates at the L3 routing level and403

provides advanced network security mechanisms for imple-404

menting L3-7 firewalls. In addition, L2 attacks are not feasible,405

as in the case of Calico. However, other network threats406

remain possible. Although Cilium supports a range of network407

policies (e.g., identity and label-based policies), which can408

block accesses to specific containers or hosts, the feasibility of409

such network threats depends on the operator and deployment410

considerations. If operators carefully investigate their container411

network and apply security policies against various network412

threats, the network threats might be infeasible. If not, some413

of the network threats are still available. Network-privileged414

containers are beyond its threat model; thus, Cilium is still415

vulnerable to them.416

Bastion+: Bastion+ is designed as a transparent container-417

network security extension that protects against diverse418

security challenges discussed in Section II-C, which enables419

the same security functionalities against the network threats to420

the container networks (we will describe it in the next section).421

D. Attack Scenario Example422

Figure 3 illustrates two independent services deployed along423

with common microservices [43], [44] in a Kubernetes envi-424

ronment. One is a service for legitimate users, and the other425

is a service for guest users. These services use the official426

Nginx [45] and Redis [46] container images retrieved from427

Fig. 4. Screenshots demonstrating the attack scenario in a Kubernetes
environment between two services.

Docker Hub [14]. In this scenario, an attacker forges legitimate 428

user requests after infiltrating into the public-facing Nginx 429

server. 430

In this attack kill chain, the attacker leverages three 431

network-based attacks to compromise the Nginx-Guest con- 432

tainer and successfully execute a man-in-the-middle attack. 433

In the first step, he discovers active containers around the 434

network through ARP-based scanning. Since all containers 435

are connected to an overlay network and ARP packets are 436

not filtered by iptables, the attacker can easily collect the 437

network information of containers, as shown in Figure 4-(a). 438

Then, the attacker injects fake ARP responses into the network 439

to make all traffic between the Nginx-User and the Redis- 440

User containers pass through the Nginx-Guest. As shown 441

in Figure 4-(b), we can see that the MAC address of the 442

Redis-User in the ARP table of the Nginx-User is replaced 443

with that of the Nginx-Guest, and the attacker monitors all traf- 444

fic between the Nginx-User and the Redis-User (Figure 4-(c)). 445

Lastly, the attacker replaces the response for the legitimate 446

user with forged contents by internally dropping the packets 447

delivered from the Redis-User and injecting forged packets. 448

Then, the Nginx-User returns the forged contents to the user 449

instead of the original ones (Figure 4-(d)). In the end, the user 450

receives the forged contents as the attacker intended. 451

IV. BASTIO+ DESIGN 452

This section introduces a new inter-container communi- 453

cation bridge, Bastion+, and discusses how its components 454

address the limitations discussed in Section II-C. 455

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. Bastio+ Architecture Overview. Orange box: Bastio+ network security enforcement stack for containers. Red box: manager that maintains the global
view of container networks and security policy assistant that discovers network policy misconfigurations. Green box: selective security function chaining that
enables application-level security inspections against inter-container network flows. Blue box: Bastio+ network stack for inter-host communications.

A. Architectural Overview456

As illustrated in Figure 5, Bastion+ is composed of three457

parts: a manager, which maintains the global network view458

of all containers with their inter-container dependencies, per-459

container network stacks where all Bastion+ security enforce-460

ment occurs before a container’s packets are delivered into the461

container network and chained security functions, which are462

deployed to enable further security inspections (e.g., content-463

based access controls) against inter-container network traffic.464

When packets arrive at the Bastion+ network stack, it proac-465

tively filters any discovery processes of irrelevant containers466

by dealing with ARP requests based on the container net-467

work map. It restricts the communications between containers468

according to security policies specified in the inter-container469

dependency map. In addition, it restricts unauthorized access470

to special IP addresses (e.g., gateway IP addresses). Also,471

it conducts secure packet-forwarding between containers by472

directly passing packets from source containers to destination473

containers while verifying if the packets are forged. If pack-474

ets need to pass through security functions (e.g., network475

intrusion detection/prevention systems and web application476

firewalls), Bastion+ forwards them into the corresponding477

security functions. Then, once the security functions do deep478

packet inspections, the packets are delivered to the destination479

containers. Since all direct packet forwarding occurs at the480

network interface level, packets are not passed through the481

container network (host-side), eliminating any chance for482

unauthorized network traffic exposure.483

In terms of inter-container communications across hosts484

(nodes), a specialized Bastion+ network stack is utilized at the485

external interface of each node, conducting a secure forward-486

ing from the external interface to destination containers as all487

security decisions are already made at each container. Bastion+
488

retains the existing mechanisms of container platforms to489

handle inbound traffic from external networks.490

B. Bastio+ Manager491

The Bastion+ manager performs three primary roles: con-492

tainer network information collection, network stack manage-493

ment, and security function management.494

(1) Container Network Information Collection. The 495

manager has a global container network map and an 496

inter-container dependency map for all containers. It directly 497

communicates with container platforms to retrieve the net- 498

work information (virtual network interface, IP and MAC 499

addresses) for all containers and to build the inter-container 500

dependency map by extracting the dependencies (source → 501

protocol://destination:{port | any}) among containers based 502

on the retrieved information and their ingress/egress security 503

policies. In addition, as containers can be dynamically spun 504

up and down, the manager watches any changes in container 505

platforms (event-driven) and updates the maps in run-time. 506

(2) Network Stack Management. The manager maintains 507

the Bastion+ secure network stack for each container. For 508

newly spawned containers, it installs the network stacks at 509

their network interfaces and updates the container network and 510

inter-container dependency maps in the network stacks. Each 511

container only requires a part of the network information to 512

communicate with dependent neighbors with respect to map 513

size. Thus, to reduce the size of security services, The manager 514

filters irrelevant information per container. Then, whenever 515

there are changes in inter-container dependencies, it automat- 516

ically updates the maps for the corresponding containers. 517

(3) Security Function Management. The manager deploys 518

various security functions (e.g., intrusion detection and preven- 519

tion systems and web firewalls) per host and attaches Bastion+
520

network stacks for those security functions. Then, according 521

to function chaining policies (i.e., the order of functions 522

according to the network context (e.g., protocol and destination 523

port)), the manager updates the container network map in the 524

Bastion+ network stacks of containers and security functions 525

to keep passing inter-container network traffic through the 526

security functions. We will explain the details in Section IV-D. 527

C. Network Security Enforcement Stack 528

The Bastion+ network stack restricts inter-container com- 529

munications from two points of view: network visibility and 530

traffic visibility. For network visibility, it restricts unneces- 531

sary connectivity among containers and between containers 532

and external hosts. For traffic visibility, it provides point-to- 533

point integrity and confidentiality among container network 534

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



NAM et al.: SECURE INTER-CONTAINER COMMUNICATIONS USING XDP/eBPF 7

Fig. 6. Workflow of container-aware network isolation. The WebApp
container accesses the database container, and the container-aware network
isolation in the WebApp’s network stack inspects the dependency on the
database.

flows. Here, we present each component that addresses those535

points.536

1) Container Discovery: For inter-container networking,537

container discovery is the first step to identify other containers538

(communication targets). Containers use ARP requests to539

identify target containers’ necessary network information (i.e.,540

MAC addresses). Unfortunately, this discovery process can541

be exploited to scan all containers connected to the same542

network by malicious containers, as current network stacks543

do not prevent ARP scans. Indeed, they offer no mechanism544

to control non-IP-based communications.545

Bastion+ filters out any unnecessary container discovery that546

does not pertain to the present container’s dependency map.547

When a container sends an ARP request, the handler intercepts548

the request before it is broadcasted, verifying if the source549

container has a dependency on the destination container. This550

analysis is done using the inter-container dependency map.551

If accessible, the handler generates an ARP reply with the552

MAC address of the destination container and sends the reply553

back to the source container. If not, it drops the request.554

2) Container-Aware Network Isolation: Even though555

container discovery prevents containers from performing556

unbounded topology discovery, its coverage is limited to557

container-level isolation. It does not address malicious558

accesses among dependent containers. Hence, Bastion+ imple-559

ments container-aware network isolation to restrict the reach-560

ability of containers further.561

When packets arrive at the Bastion+ network stack of562

a source container, as shown in Figure 6, Bastion+ first563

checks the dependency between the source and its destination564

by examining the inter-container dependency map using the565

destination IP address as a key. If any policies exist in the566

map, it concludes that the source has a dependency on the567

destination. Then, Bastion+ matches the packets to the policies568

for the destination container, and the connection is allowed if569

matched. Otherwise, the packets are dropped.570

3) Gateway and Service-IP Handing: In container environ-571

ments, a subverted container can exploit the gateway to probe572

services within the host OS. To address this concern, Bastion+
573

filters direct host accesses. When a network connection targets574

non-local container addresses, it includes the gateway MAC575

address and the IP address of the actual destination. Based576

on this fact, the gateway-IP handler blocks any direct host 577

access by checking if both IP and MAC addresses belong to 578

the gateway. It would also be possible that a network flow 579

might access the gateways of other container networks since 580

they are connected to the host network. Hence, the gateway-IP 581

handler also filters unauthorized host accesses by comparing 582

packets with the other gateways. 583

In Kubernetes environments, another special IP address, 584

called a service IP address, is used to redirect actual con- 585

tainers. Unfortunately, since service IP addresses are virtual IP 586

addresses that do not belong to container networks, they can be 587

considered external IP addresses. Thus, Bastion+ additionally 588

extracts the pairs of {service IP address, port} and {corre- 589

sponding container IP address, port} from Kubernetes and 590

maintains a service map in each Bastion+ network stack. Then, 591

when a container sends a packet with a service IP address and 592

port, the service-IP handler overwrites the service IP address 593

and port to an actual container IP address and port according 594

to the service map. As a result, the other security components 595

can process packets as intended. 596

4) Source Verification: One problem within the current 597

network stack is that all security enforcement and packet for- 598

warding rely on packet-header information. Thus, a malicious 599

container can submit packets that match the identity of target 600

containers. Doing so can redirect traffic of a target container to 601

itself (e.g., ARP spoofing attack). Also, the malicious container 602

can modify the traffic passing through it (e.g., Man-In-the- 603

Middle attack) or inject forged packets to disrupt another 604

container’s existing sessions (e.g., TCP RST attack). 605

Considering those cases, Bastion+ leverages the predefined 606

network information in each network stack and a network 607

session map to precisely track the actual source of inter- 608

container traffic. The Bastion+ network stack of each con- 609

tainer statically contains the corresponding container’s network 610

information (i.e., IP/MAC addresses), and Bastion+ verifies the 611

incoming traffic by comparing its packet header information to 612

the container’s information embedded in the Bastion+ network 613

stack. If the packet header information is not matched with 614

the container’s network information, Bastion+ identifies the 615

incoming traffic as spoofed and drops it. Furthermore, since 616

network-privileged containers can inject spoofed packets into 617

other containers, Bastion+ maintains the session information 618

of the incoming traffic in the network session map, which 619

is globally maintained across Bastion+ network stacks. Thus, 620

if some packets arrive at the Bastion+ network stack and 621

their session information is not in the global network session 622

map, Bastion+ considers them spoofed packets and drops them 623

immediately. As a result, Bastion+ can effectively eliminate the 624

spectrum of disruption and spoofing threats. 625

5) End-to-End Direct Forwarding: Current network stacks 626

cannot prevent the exposure of inter-container traffic from 627

other containers. If a malicious container can redirect the 628

traffic of a target container to itself, it can monitor the traffic 629

without restriction. In the case of network-privileged contain- 630

ers, they have the full visibility of all container networks: they 631

can monitor the traffic of others without any traffic redirection. 632

To implement least-privilege traffic exposure, as shown in 633

Figure 7, Bastion+ performs direct packet delivery between 634

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. An illustration of how Bastio+ implements end-to-end direct packet
forwarding to bypass exposure of intra-container traffic to other containers.

source and destination containers at the network interface635

level, bypassing not only their original network stacks (host-636

side) but also bridge interfaces. As soon as Bastion+ receives637

an incoming network connection from a container, it retrieves638

the interface information of a destination from the container639

network map. Bastion+ directly injects the packet stream into640

the destination container if the destination is a container in the641

same node. If the destination is a container in another node,642

Bastion+ injects the packet to the external interface of a node.643

Then, once the special Bastion+ network stack of the external644

interface at the target node receives the packet, it directly645

injects the packet stream into the destination container.646

As capturing network traffic happens in the ingress and647

egress traffic controls, no traffic would be visible at the traffic648

controls with Bastion+ as it handles all network traffic at649

the network interface level (before the traffic controls). Thus,650

this traffic isolation prevents any traffic disclosure by other651

containers and even network-privileged containers.652

D. Security Function Chaining653

As discussed in Section II-C, current security solutions for654

container networks have limitations in security inspections at655

the level of applications. Here, we introduce security function656

chaining for further application-level inspections.657

1) Challenges in Security Function Chaining: While658

network service chaining has been widely used in659

software-defined networking (SDN) and network function660

virtualization (NFV) because of the flexibility of network661

flow controls, it has not been well adopted into container662

networks due to their architectural limitations. Multiple663

microservices are deployed inside hosts, and they have their664

logical networks with different IP address spaces. Hence, it is665

difficult to either deploy security services per microservice666

due to the resource limits of hosts or deploy shared security667

service instance per host due to the unreachability among the668

different microservices.669

To address those challenges, Bastion+ introduces a way to670

deploy common security functions per host, while providing671

resource efficiency. Then, to address the network unreacha-672

bility issue, Bastion+ directly leverages the kernel features673

rather than implementing these services as extension to the674

network processing pipeline. By utilizing the end-to-end direct675

forwarding, Bastion+ forces network flows through security676

functions at the kernel side, bypassing the reachability issue.677

2) Security Function Deployment: Bastion+ provides two678

templates for inline and passive security functions, as shown in679

Figure 8. Each function has two network interfaces for inbound680

Fig. 8. Two types of security function templates: inline and passive templates.
Any security applications can run as usual based on the inbound and outbound
interfaces. while Bastio+ takes in charge of all network flow controls.

and outbound traffic. In the case of the inline template, 681

Bastion+ network stacks are attached at both interfaces since 682

the direction of packet flows is important to the inline func- 683

tions, especially for session management. On the other hand, 684

the passive template has one Bastion+ network stack attached 685

to the outbound interface while all traffic is mirrored from the 686

inbound interface to the outbound interface. Then, operators 687

build security functions with legacy security applications based 688

on those templates according to the types of applications. 689

Then, Bastion+ deploys those functions to each host. 690

3) Selective Security Function Chaining: Bastion+ enables 691

selective security function chaining according to security func- 692

tion chaining policies, which define the order of functions 693

based on the network context. Here, we explain how the func- 694

tion chaining works with the example illustrated in Figure 9. 695

In this example, we have two containers (Container A and B) 696

and two security functions (IDS and Web Firewall). When 697

Container A sends a packet to Container B, Bastion+ directly 698

forwards the packet to Container B. However, the packet flows 699

differently when chaining policies are applied. 700

Let us assume that an administrator applies two chaining 701

policies to Container A: (i) make the TCP/80 sessions toward 702

Container B pass the IDS and the Web Firewall and (ii) make 703

the TCP/3306 sessions toward Container B pass the IDS. Then, 704

Bastion+ updates the interface information for Container B in 705

the container network and dependency maps of Container A 706

and the security functions according to those chaining policies. 707

First, Bastion+ updates the destination interface for both 708

TCP/80 and TCP/3306 toward Container B to the inbound 709

interface of the IDS in the maps of Container A. Second, in the 710

outbound-side network stack for the IDS, Bastion+ updates 711

the interface for the TCP/80 to the inbound interface of the 712

Web Firewall while it updates the interface for the TCP/3306 713

to that of Container B. Lastly, in the outbound-side network 714

stack for the Web Firewall, Bastion+ updates the interface of 715

the TCP/3306 to that of Container B. As a result, packets can 716

pass through either the IDS and the Web Firewall or the IDS 717

only according to the protocol and port information. 718

In the case of the opposite direction (from Container B to 719

Container A), most of the map updates are similar. The only 720

difference is the direction. First, Bastion+ updates the interface 721

for the TCP/80 from Container B to the outbound interface of 722

the Web Firewall for the session management in the network 723

stack of Container B while it updates the interface for the 724

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



NAM et al.: SECURE INTER-CONTAINER COMMUNICATIONS USING XDP/eBPF 9

Fig. 9. Selective network flow redirections according to service chaining
policies. The TCP/80 session between container A and B passes through the
IDS and the web firewall while the TCP/3306 session passes through the IDS
only.

TCP/3306 from Container B to the inbound interface of the725

IDS as the IDS is a passive function. Then, in the inbound-726

side network stack of the Web Firewall, Bastion+ updates the727

interface for the TCP/80 from Container B to the inbound728

interface of the IDS. Lastly, in the outbound-side network729

stack of the IDS, it updates the interface for TCP/80 and730

TCP/3306 to that of Container A.731

E. Security Policy Assistant732

While Bastion+ restricts the ability of attackers through its733

security components, no container network can be made secure734

without proper security policies that restrict communications735

to the minimum required access.736

Bastion+ provides a security policy assistant that can737

help identify the security policies that a container operator738

should consider, as illustrated in Figure 10. Bastion+ pro-739

duces flow monitoring statistics that automatically capture the740

observed container accesses during the inter-container traffic741

flow control. In parallel, it compares these statistics with the742

inter-container dependency map, classifying them into three743

cases: legitimate accesses, missing policies, and excessive744

policies. If the two containers are in both the inter-container745

dependency map and there are connections between them,746

we consider their security policies well-defined. Otherwise,747

the operator may consider either a missing security policy or748

an excess policy, which differs from the actual flow statistics.749

The security policy assistant effectively directs the operator750

to review specific flows to determine whether to produce751

missing network security policies in the current operating752

configuration. In addition, it identifies policies for which no753

flows have been encountered. Such cases may represent an754

over-specification of policies that enable unnecessary flows for755

the container network’s operations.756

While the security policy assistant does not directly correct757

security policies, its feedback can be used as vital insights to758

help the operator confirm (or improve) the current network759

Fig. 10. Security policy assistant to discover inter-container dependencies
and detect possible configuration errors.

security policies. For example, the network policies for large 760

microservices may be relatively complicated to validate, and 761

operators may overlook policies that are broader than required. 762

In such cases, the security policy assistant can offer an iterative 763

stream of operational information that can help the operator 764

maintain and improve even complex network policies for a 765

large number of containers. 766

V. IMPLEMENTATION 767

We implement a prototype of Bastion+ with 2.1K lines of C 768

code and 12.5K lines of Go code on the Linux kernel v4.16. 769

Bastion+ Manager: For container network information 770

collection, the manager watches the attribute changes (e.g., 771

NetworkSettings) of active containers from the Docker engine 772

and the Kubernetes API server. In addition, Bastion+ uses 773

the label-based configurations for container deployments and 774

ingress/egress network security policies in Kubernetes to gen- 775

erate inter-container dependencies. 776

Network Security Enforcement Stack: Each container’s 777

security enforcement network stack is implemented using 778

eBPF [47] and XDP [48], [49]. During the inspection, the 779

network stack looks up two hash maps (i.e., the container 780

network and inter-container dependency maps), which are 781

synchronized with the Bastion+ manager. Then, they employ 782

XDP actions to send a packet back to the incoming container, 783

inject a packet into a destination, and drop a packet. 784

Security Function Chaining: Bastion+ deploys security 785

applications (for evaluation, we deployed Snort IDS [50] and 786

Suricata IDS/IPS [51]) by using its templates and as daemon 787

containers for each host according to the types of the applica- 788

tions (i.e., inline vs. passive). For passive functions, Bastion+
789

internally configures the traffic controls (using “tc qdisc” 790

and “tc filter”) to mirror incoming traffic to the outbound 791

interface. 792

Security Policy Assistant: To monitor the network flows 793

between containers, Each security stack maintains an eBPF 794

map shared with the security policy assistant and increments 795

the counters for network flows after removing the random- 796

ness (e.g., a source port) of the network flows. Whenever 797

a container is terminated, the corresponding eBPF map is 798

removed. 799

VI. SECURITY EVALUATION 800

This section demonstrates how Bastion+ mitigates network 801

attacks based on the attack scenario, shown in Section III-D, 802

that abuses the security holes in the current container network. 803

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. An illustration of neighbor container discovery: upper panel - an
attacker can discover all peer containers, lower panel - our container discovery
and container-aware flow control only allow the inter-dependent containers to
be shown.

A. Container Discovery804

When a compromised container is used to conduct peer805

discovery to locate other containers, as shown in Figure 11-(a),806

the current container network stack allows an attacker to807

discover all neighboring containers. On the other hand,808

as shown in Figure 11-(b), Bastion+’s container discovery and809

container-aware network isolation reduce the reachability of810

each container based on its inter-container dependencies. The811

infected container (i.e., Nginx-Guest in Figure 3) has only a812

limited number of dependent containers (i.e., Redis-Guest in813

Figure 3), and Bastion+ ensures that the container observes814

only its gateway and the dependents. In sum, our container815

discovery can protect containers from L2 attacks by limiting816

the topology visibility and controlling all L2 packets (i.e.,817

no broadcast to containers and no response from containers).818

B. Passive Packet Monitoring819

As discussed previously, a compromised container may820

be able to sniff the network traffic of a target container.821

Further, when an attacker compromises a “network-privileged”822

container, the attacker is provided access to all network traffic823

with no restriction. Bastion+ mitigates these concerns by824

implementing end-to-end direct container traffic forwarding.825

Figure 12 illustrates the utility of Bastion+’s direct forward-826

ing. The upper panel, Figure 12-(a), shows the visible network827

traffic of a target container (i.e., Nginx-User in Figure 3)828

after spoofing the container without direct forwarding. The829

lower panel, Figure 12-(b), demonstrates the use of direct830

forwarding. When direct forwarding is applied, the only visible831

traffic from a given interface is traffic involving the container832

itself. To highlight the differences, we intentionally make the833

flow from a source to a destination visible. As a result, while834

the attacker can observe the source-to-destination flow, he can835

no longer observe the traffic in the reverse direction. If we836

entirely apply end-to-end forwarding for all traffic, the attacker837

will see no traffic between them. In sum, Bastion+ does not838

allow containers and even host-privileged containers that abuse839

the host network namespace to eavesdrop third-party traffic.840

C. Active Packet Injection841

Network-based attacks frequently rely on spoofed packet842

injection techniques to send malicious packets to target con-843

tainers. Bastion+ prevents these attacks by performing explicit844

Fig. 12. Restricting traffic visibility: upper panel - an attacker can see the
traffic of the spoofed target container without end-to-end forwarding, lower
panel - the attacker cannot see response traffic with end-to-end forwarding.

source verification. To illustrate its impact, we demonstrate 845

before and after cases from the attacker and victim perspec- 846

tives. In the following example, we enable source verification 847

only and allow an attacker to conduct ARP spoofing attacks. 848

Figure 13-(A) illustrates cases without source verification. 849

The attacker spoofs the Nginx-User (in Figure 3) and receives 850

the traffic of the Nginx-User. Further, the attacker injects RST 851

packets to terminate the session of the Nginx-User. As soon 852

as the attacker injects the RST packets, as shown in panel 853

(A-2), the Nginx-User receives the injected RST packets (see 854

the received times of the RST packets), causing its session 855

to be immediately terminated. This situation is remedied with 856

explicit source verification. Although the attacker tries to inject 857

RST packets, as shown in panel (B-2), the RST packets are 858

rejected by the source verification component and prevented 859

from reaching the Nginx-User. In sum, the source verification 860

can protect containers from L3/L4 attacks (e.g., IP spoofing 861

and TCP session hijacking attacks) even though these attacks 862

are initiated from host-privileged containers. 863

VII. PERFORMANCE EVALUATION 864

This section summarizes our measurement results of 865

Bastion+’s performance overhead with respect to latencies and 866

throughputs between containers under various conditions. 867

Test Environment: We used three machines to construct 868

a Kubernetes cluster with the WeaveNet overlay network and 869

evaluate the Bastion+ prototype. One system served as the 870

Kubernetes master node, while the others acted as container- 871

hosting nodes. Each system was configured with an Intel Xeon 872

E5-2630v4 CPU, 64 GB of RAM, and an Intel 10 Gbps 873

NIC. netperf [52] and iperf [53] were used to measure 874

round-trip latencies and TCP stream throughputs. 875

A. Security Policy Inspection Overhead 876

We compared the matching overheads with both 877

iptables-based access control and Bastion+, and Figure 14 878

shows the TCP throughputs with different numbers of security 879

policies. For a fair comparison on a best-effort basis, we used 880

the same number of policies for each container. 881

In the case of iptables, security policies for all contain- 882

ers are maintained collectively in the host kernel. Thus, when 883

packets arrive from containers, iptables first looks up the 884

policies for the corresponding containers and inspects them 885

individually with the incoming packets. Also, iptables 886

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



NAM et al.: SECURE INTER-CONTAINER COMMUNICATIONS USING XDP/eBPF 11

Fig. 13. Restriction of packet injection. Panel A-1 shows the attacker
injecting RST packets, and A-2 shows the victim session terminated by
attacker’s RST packet. Panel B-1 shows the trials of RST packet injections,
and B-2 shows the failure of RST packet injection due to source verification.

Fig. 14. Throughput variations with the increasing number of security
policies.

requires a large number of field matches (at least source and887

destination IP addresses and ports for each policy) since it is888

designed for general access control. As a result, as shown in889

Figure 14, the throughput degraded by 23.3% with 100 policies890

and 64.0% with 500 policies. This trend points to a funda-891

mental scaling challenge with the current policy enforcement892

approach for container networks. In contrast, the throughput893

degradation caused by Bastion+ was barely noticeable as the894

number of policies increased (3.2% with 500 policies). Such895

performance gains stem from Bastion+’s matching process896

optimized for containers, which comprises a hash-based policy897

lookup for specific destinations and their port matches (no898

need to match source IP addresses and ports).899

B. Security Function Chaining Overhead900

We measured the overheads coming from function chaining.901

For this, we deployed two open-source intrusion detection and902

prevention systems (i.e., SnortIDS [50] and SuricataIPS [51]).903

We used the official rules in Snort 2.9 (4K rules) for Snort904

IDS and the ET Open rules [54] (4K rules) for Suricata IPS.905

Figure 15 shows the inter-container latencies with different906

combinations of security functions. With no chaining, the907

latencies of inter-container communications within a host were908

17.5µs and 14.5µs for TCP and UDP packets, respectively.909

When we added the Snort IDS between the containers, the910

overall latencies slightly increased (+10µs on average) as the911

network traffic needed to pass through the SnortIDS container.912

However, no additional overhead for deep packet inspections913

was included except for the overhead of packet mirroring by914

traffic controls (kernel-level). When we added the Suricata915

IPS, the overall latencies highly increased (130.2µs for TCP916

Fig. 15. Latency measurements with different Bastio+ security functions.

Fig. 16. Latency measurements with Bastio+ components in a single host.

packets and 120.3µs for UDP packets) as all network traffic 917

should be copied to the Suricata IPS (userspace-level), and 918

then it should be copied to the outbound interface (kernel- 919

level). In addition, all overheads for parsing packets and 920

inspecting payloads increased the latencies. Note that the per- 921

formance optimization of security functions is out of scope in 922

this work. Then, when we chained both functions, the overall 923

latencies increased up to 9.5 times compared to the baseline 924

(no chain). However, despite significant overheads with the 925

security functions, Bastion+ provides selective security func- 926

tion chaining; thus, the overheads can be highly reduced by 927

inspecting specific packets only while for non-critical packets 928

bypassing the function chains. 929

C. Performance: Single-Host Deployment 930

Here, we evaluated latencies and throughputs between con- 931

tainers hosted in the same node to measure the overhead of 932

Bastion+. Figure 16 provides the round-trip latency compari- 933

son of four test cases within a single node. The base case pro- 934

vides latency measurements for a default configuration of two 935

containers that interacted with no Bastion+, which were 21.6µs 936

and 18.2µs for TCP and UDP packets, respectively. When 937

we applied Bastion+’s policy matching components (i.e., con- 938

tainer discovery and container-aware network isolation), the 939

latencies slightly increased by 5.7% and 9.3% due to the 940

newly applied security enforcement requiring additional packet 941

processing to derive the reachability check between containers. 942

When we applied Bastion+’s end-to-end direct forwarding, 943

the overall latencies were noticeably improved by 26.3% 944

because it directly fed inter-container traffic into destination 945

containers while bypassing the existing container networks. 946

Finally, we observed the overall performance improvement 947

with respect to the base case of 23.0% and 25.4% for TCP 948

and UDP packets when all Bastion+ security functions were 949

fully applied. Figure 17 also shows that the overall throughput 950

of Bastion+ was improved by 20.6% compared to that of the 951

base case. 952

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 17. Throughput measurements of the baseline and Bastio+ components.

Fig. 18. Latency measurements with Bastio+ components across hosts.

D. Performance: Cross-Host Deployment953

Next, we measured the latencies and throughputs for954

cross-host container deployments. Figure 18 illustrates the955

measurement results with different combinations of Bastion+’s956

security components. Compared to the intra-host measure-957

ments, the overall latencies significantly increased due to958

the physical link traversal and tunneling overheads between959

hosts; thus, the latency of the base case became 100.1µs960

and 91.5µs for TCP and UDP packets, respectively. Also,961

given the network impact, the overhead caused by Bastion+’s962

policy matching components receded (less than 1%). Next,963

when we introduced Bastion+’s end-to-end direct forwarding,964

the latencies were reduced by 21.3% because our secure965

forwarding directly passed network packets from the source966

to the destination via the external interfaces. Finally, when967

we applied all security components, the latencies decreased968

by 17.7%, significantly improving compared to the base case.969

These improvements translated to a cross-host throughput970

improvement of 12.9%, as shown in Figure 17.971

E. Performance: Networking Plugins972

Lastly, we compared the throughput variations in different973

types of container networks with/without Bastion+. Figure 19974

shows the TCP-stream throughputs between intra-host and975

inter-host containers in three container networks (i.e., Flannel,976

WeaveNet, and Calico). The results show that the intra-host977

throughputs are improved 16.0% in the Flannel network,978

20.6% in the Weave network, and 20.7% in the Calico network979

by deploying Bastion+. Regarding the inter-host throughputs,980

we also see the performance improvements (9.4%, 12.9%, and981

4.9%, respectively) with Bastion+.982

F. Performance:Bastio+ System983

Here, we evaluated the resource usage of Bastion+. For this,984

we divide the overall workflow into three parts: stack installa-985

tion, run-time, and security policy analysis. First, we measured986

the CPU usage while creating 100 containers. The result shows987

Fig. 19. Throughput comparison with different CNIs. (B = with Bastio+).

that it took 13.03 µs on average for stack installation, and 988

it consumed up to 54.7% of CPU resources in a very short 989

time. However, while measuring the CPU usage during the 990

performance of inter-container communications, we observe 991

that Bastion+ generally consumed 2.3% of CPU resources on 992

average in rum time because most of the security operations 993

are done in the kernel space and Bastion+ (user-space) only 994

manages Bastion+ components. Lastly, the security policy 995

assistant consumed less than 1% of CPU resources. As a 996

result, we ascertain that Bastion+ can provide further network 997

isolation and security enforcement and better performance 998

with minimal overhead costs. 999

VIII. RELATED WORK 1000

Container Security Analysis. Several efforts [39], [40], 1001

[41], [55], [56], [57] have analyzed the security issues of con- 1002

tainer implementations. For example, Dua et al. [55] analyzed 1003

various container implementations, concluding that they are 1004

yet insecure from filesystem, network, and memory isolation 1005

perspectives. More specifically, Jian et al. [41] demonstrated a 1006

Docker escape attack, which allows an adversary to break out 1007

of the isolation of a Docker container by exploiting a Linux 1008

kernel vulnerability. Another research area [36], [37], [58], 1009

[59], [60] of container security focuses on container images. 1010

Shu et al. [58] and Tak et al. [59], [60] have performed a 1011

large-scale vulnerability assessment of Docker images on 1012

Docker Hub and shown that many images were outdated and 1013

vulnerable. While these studies broadly point out the security 1014

issues of containers, their goals differ from our work. Instead, 1015

Bastion+ focuses on container networks. 1016

Container Security and Isolation. Bacis et al. introduced 1017

DockerPolicyModules (DPM) [61] that allow Docker image 1018

maintainers to specify and ship SELinux policies within their 1019

images. Sun et al. [62] proposed security namespaces that 1020

enable containers to independently define security policies and 1021

apply them to a limited scope of processes. SCONE [63] 1022

presented a secure container mechanism for Docker containers 1023

by isolating them inside SGX enclaves. LightVM [64] wraps 1024

containers in lightweight VMs. X-Containers [65] isolate con- 1025

tainers that have the same concerns together on top of separate 1026

library OSes. These efforts complement the network-focused 1027

objectives of Bastion+ and could be combined to deliver 1028

system- and network-wide security services. 1029

Container Network Security. Most container network 1030

solutions [66], [67] have focused on container network 1031

performance, with little attention to fine-grained policy 1032

enforcement. A few recent studies investigated the security 1033

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



NAM et al.: SECURE INTER-CONTAINER COMMUNICATIONS USING XDP/eBPF 13

issues in container networks. Bui [68], Comb et al. [69], and1034

Chelladhurai et al. [70] analyzed Docker container security.1035

Our work extends these results by identifying the broader class1036

of attacks, and we present system extensions that address these1037

problems.1038

With respect to security policies for inter-container commu-1039

nications, while most solutions (e.g., Weave [27], Calico [28],1040

and Romana [71]) have adopted iptables-based access1041

control, Cilium [29] provides API-aware security mechanisms1042

using eBPF for L3/4 policies, employing its security container1043

for L7 policies. While Bastion+ and Cilium share the use1044

of eBPF in their implementations, their design objectives1045

are different. Cilium pursues API-level network security fil-1046

tering to define and enforce both network and application1047

layer security policies. In contrast, Bastion+ fundamentally1048

redesigns a secure network stack per container to construct1049

an inherently secure container networking system while also1050

providing substantially more security features than Cilium.1051

IX. CONCLUSION1052

Containerization has emerged as a widely popular virtual-1053

ization technology that is being aggressively deployed into1054

large-scale enterprise and cloud environments. However, this1055

adoption could be stifled by critical security issues, which1056

remain understudied. We have analyzed the security challenges1057

involved in the current container networks and addressed these1058

challenges by presenting Bastion+, an intelligent communi-1059

cation bridge for securing container-network communications1060

using Linux kernel features. Bastion+ restricted the network1061

and traffic visibilities of containers with per-container fine-1062

grained network control and container-to-container network1063

isolation. Also, Bastion+ enabled selective security function1064

chaining according to containerized applications for further1065

application-level inspections and helped administrators cor-1066

rectly configure their security policies using its security policy1067

assistant.1068

REFERENCES1069

[1] Google. Everything at Google Runs in Containers. Accessed:1070

Sep. 20, 2022. [Online]. Available: https://cloud.google.com/containers1071

[2] Yelp. How Yelp Runs Millions of Tests Every Day. Accessed:1072

Sep. 20, 2022. [Online]. Available: https://engineeringblog.yelp.1073

com/2017/04/how-yelp-runs-millions-of-tests-every-day.html1074

[3] Netflix Technical Blog. Titus, the Netflix Container Management Plat-1075

form, is Now Open Source. Accessed: Sep. 20, 2022. [Online]. Avail-1076

able: , [Online]. Available: https://netflixtechblog.com/titus-the-netflix-1077

container-management-platform-is-now-open-source-f868c9fb54361078

[4] Tripwire. State of Container Security Report. Accessed:1079

Sep. 20, 2022. [Online]. Available: https://www.tripwire.com/state-1080

of-security/devops/organizations-container-security-incident1081

[5] Security Boulevard. Stealing Infrastructure: Cryptomining Attacks1082

on Container Environments. Accessed: Sep. 20, 2022. [Online].1083

Available: https://securityboulevard.com/2018/03/stealing-infrastructure-1084

cryptocurrency-mining-attacks-container-environments/1085

[6] CoreOS. Clair. Accessed: Sep. 20, 2022. [Online]. Available:1086

https://coreos.com/clair/docs/latest1087

[7] Docker. Docker Security Scanning. Accessed: Oct. 16, 2021. [Online].1088

Available: https://docs.docker.com/v17.12/docker-cloud/builds/image-1089

scan1090

[8] RedHat. Atomic Scan—Container Vulnerability Detection.1091

Accessed: Sep. 20, 2022. [Online]. Available: https://github.com/1092

projectatomic/atomic1093

[9] AppArmor. AppArmor Project. Accessed: Sep. 20, 2022. [Online]. 1094

Available: https://apparmor.net 1095

[10] Seccomp. Accessed: Sep. 20, 2022. [Online]. Available: 1096

http://man7.org/linux/man-pages/man2/seccomp.2.html 1097

[11] SELinux Project. Accessed: Sep. 20, 2022. [Online]. Available: 1098

http://selinuxproject.org/page/Main_Page 1099

[12] Microservice. Accessed: Sep. 20, 2022. [Online]. Available: 1100

https://microservices.io/patterns/microservices.html 1101

[13] Docker. Content Trust in Docker. Accessed: Sep. 20, 2022. [Online]. 1102

Available: https://docs.docker.com/engine/security/trust/content_trust 1103

[14] Docker. Docker Hub. Accessed: Sep. 20, 2022. [Online]. Available: 1104

https://hub.docker.com 1105

[15] H. Zhu and C. Gehrmann. “Lic-Sec: An enhanced AppArmor Docker 1106

security profile generator,” J. Inf. Secur. Appl., vol. 61, Sep. 2021, 1107

Art. no. 102924. 1108

[16] Udica. SELinux Policy Generation for Containers. Accessed: 1109

Sep. 20, 2022. [Online]. Available: https://github.com/containers/udica 1110

[17] L. Lei et al., “Speaker: Split-phase execution of application containers,” 1111

in Proc. Int. Conf. Detection Intrusions Malware, Vulnerability Assess- 1112

ment, 2017, pp. 230–251. 1113

[18] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine: 1114

Automated system call policy generation for container attack surface 1115

reduction,” in Proc. Int. Symp. Res. Attacks, Intrusions Defenses, 2020, 1116

pp. 443–458. 1117

[19] Aqua Security. Accessed: Sep. 20, 2022. [Online]. Available: 1118

https://www.aquasec.com 1119

[20] StackRox. Accessed: Sep. 20, 2022. [Online]. Available: 1120

https://www.stackrox.com 1121

[21] TwistLock. Accessed: Sep. 20, 2022. [Online]. Available: 1122

https://www.twistlock.com 1123

[22] Docker. Accessed: Sep. 20, 2022. [Online]. Available: 1124

https://www.docker.com 1125

[23] Kubernetes. Accessed: Sep. 20, 2022. [Online]. Available: 1126

https://kubernetes.io 1127

[24] Docker. Compose. Accessed: Sep. 20, 2022. [Online]. Available: 1128

https://docs.docker.com/compose/networking 1129

[25] Netfilter and IPtables. Accessed: Sep. 20, 2022. [Online]. Available: 1130

https://www.netfilter.org 1131

[26] CoreOS. Flannel. Accessed: Sep. 20, 2022. [Online]. Available: 1132

https://coreos.com/flannel 1133

[27] Weaveworks. Weave Net. Accessed: Sep. 20, 2022. [Online]. Available: 1134

https://www.weave.works/oss/net 1135

[28] Tigera. Project Calico. Accessed: Sep. 20, 2022. [Online]. Available: 1136

https://www.projectcalico.org 1137

[29] Cilium. API-Aware Networking and Security. Accessed: Sep. 20, 2022. 1138

[Online]. Available: https://cilium.io 1139

[30] CiscoCloud. HAProxy. Accessed: Sep. 20, 2022. [Online]. Available: 1140

https://hub.docker.com/r/ciscocloud/haproxy-consul 1141

[31] Mace. OpenVPN. Accessed: Sep. 20, 2022. [Online]. Available: 1142

https://hub.docker.com/r/mace/openvpn-as 1143

[32] MemSQL. MemSQL. Accessed: Sep. 20, 2022. [Online]. Available: 1144

https://hub.docker.com/_/memsq 1145

[33] O. vSwitch. Production Quality, Multilayer Open Virtual Switch. 1146

Accessed: Sep. 20, 2022. [Online]. Available: https://www.openvswitch. 1147

org 1148

[34] A. Bettini. Vulnerability Exploitation in Docker Container 1149

Environments. Accessed: Sep. 20, 2022. [Online]. Available: 1150

https://www.blackhat.com/eu-15/briefings.html#vulnerability- 1151

exploitation-in-docker-container-environments 1152

[35] LunaSec. Accessed: Sep. 20, 2022. [Online]. Available: https://www. 1153

lunasec.io/docs/blog/log4j-zero-day 1154

[36] TwistLock. A Busybox AutoCompletion Vulnerability. Accessed: 1155

Oct. 16, 2021. [Online]. Available: https://www.twistlock. 1156

com/2017/11/20/cve-2017-16544-busybox-autocompletion-vulnerability 1157

[37] StackRox. Breaking Bad: Detecting Real World Container Exploits. 1158

Accessed: Oct. 16, 2021. [Online]. Available: https://www.stackrox. 1159

com/post/2018/03/breaking-bad-detecting-real-world-container-exploits 1160

[38] Synk. Hacking Docker Containers by Exploiting Imagemagick 1161

Vulnerabilities. Accessed: Sep. 20, 2022. [Online]. Available: https:// 1162

snyk.io/blog/hacking-docker-containers-by-exploiting-base-image- 1163

vulnerabilities 1164

[39] Abusing Privileged and Unprivileged Linux Containers, NCCGroup, 1165

London, U.K., 2016. 1166

[40] TwistLock. Escaping Docker Container Using Waitid. Accessed: 1167

Oct. 16, 2021. [Online]. Available: https://www.twistlock.com/2017/12/ 1168

27/escaping-docker-container-using-waitid-cve-2017-5123 1169

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE/ACM TRANSACTIONS ON NETWORKING

[41] Z. Jian and L. Chen, “A defense method against Docker escape attack,”1170

in Proc. Int. Conf. Cryptogr., Secur. Privacy, 2017, pp. 142–146.1171

[42] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative TCP sequence number1172

inference attack: How to crack sequence number under a second,” in1173

Proc. Conf. Comput. Commun. Secur., 2012, pp. 593–604.1174

[43] Instana. Stan Robot Shop, A Sample Microservice Application. Accessed:1175

Sep. 20, 2022. [Online]. Available: https://github.com/instana/robot-shop1176

[44] Weaveworks. Sock Shop—A Microservices Demo Application. Accessed:1177

Sep. 20, 2022. [Online]. Available: https://microservices-demo.github.io1178

[45] Nginx. Nginx. Accessed: Sep. 20, 2022. [Online]. Available:1179

https://hub.docker.com/_/nginx1180

[46] Redis. Redis. Accessed: Sep. 20, 2022. [Online]. Available:1181

https://hub.docker.com/_/redis1182

[47] IO Visor Project. Extended Berkeley Packet Filter. Accessed:1183

Sep. 20, 2022. [Online]. Available: https://www.iovisor.org/1184

technology/ebpf1185

[48] T. Høiland-Jørgensen et al., “The eXpress data path: Fast programmable1186

packet processing in the operating system kernel,” in Proc. Int. Conf.1187

Emerg. Netw. EXperiments Technol., 2018, pp. 54–66.1188

[49] IO Visor Project. eXpress Data Path. Accessed: Sep. 20, 2022. [Online].1189

Available: https://www.iovisor.org/technology/xdp1190

[50] M. Roesch, “Snort: Lightweight intrusion detection for networks,” in1191

Proc. Large Installation Syst. Admin. Conf., 1999, pp. 229–238.1192

[51] Suricata. Threat Detection Engine. Accessed: Sep. 20, 2022. [Online].1193

Available: https://suricata.io1194

[52] Hewlett Packard Enterprise. NetPerf: Network Performance Bench-1195

mark. Accessed: Sep. 20, 2022. [Online]. Available: https://github.1196

com/HewlettPackard/netperf1197

[53] iPerf. Network Bandwidth Measurement Tool. Accessed: Sep. 20, 2022.1198

[Online]. Available: https://iperf.fr1199

[54] proofpoint. Emerging Threat Ruleset. Accessed: Sep. 20, 2022. [Online].1200

Available: https://www.proofpoint.com/us/threat-insight/et-pro-ruleset1201

[55] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization1202

to support PaaS,” in Proc. Int. Conf. Cloud Eng., 2014, pp. 610–614.1203

[56] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang, “Container-1204

Leaks: Emerging security threats of information leakages in container1205

clouds,” in Proc. Int. Conf. Dependable Syst. Netw., 2017, pp. 237–248.1206

[57] A. A. Mohallel, J. M. Bass, and A. Dehghantaha, “Experimenting with1207

Docker: Linux container and BaseOS attack surfaces,” in Proc. Int. Conf.1208

Inf. Soc., 2016, pp. 17–21.1209

[58] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities1210

on Docker hub,” in Proc. Conf. Data Appl. Secur. Privacy, 2017,1211

pp. 269–280.1212

[59] B. Tak, C. Isci, S. Duri, N. Bila, S. Nadgowda, and J. Doran, “Under-1213

standing security implications of using containers in the cloud,” in Proc.1214

Annu. Tech. Conf., 2017, pp. 313–319.1215

[60] B. Tak, H. Kim, S. Suneja, C. Isci, and P. Kudva, “Security analysis of1216

container images using cloud analytics framework,” in Proc. Int. Conf.1217

Web Services, 2018, pp. 116–133.1218

[61] E. Bacis, S. Mutti, S. Capelli, and S. Paraboschi, “DockerPolicyMod-1219

ules: Mandatory access control for Docker containers,” in Proc. Conf.1220

Commun. Netw. Secur., 2015, pp. 749–750.1221

[62] Y. Sun, D. Safford, M. Zohar, D. Pendarakis, Z. Gu, and T. Jaeger,1222

“Security namespace: Making Linux security frameworks available to1223

containers,” in Proc. Secur. Symp., 2018, pp. 1423–1439.1224

[63] S. Arnautov et al., “SCONE: Secure Linux containers with Intel SGX,”1225

in Proc. Symp. Operating Syst. Design Implement., 2016, pp. 689–703.1226

[64] F. Manco et al., “My VM is lighter (and safer) than your container,” in1227

Proc. Symp. Operating Syst. Princ., 2017, pp. 218–233.1228

[65] Z. Shen et al., “X-containers: Breaking down barriers to improve1229

performance and isolation of cloud-native containers,” in Proc. Int.1230

Conf. Architectural Support Program. Lang. Operating Syst., 2019,1231

pp. 121–135.1232

[66] W. Zhang et al., “OpenNetVM: A platform for high performance1233

network service chains,” in Proc. Workshop Hot Topics Middleboxes1234

Netw. Function Virtualization, 2016, pp. 26–31.1235

[67] D. Zhuo et al., “Slim: OS kernel support for a low-overhead container1236

overlay network,” in Proc. Symp. Netw. Syst. Design Implement., 2019,1237

pp. 331–344.1238

[68] T. Bui, “Analysis of Docker security,” 2015, arXiv:1501.02967.1239

[69] T. Combe, A. Martin, and R. D. Pietro, “To Docker or not to Docker:1240

A security perspective,” IEEE Cloud Comput., vol. 3, no. 5, pp. 54–62,1241

Oct. 2016.1242

[70] J. Chelladhurai, P. R. Chelliah, and S. A. Kumar, “Securing Docker1243

containers from denial of service (DoS) attacks,” in Proc. Int. Conf.1244

Services Comput., 2016, pp. 856–859.1245

[71] Romana. Romana V2.0. Accessed: Oct. 16, 2021. [Online]. Available: 1246

https://romana.io 1247

Jaehyun Nam received the B.S. degree in com- 1248

puter science and engineering from Sogang Uni- 1249

versity, South Korea, and the M.S. and Ph.D. 1250

degrees in information security from the School 1251

of Computing, KAIST. He is an Assistant Profes- 1252

sor with the Department of Computer Engineer- 1253

ing, Dankook University, South Korea. His research 1254

interests include networked systems and security, 1255

and security issues in cloud and edge computing sys- 1256

tems, including SDN, NFV, the IoT, and containers. 1257

Seungsoo Lee received the B.S. degree in computer 1258

science from Soongsil University, South Korea, and 1259

the M.S. and Ph.D. degrees in information security 1260

from KAIST. He is an Assistant Professor with the 1261

Department of Computer Science and Engineering, 1262

Incheon National University. His research interests 1263

include network systems, network security, software- 1264

defined networking (SDN), network function virtu- 1265

alization (NFV), and cloud security. 1266

Phillip Porras received the M.S. degree in com- 1267

puter science from the University of California, 1268

Santa Barbara, CA, USA, in 1992. He is a SRI 1269

Fellow and the Program Director of the Internet 1270

Security Group, Computer Science Laboratory, SRI 1271

International, Menlo Park, CA, USA. He has partic- 1272

ipated on numerous program committees and edito- 1273

rial boards, and participates on multiple commercial 1274

company technical advisory boards. He continues 1275

to publish and conduct technology development on 1276

numerous topics including intrusion detection and 1277

alarm correlation, privacy, malware analytics, active and software defined 1278

networks, and wireless security. 1279

Vinod Yegneswaran received the A.B. degree from 1280

the University of California, Berkeley, CA, USA, 1281

in 2000, and the Ph.D. degree from the University of 1282

Wisconsin, Madison, WI, USA, in 2006, all in com- 1283

puter science. He is a Senior Computer Scientist with 1284

SRI International, Menlo Park, CA, USA, pursuing 1285

advanced research in network and systems security. 1286

His current research interests include SDN security, 1287

malware analysis, and anti-censorship technologies. 1288

He has served on several NSF panels and program 1289

committees of security and networking conferences, 1290

including the IEEE Security and Privacy Symposium. 1291

Seungwon Shin (Member, IEEE) received the B.S. 1292

and M.S. degrees in electrical and computer engi- 1293

neering from KAIST and the Ph.D. degree in com- 1294

puter engineering from the Electrical and Computer 1295

Engineering Department, Texas A&M University. 1296

He is an Associate Professor with the School of 1297

Electrical Engineering, KAIST. His research inter- 1298

ests include SDN security, the IoT security, bot- 1299

net analysis/detection, darkweb analysis, and cyber 1300

threat intelligence (CTI). 1301

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ Of Incheon. Downloaded on December 14,2022 at 01:29:29 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


