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Secure Inter-Container Communications
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Abstract— While the use of containerization technologies for
virtual application deployment has grown at an astonishing rate,
the question of the robustness of container networking has not
been well scrutinized from a security perspective, even though
inter-container networking is indispensable for microservices.
Thus, this paper first analyzes container networks from a
security perspective, discussing the implications based on their
architectural limitations. Then, it presents Bastion+, a secure
inter-container communication bridge. Bastion+ introduces (i)
a network security enforcement stack that provides fine-grained
control per container application and securely isolates inter-
container traffic in a point-to-point manner. Bastion+ also sup-
ports (ii) selective security function chaining, enabling various
security functions to be chained between containers for further
security inspections (e.g., deep packet inspection) according to
the container’s network context. Bastion+ incorporates (iii) a
security policy assistant that helps an administrator discover
inter-container networking dependencies correctly. Our evalu-
ation demonstrates how Bastion+ can effectively mitigate several
adversarial attacks in container networks while improving the
overall performance up to 25.4% within single-host containers
and 17.7% for cross-host container communications.

Index Terms— Container security, network sandboxing, policy
enforcement, security function chaining, XDP/eBPF.

I. INTRODUCTION

AMONG the leading trends in virtualization is
containerized application deployment at industrial

scales across private and public cloud infrastructures.
For example, Google has spawned more than two billion
containers per week [1]. Yelp uses containers to migrate
their code onto AWS and launches more than one million
containers per day [2]. Netflix spawns more than three million
containers per week within Amazon EC2 using its Titus
container management platform [3].

With this growing attention toward the large-scale instan-
tiation of containerized applications also comes a potential
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for even small security cracks within the container soft-
ware ecosystem to produce hugely destructive impacts. Trip-
wire’s container security report [4] found that 60% of orga-
nizations already had experiences of security incidents in
2018, assessing that these incidents arose primarily due to
the pressures to achieve deployment speed over the risks
from deploying insecure containers. Also, container hijacking
for cryptocurrency mining [5] has emerged as one of the
recent plagues in which computing resources, rather than
user data, are being harvested en masse across the Internet.
In recognition of such risks, several efforts [6], [7], [8] have
arisen to help identify and warn of possible vulnerabilities in
containers.

In addition, the shared kernel-resource model used by
containers also introduces critical security concerns regarding
the ability of the host OS to maintain isolation once a single
container is infected. Indeed, many researchers (and industry)
have proposed strategies to address the issue of container
isolation. For example, AppArmor [9], Seccomp [10], and
SELinux [11] can provide much stronger isolation of contain-
ers by preventing various system resource abuses.

However, while a variety of approaches to secure container-
ized applications continue to emerge, less attention has been
paid to bounding these applications’ access to the container
network. Specifically, there has been significant adoption of
containers as microservices [12], in which containers are used
to create complex cloud services. Although current container
platforms often utilize IP-based access control to restrict each
container’s network interactions, there are still limitations in
such controls that offer opportunities for container abuse.

In this work, we first discuss several security challenges
that arise from the current reliance on the host OS net-
work stack and virtual networking features to provide robust
container-network security. In the discussion, we present
five examples of inherent limitations that arise in using the
Host-OS-based networking features to manage the communi-
cations of container ecosystems as they are deployed today.
Informed by these existing limitations, we then introduce
Bastion+, a new inter-container communication bridge. First,
Bastion+ instantiates a security network stack per container,
offering isolation, performance efficiency, and a fine-grained
network security policy enforcement that implements each
container’s least privileged network access. This approach also
provides better network policy scalability in network policy
management as the number of hosted containers increases.
Second, Bastion+ supports a security function chaining mech-
anism that allows an administrator to deploy various security
functions on-demand and forces inter-container network traffic
to selectively pass through the security functions according to
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its network context for further security investigations. Lastly,
Bastion+ provides a security policy assistant to facilitate the
identification of inter-container networking dependencies.

The paper explains how Bastion+ mitigates a range of
existing security challenges while also demonstrating that
Bastion+ can improve the overall performance up to 25.4%
within the same host and 17.7% across hosts.
Contributions. Our paper contributions are as follows:

• The security assessment of container networks, illus-
trating security challenges in current container network
stacks and security mechanisms.

• The novel security-enforcement network stack for con-
tainers, which restricts the network visibility of containers
and isolates network traffic among peer containers.

• The security function chaining mechanism specialized
for containers, enabling additional security inspections
in inter-container communications through the function
chains selectively chosen based on their network context.

• The security assistant for the policy enforcement between
the containers, which helps administrators recognize
inter-container networking dependencies.

II. BACKGROUND AND MOTIVATION

Here, we introduce the state of container security. We then
provide the background of container networks and identify
how the underlying architectural limitations of current con-
tainer networks impact container environments.

A. Today’s Container Security Solutions

Containers are widely utilized to decompose complex pro-
duction Internet services into manageable microservices. The
need to harden containers to resist compromise and ensure
their application integrity is of critical importance. Hence, var-
ious security solutions have been explored, broadly focusing
on three aspects of the container ecosystem.

(1) Container Image Integrity. A container image is a
self-contained package of software that includes everything
needed to run an application (e.g., code, libraries, and con-
figurations). Image management, tamper resistance, and con-
figuration validation are foundational services upon which all
other subsequent security features must rely. Here, two forms
of image protection services have been released. One form is
that of solutions like Docker Content Trust (DCT) [13], which
verifies container images at image repositories (e.g., Docker
Hub [14]) with the digital signatures of image owners. The
second form is represented by security scanning solutions [6],
[7], [8], which inspect known vulnerabilities in container
images using CVE databases.

(2) Container Isolation. Once a container is deployed,
three Host OS security mechanisms are used to implement
application isolation and enforce least privilege access on the
container application: namespace, cgroups, and capabilities.
Since multiple containers share the same host kernel, AppAr-
mor [9], Seccomp [10], and SELinux [11] are used for further
restrictions on system resources (e.g., kernel calls). Also,
there are several solutions (e.g., Lic-Sec [15] for AppArmor,
Udica [16] for SELinux, Speaker [17], and Confine [18] for
Seccomp) to automatically generate the security profiles of

Fig. 1. Overview of docker bridge networking. Upper panel: a conceptual
microservice architecture involving two independent services. Lower panel:
separate bridged networks are instantiated to manage container network flows.

those Linux security mechanisms for containers based on
container and application configurations.

(3) Run-time Threat Detection. Several commercial
products [19], [20], [21] have introduced container security
frameworks that monitor the behavior of containers, detect
runtime policy violations, and conduct anomaly detection.

This paper aims to complement the above services’ protec-
tions by addressing a fourth significant aspect of container
security enforcement: network security enforcement during
inter-container communications. The primary service used to
enforce network security policies in container networks is
through ACL-based IP rules. We will discuss the limitations
of these services and identify how the current underlying
architectural limitations impact container environments.

B. Current Container Networks

We provide a brief overview of how current container net-
works are structured using two of the most prevalent container
systems used today: Docker [22] and Kubernetes [23].

Docker Platform: Docker [22] is a platform for distrib-
uting and running containers. In Docker, bridge networks are
used as default container networks. Independent Docker con-
tainers are, by default, connected to a bridge called Docker0.
However, when multiple containers are created using docker-
compose [24], a new bridge (network) is automatically created
and assigned to manage the traffic for those containers. As an
example, Figure 1 illustrates the architecture of two microser-
vices. The microservice chains that compose a network service
are shown in the upper panel, while the logical networking
of the microservice containers, which are networked under
separate bridges, is depicted in the lower panel. To provide
network flow control, Docker applies network and security
policies into bridge networks using iptables [25].

Kubernetes Orchestration System: Kubernetes [23] is
an open-source container orchestration system that manages a
large number of containers across multiple nodes and enables
them to work together logically. Thus, while containers in
Docker bridge networks operate within the same host (node),
containers in Kubernetes are located across multiple nodes.

Kubernetes uses various overlay networks (e.g., Flan-
nel [26], Weave [27], Calico [28]) to provide inter-container
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Fig. 2. Five critical challenges in container networks: (1) Limitation of
packet-based source verification, (2) Limitations of IP-based access controls,
(3) Lack of application-level security inspections, (4) Unrestricted host
accesses, and (5) No restriction on network-privileged containers.

connectivity across multiple nodes. For example, in the Weave
overlay network, each node has a special bridge interface,
named weave, to connect local containers, and the weave
bridges in all nodes are logically linked as a single net-
work. While Kubernetes uses Docker Containers, it does
not utilize Docker networking features to manage network
flow control. Rather, it separately applies network policies
using iptables. Calico [28] similarly applies network and
security policies using iptables. If operators want further
security enforcement, they may use Cilium [29], a security
extension that conducts API-aware access control (e.g., HTTP
method) by redirecting network traffic to its security container.

Network-privileged Containers: Besides the typical use
of containers, there are special cases in which an operator
wants to expose containerized services directly using the
host IP address (e.g., HAProxy [30], OpenVPN [31], and
MemSQL [32]). In such cases, by sharing the host namespace
with a container, the container is provided access to the host
network interfaces and directly exposes its services. In this
work, we refer to such cases as network-privileged containers.

C. Challenges in Container Networks

While current container platforms utilize OS-level net-
working features provided by the Linux kernel to support
inter-container connectivity and IP-based access control (e.g.,
iptables) to enforce container network security policies,
there are significant limitations in their ability to constrain
the communication privileges of today’s container topologies.
The following are five concerns that arise from these current
OS-level architectural limitations.

(1) Limitation of packet-based source verification:
Figure 2 shows that each container has its virtual interface,
but this interface is only visible in the container’s network
namespace. Thus, container platforms effectively create a twin
virtual interface corresponding to it on a host. This virtual
interface is connected to the bridge, enabling connectivity
with others.

However, one security-relevant problem of this design is that
each packet produced by a container will lose its association
with the source container at the moment that it transitions
into the host networking namespace. Hence, all decisions
for further security inspection and packet forwarding would
be solely made based on the information in packet headers.

Unfortunately, a malicious container can directly forge packets
on behalf of other containers, allowing lateral attacks and
traffic poisoning when any container is compromised.

(2) Limitation of IP-based access controls: The primary
method for imposing network flow control among container
platforms is through iptables, an IP-based access control
mechanism provided by the Linux kernel. Unfortunately, the
IP addresses of containers can be dynamic, and adjustments
are then required whenever containers are spun up and down.
Thus, it can be challenging to specify security policies for
either case since these policies must be updated when con-
tainers are re-created. Even though operators enforce various
security policies with high-level labels for containers instead
of specific IP addresses, such labels are eventually converted to
IP addresses, so we still have the same challenge. In addition,
container networks are still vulnerable to layer-2 attacks due
to the limited scope of the IP-based access control mechanism.

(3) Lack of application-level security inspections:
Although the IP-based access control can restrict malicious
network connectivity among containers, it cannot control mali-
cious contents among benign containers, which raises signif-
icant concerns as a malicious container can conduct lateral
attacks against dependent containers without any restriction.
In addition, unlike legacy networks where we can deploy
various middleboxes or virtualized network functions (VNFs)
between networked entities (e.g., switches and hosts), contain-
ers communicate in multiple networks logically created using
OS-level networking features within the same host. Thus,
applying security functions (e.g., deep packet inspections) per
logical network inside a host is difficult.

(4) Unrestricted host access: Each container network has
a gateway interface for external accesses connected to the host
network, as shown in Figure 2. Unfortunately, an inherent
security concern arises as a container can thus access a service
launched at the host-side through the gateway IP address.
In Kubernetes, containers can even access all other hosts
(nodes) through the gateway IP addresses. In the worst case,
a malicious container can exploit the service in a manner that
can subvert/harm the host’s availability.

(5) No restriction on network-privileged containers:
While a network-privileged container can gain a performance
advantage as its traffic does not pass through additional
network stacks (e.g., container networks), such a container
also raises significant concerns for operational isolation.
Since network-privileged containers share the same network
namespace with the host, they can access not only the host
network interfaces but can also monitor all network traffic
from deployed containers in the host (through the virtual inter-
faces for the containers) and are unrestrained in their ability to
inject malicious packets into container networks. Furthermore,
current security solutions do not consider security policies for
such containers; hence, operators must design and specify a
security policy configuration for the containers by themselves.

III. SECURITY ANALYSIS OF CONTAINER NETWORKS

This section explores the attack surfaces in container net-
works and introduces an example scenario that illustrates the
viability of the network threats abusing the attack surfaces.
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A. Assumptions and Threat Model

Assumptions: Consider the case of containers connected
to operate as microservices using Docker or Kubernetes net-
work configurations. Let us assume that an attacker possesses
enough skill (e.g., gaining a remote shell to execute arbitrary
commands inside a container [34], [35]) to perform a remote
hijacking of an Internet-accessible container application oper-
ating as part of a microservice using published container
vulnerabilities [36], [37], [38]. Note that there is no particular
difference between typical and containerized applications. The
only difference is that containerized applications are the typical
applications packaged by containerization techniques, meaning
that any vulnerabilities in typical applications are also in the
corresponding containers. With this fact, we consider what an
attacker may do after getting into the subverted container.

Threat Model: The scope of threat models considered in
this work focuses on network-based lateral attacks launched
from a compromised container rather than system-based
attacks that may occur within a container. Unlike network-
based attacks, system-based attacks have been actively
explored in other work, such as abusing privileged and unpriv-
ileged containers [39] and modifying Linux capabilities within
a container [40], and defense techniques based on status
inspection of namespaces [41]. Thus, we believe that an oper-
ator would properly deploy containers with system-wide secu-
rity policies, and we, therefore, do not consider system-wide
threats (e.g., attacks against the host kernel).

Here, a specific attack case involves one in which a com-
promised container is employed “as is” as the launching
point for these lateral attacks, where no privilege escalation
is required within the container to conduct further exploita-
tion. Also, an attacker can acquire a base understanding
of the compromised container’s network configuration by
investigating several system files (e.g., /proc/net/arp,
/proc/net/route) and environment variables and may
download malicious binaries to the /tmp directory in a
container, as this directory has global read or write permissions
for all processes.

B. Attack Surfaces in Container Networks

Attacks against container networks can be categorized into
two main classes: (i) attacks that reveal topology information
of the container networks (topology visibility attacks) and (ii)
attacks that perform illicit monitoring or modifying of network
traffic within container networks (traffic visibility attacks).

In the topology visibility attacks, network probing and host
exploit attacks are possible in current container networks.
Network probing attacks are performed by probing containers
using TCP/IP packets (e.g., TCP-flag-based scans) or via ARP
requests. Although an operator can adopt IP-based access
controls to avoid scanning, an attacker may still employ an
ARP scan method (bypassing iptables-like protections). The
host exploit attack accesses the host upon which the compro-
mised container runs. Accessible host services are scanned for,
which may later be exploited to compromise the host further.
Container systems employ different network namespaces to
isolate different networks. However, container systems also use

a bridge interface to integrate different network namespaces,
and an attacker can abuse this bridge to access the host.

In the traffic visibility attacks, first, the ARP poisoning
attack can overwrite ARP caches in the containers. By sending
fake ARP responses, the attacker can redirect network traffic
between a target container and the gateway of the target net-
work (or another target container) to their containers. Second,
the attacker can capture the network traffic between a container
and the gateway (or another container) through packet sniffing
and extract sensitive information (e.g., user credentials, tokens,
and even confidential files). Third, the attacker can inject
malicious packets into a target container (IP spoofing attack).
The two remaining cases involve TCP session manipulation.
In the fourth attack, one can disrupt existing sessions by
injecting fake packets with proper SEQ and ACK numbers
because one can observe the SEQ and ACK numbers of the
sessions through sniffing TCP packets. Even when an attacker
does not know the SEQ and ACK numbers, such an attack
remains possible using a predictive attack [42]. An attacker
can terminate existing sessions by injecting a TCP packet with
the RST flag (TCP reset attack). Fifth, attackers can create
fake sessions with other containers or external entities (fake
session attack). An attacker can observe network traffic toward
a target container and then reverse the injected packet target to
the external connection point rather than the victim container.

C. Limitations of Container Network Plugins

Here, we briefly discuss the limitations of current container
network interface plugins. Table I presents the feasibility of
network threats discussed in Section II-C.

Docker, Flannel, WeaveNet: Docker [22], Flannel [26],
WeaveNet [27] operate on bridge-based L2 forwarding, which
is tightly coupled with the networking features and the
IP-based access control provided by the host OS. Hence, they
have the same security challenges discussed in Section II-C
and are vulnerable to all network threats in Table I.

Calico: Calico [28] employs IP-in-IP-based L3 routing
and uses a single MAC address (EE:EE:EE:EE:EE:EE) for
all containers, which makes L2 attacks infeasible. However,
it remains vulnerable to L3/4 attacks (e.g., TCP SYN floods,
DNS reflection attacks, ICMP spoofing attacks etc.) since
Calico mainly focuses on packet routing and IP-based access
control while paying less attention to security mechanisms
that protect against L3/4 spoofing attacks. In addition, while
the host-service abuse is infeasible because Calico uses a
virtual gateway IP address (169.254.1.1) for all containers,
it does not provide security mechanisms that guard against the
host network namespace abuse.

Open vSwitch: Open vSwitch (OVS) [33] provides more
flexible networking features than the host OS; thus, it might
be viewed as an alternate solution for bolstering container net-
work security. OVS can derive which virtual port a container is
connected to, which could be used to prevent spoofing attacks.
However, one critical concern is that OVS does not support a
NOT operation. It means that we need to install all possi-
ble flow rules from each container to other containers, which
at least contain (the virtual port and the MAC/IP addresses
of a source container, the IP address and the service port of
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TABLE I

POTENTIAL OF NETWORK THREATS ACROSS CONTAINER NETWORK INTERFACE PLUGINS. FEASIBLE (●): NETWORK ATTACK CAN BE SUCCESSFULLY
EXECUTED OVER THE CONTAINER NETWORK INTERFACE PLUGIN. PROBABLE (▲): NETWORK ATTACK REMAINS POSSIBLE, BUT MAY BE

BLOCKED WITH APPROPRIATE NETWORK SECURITY POLICIES. INFEASIBLE (✕): NETWORK ATTACK IS ALWAYS BLOCKED

Fig. 3. An example attack scenario within a Kubernetes environment.
A compromised container from one service conducts a series of network
attacks to hijack communications between other containers in a peer service.

a destination one) matching fields for source verification and
spoofing attack prevention. In addition, frequent rule updates
are inevitable (as in the case of iptables) whenever containers
are spun up and down. While OVS may block unauthorized
host IP address accesses, it still allows containers to access
host services using gateway IP addresses since OVS is located
at the host network namespace. Unfortunately, OVS would still
need a large number of security policies against all possible
host accesses from each container. In addition, OVS does not
protect network-privileged containers.

Cilium: Cilium [29] operates at the L3 routing level and
provides advanced network security mechanisms for imple-
menting L3-7 firewalls. In addition, L2 attacks are not feasible,
as in the case of Calico. However, other network threats
remain possible. Although Cilium supports a range of network
policies (e.g., identity and label-based policies), which can
block accesses to specific containers or hosts, the feasibility of
such network threats depends on the operator and deployment
considerations. If operators carefully investigate their container
network and apply security policies against various network
threats, the network threats might be infeasible. If not, some
of the network threats are still available. Network-privileged
containers are beyond its threat model; thus, Cilium is still
vulnerable to them.

Bastion+: Bastion+ is designed as a transparent container-
network security extension that protects against diverse
security challenges discussed in Section II-C, which enables
the same security functionalities against the network threats to
the container networks (we will describe it in the next section).

D. Attack Scenario Example

Figure 3 illustrates two independent services deployed along
with common microservices [43], [44] in a Kubernetes envi-
ronment. One is a service for legitimate users, and the other
is a service for guest users. These services use the official
Nginx [45] and Redis [46] container images retrieved from

Fig. 4. Screenshots demonstrating the attack scenario in a Kubernetes
environment between two services.

Docker Hub [14]. In this scenario, an attacker forges legitimate
user requests after infiltrating into the public-facing Nginx
server.

In this attack kill chain, the attacker leverages three
network-based attacks to compromise the Nginx-Guest con-
tainer and successfully execute a man-in-the-middle attack.
In the first step, he discovers active containers around the
network through ARP-based scanning. Since all containers
are connected to an overlay network and ARP packets are
not filtered by iptables, the attacker can easily collect the
network information of containers, as shown in Figure 4-(a).
Then, the attacker injects fake ARP responses into the network
to make all traffic between the Nginx-User and the Redis-
User containers pass through the Nginx-Guest. As shown
in Figure 4-(b), we can see that the MAC address of the
Redis-User in the ARP table of the Nginx-User is replaced
with that of the Nginx-Guest, and the attacker monitors all traf-
fic between the Nginx-User and the Redis-User (Figure 4-(c)).
Lastly, the attacker replaces the response for the legitimate
user with forged contents by internally dropping the packets
delivered from the Redis-User and injecting forged packets.
Then, the Nginx-User returns the forged contents to the user
instead of the original ones (Figure 4-(d)). In the end, the user
receives the forged contents as the attacker intended.

IV. BASTIO+ DESIGN

This section introduces a new inter-container communi-
cation bridge, Bastion+, and discusses how its components
address the limitations discussed in Section II-C.
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Fig. 5. Bastio+ Architecture Overview. Orange box: Bastio+ network security enforcement stack for containers. Red box: manager that maintains the global
view of container networks and security policy assistant that discovers network policy misconfigurations. Green box: selective security function chaining that
enables application-level security inspections against inter-container network flows. Blue box: Bastio+ network stack for inter-host communications.

A. Architectural Overview

As illustrated in Figure 5, Bastion+ is composed of three
parts: a manager, which maintains the global network view
of all containers with their inter-container dependencies, per-
container network stacks where all Bastion+ security enforce-
ment occurs before a container’s packets are delivered into the
container network and chained security functions, which are
deployed to enable further security inspections (e.g., content-
based access controls) against inter-container network traffic.

When packets arrive at the Bastion+ network stack, it proac-
tively filters any discovery processes of irrelevant containers
by dealing with ARP requests based on the container net-
work map. It restricts the communications between containers
according to security policies specified in the inter-container
dependency map. In addition, it restricts unauthorized access
to special IP addresses (e.g., gateway IP addresses). Also,
it conducts secure packet-forwarding between containers by
directly passing packets from source containers to destination
containers while verifying if the packets are forged. If pack-
ets need to pass through security functions (e.g., network
intrusion detection/prevention systems and web application
firewalls), Bastion+ forwards them into the corresponding
security functions. Then, once the security functions do deep
packet inspections, the packets are delivered to the destination
containers. Since all direct packet forwarding occurs at the
network interface level, packets are not passed through the
container network (host-side), eliminating any chance for
unauthorized network traffic exposure.

In terms of inter-container communications across hosts
(nodes), a specialized Bastion+ network stack is utilized at the
external interface of each node, conducting a secure forward-
ing from the external interface to destination containers as all
security decisions are already made at each container. Bastion+

retains the existing mechanisms of container platforms to
handle inbound traffic from external networks.

B. Bastio+ Manager

The Bastion+ manager performs three primary roles: con-
tainer network information collection, network stack manage-
ment, and security function management.

(1) Container Network Information Collection. The
manager has a global container network map and an
inter-container dependency map for all containers. It directly
communicates with container platforms to retrieve the net-
work information (virtual network interface, IP and MAC
addresses) for all containers and to build the inter-container
dependency map by extracting the dependencies (source →
protocol://destination:{port | any}) among containers based
on the retrieved information and their ingress/egress security
policies. In addition, as containers can be dynamically spun
up and down, the manager watches any changes in container
platforms (event-driven) and updates the maps in run-time.

(2) Network Stack Management. The manager maintains
the Bastion+ secure network stack for each container. For
newly spawned containers, it installs the network stacks at
their network interfaces and updates the container network and
inter-container dependency maps in the network stacks. Each
container only requires a part of the network information to
communicate with dependent neighbors with respect to map
size. Thus, to reduce the size of security services, The manager
filters irrelevant information per container. Then, whenever
there are changes in inter-container dependencies, it automat-
ically updates the maps for the corresponding containers.

(3) Security Function Management. The manager deploys
various security functions (e.g., intrusion detection and preven-
tion systems and web firewalls) per host and attaches Bastion+

network stacks for those security functions. Then, according
to function chaining policies (i.e., the order of functions
according to the network context (e.g., protocol and destination
port)), the manager updates the container network map in the
Bastion+ network stacks of containers and security functions
to keep passing inter-container network traffic through the
security functions. We will explain the details in Section IV-D.

C. Network Security Enforcement Stack

The Bastion+ network stack restricts inter-container com-
munications from two points of view: network visibility and
traffic visibility. For network visibility, it restricts unneces-
sary connectivity among containers and between containers
and external hosts. For traffic visibility, it provides point-to-
point integrity and confidentiality among container network
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Fig. 6. Workflow of container-aware network isolation. The WebApp
container accesses the database container, and the container-aware network
isolation in the WebApp’s network stack inspects the dependency on the
database.

flows. Here, we present each component that addresses those
points.

1) Container Discovery: For inter-container networking,
container discovery is the first step to identify other containers
(communication targets). Containers use ARP requests to
identify target containers’ necessary network information (i.e.,
MAC addresses). Unfortunately, this discovery process can
be exploited to scan all containers connected to the same
network by malicious containers, as current network stacks
do not prevent ARP scans. Indeed, they offer no mechanism
to control non-IP-based communications.

Bastion+ filters out any unnecessary container discovery that
does not pertain to the present container’s dependency map.
When a container sends an ARP request, the handler intercepts
the request before it is broadcasted, verifying if the source
container has a dependency on the destination container. This
analysis is done using the inter-container dependency map.
If accessible, the handler generates an ARP reply with the
MAC address of the destination container and sends the reply
back to the source container. If not, it drops the request.

2) Container-Aware Network Isolation: Even though
container discovery prevents containers from performing
unbounded topology discovery, its coverage is limited to
container-level isolation. It does not address malicious
accesses among dependent containers. Hence, Bastion+ imple-
ments container-aware network isolation to restrict the reach-
ability of containers further.

When packets arrive at the Bastion+ network stack of
a source container, as shown in Figure 6, Bastion+ first
checks the dependency between the source and its destination
by examining the inter-container dependency map using the
destination IP address as a key. If any policies exist in the
map, it concludes that the source has a dependency on the
destination. Then, Bastion+ matches the packets to the policies
for the destination container, and the connection is allowed if
matched. Otherwise, the packets are dropped.

3) Gateway and Service-IP Handing: In container environ-
ments, a subverted container can exploit the gateway to probe
services within the host OS. To address this concern, Bastion+

filters direct host accesses. When a network connection targets
non-local container addresses, it includes the gateway MAC
address and the IP address of the actual destination. Based

on this fact, the gateway-IP handler blocks any direct host
access by checking if both IP and MAC addresses belong to
the gateway. It would also be possible that a network flow
might access the gateways of other container networks since
they are connected to the host network. Hence, the gateway-IP
handler also filters unauthorized host accesses by comparing
packets with the other gateways.

In Kubernetes environments, another special IP address,
called a service IP address, is used to redirect actual con-
tainers. Unfortunately, since service IP addresses are virtual IP
addresses that do not belong to container networks, they can be
considered external IP addresses. Thus, Bastion+ additionally
extracts the pairs of {service IP address, port} and {corre-
sponding container IP address, port} from Kubernetes and
maintains a service map in each Bastion+ network stack. Then,
when a container sends a packet with a service IP address and
port, the service-IP handler overwrites the service IP address
and port to an actual container IP address and port according
to the service map. As a result, the other security components
can process packets as intended.

4) Source Verification: One problem within the current
network stack is that all security enforcement and packet for-
warding rely on packet-header information. Thus, a malicious
container can submit packets that match the identity of target
containers. Doing so can redirect traffic of a target container to
itself (e.g., ARP spoofing attack). Also, the malicious container
can modify the traffic passing through it (e.g., Man-In-the-
Middle attack) or inject forged packets to disrupt another
container’s existing sessions (e.g., TCP RST attack).

Considering those cases, Bastion+ leverages the predefined
network information in each network stack and a network
session map to precisely track the actual source of inter-
container traffic. The Bastion+ network stack of each con-
tainer statically contains the corresponding container’s network
information (i.e., IP/MAC addresses), and Bastion+ verifies the
incoming traffic by comparing its packet header information to
the container’s information embedded in the Bastion+ network
stack. If the packet header information is not matched with
the container’s network information, Bastion+ identifies the
incoming traffic as spoofed and drops it. Furthermore, since
network-privileged containers can inject spoofed packets into
other containers, Bastion+ maintains the session information
of the incoming traffic in the network session map, which
is globally maintained across Bastion+ network stacks. Thus,
if some packets arrive at the Bastion+ network stack and
their session information is not in the global network session
map, Bastion+ considers them spoofed packets and drops them
immediately. As a result, Bastion+ can effectively eliminate the
spectrum of disruption and spoofing threats.

5) End-to-End Direct Forwarding: Current network stacks
cannot prevent the exposure of inter-container traffic from
other containers. If a malicious container can redirect the
traffic of a target container to itself, it can monitor the traffic
without restriction. In the case of network-privileged contain-
ers, they have the full visibility of all container networks: they
can monitor the traffic of others without any traffic redirection.

To implement least-privilege traffic exposure, as shown in
Figure 7, Bastion+ performs direct packet delivery between
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Fig. 7. An illustration of how Bastio+ implements end-to-end direct packet
forwarding to bypass exposure of intra-container traffic to other containers.

source and destination containers at the network interface
level, bypassing not only their original network stacks (host-
side) but also bridge interfaces. As soon as Bastion+ receives
an incoming network connection from a container, it retrieves
the interface information of a destination from the container
network map. Bastion+ directly injects the packet stream into
the destination container if the destination is a container in the
same node. If the destination is a container in another node,
Bastion+ injects the packet to the external interface of a node.
Then, once the special Bastion+ network stack of the external
interface at the target node receives the packet, it directly
injects the packet stream into the destination container.

As capturing network traffic happens in the ingress and
egress traffic controls, no traffic would be visible at the traffic
controls with Bastion+ as it handles all network traffic at
the network interface level (before the traffic controls). Thus,
this traffic isolation prevents any traffic disclosure by other
containers and even network-privileged containers.

D. Security Function Chaining

As discussed in Section II-C, current security solutions for
container networks have limitations in security inspections at
the level of applications. Here, we introduce security function
chaining for further application-level inspections.

1) Challenges in Security Function Chaining: While
network service chaining has been widely used in
software-defined networking (SDN) and network function
virtualization (NFV) because of the flexibility of network
flow controls, it has not been well adopted into container
networks due to their architectural limitations. Multiple
microservices are deployed inside hosts, and they have their
logical networks with different IP address spaces. Hence, it is
difficult to either deploy security services per microservice
due to the resource limits of hosts or deploy shared security
service instance per host due to the unreachability among the
different microservices.

To address those challenges, Bastion+ introduces a way to
deploy common security functions per host, while providing
resource efficiency. Then, to address the network unreacha-
bility issue, Bastion+ directly leverages the kernel features
rather than implementing these services as extension to the
network processing pipeline. By utilizing the end-to-end direct
forwarding, Bastion+ forces network flows through security
functions at the kernel side, bypassing the reachability issue.

2) Security Function Deployment: Bastion+ provides two
templates for inline and passive security functions, as shown in
Figure 8. Each function has two network interfaces for inbound

Fig. 8. Two types of security function templates: inline and passive templates.
Any security applications can run as usual based on the inbound and outbound
interfaces. while Bastio+ takes in charge of all network flow controls.

and outbound traffic. In the case of the inline template,
Bastion+ network stacks are attached at both interfaces since
the direction of packet flows is important to the inline func-
tions, especially for session management. On the other hand,
the passive template has one Bastion+ network stack attached
to the outbound interface while all traffic is mirrored from the
inbound interface to the outbound interface. Then, operators
build security functions with legacy security applications based
on those templates according to the types of applications.
Then, Bastion+ deploys those functions to each host.

3) Selective Security Function Chaining: Bastion+ enables
selective security function chaining according to security func-
tion chaining policies, which define the order of functions
based on the network context. Here, we explain how the func-
tion chaining works with the example illustrated in Figure 9.
In this example, we have two containers (Container A and B)
and two security functions (IDS and Web Firewall). When
Container A sends a packet to Container B, Bastion+ directly
forwards the packet to Container B. However, the packet flows
differently when chaining policies are applied.

Let us assume that an administrator applies two chaining
policies to Container A: (i) make the TCP/80 sessions toward
Container B pass the IDS and the Web Firewall and (ii) make
the TCP/3306 sessions toward Container B pass the IDS. Then,
Bastion+ updates the interface information for Container B in
the container network and dependency maps of Container A
and the security functions according to those chaining policies.
First, Bastion+ updates the destination interface for both
TCP/80 and TCP/3306 toward Container B to the inbound
interface of the IDS in the maps of Container A. Second, in the
outbound-side network stack for the IDS, Bastion+ updates
the interface for the TCP/80 to the inbound interface of the
Web Firewall while it updates the interface for the TCP/3306
to that of Container B. Lastly, in the outbound-side network
stack for the Web Firewall, Bastion+ updates the interface of
the TCP/3306 to that of Container B. As a result, packets can
pass through either the IDS and the Web Firewall or the IDS
only according to the protocol and port information.

In the case of the opposite direction (from Container B to
Container A), most of the map updates are similar. The only
difference is the direction. First, Bastion+ updates the interface
for the TCP/80 from Container B to the outbound interface of
the Web Firewall for the session management in the network
stack of Container B while it updates the interface for the
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Fig. 9. Selective network flow redirections according to service chaining
policies. The TCP/80 session between container A and B passes through the
IDS and the web firewall while the TCP/3306 session passes through the IDS
only.

TCP/3306 from Container B to the inbound interface of the
IDS as the IDS is a passive function. Then, in the inbound-
side network stack of the Web Firewall, Bastion+ updates the
interface for the TCP/80 from Container B to the inbound
interface of the IDS. Lastly, in the outbound-side network
stack of the IDS, it updates the interface for TCP/80 and
TCP/3306 to that of Container A.

E. Security Policy Assistant

While Bastion+ restricts the ability of attackers through its
security components, no container network can be made secure
without proper security policies that restrict communications
to the minimum required access.

Bastion+ provides a security policy assistant that can
help identify the security policies that a container operator
should consider, as illustrated in Figure 10. Bastion+ pro-
duces flow monitoring statistics that automatically capture the
observed container accesses during the inter-container traffic
flow control. In parallel, it compares these statistics with the
inter-container dependency map, classifying them into three
cases: legitimate accesses, missing policies, and excessive
policies. If the two containers are in both the inter-container
dependency map and there are connections between them,
we consider their security policies well-defined. Otherwise,
the operator may consider either a missing security policy or
an excess policy, which differs from the actual flow statistics.

The security policy assistant effectively directs the operator
to review specific flows to determine whether to produce
missing network security policies in the current operating
configuration. In addition, it identifies policies for which no
flows have been encountered. Such cases may represent an
over-specification of policies that enable unnecessary flows for
the container network’s operations.

While the security policy assistant does not directly correct
security policies, its feedback can be used as vital insights to
help the operator confirm (or improve) the current network

Fig. 10. Security policy assistant to discover inter-container dependencies
and detect possible configuration errors.

security policies. For example, the network policies for large
microservices may be relatively complicated to validate, and
operators may overlook policies that are broader than required.
In such cases, the security policy assistant can offer an iterative
stream of operational information that can help the operator
maintain and improve even complex network policies for a
large number of containers.

V. IMPLEMENTATION

We implement a prototype of Bastion+ with 2.1K lines of C
code and 12.5K lines of Go code on the Linux kernel v4.16.

Bastion+ Manager: For container network information
collection, the manager watches the attribute changes (e.g.,
NetworkSettings) of active containers from the Docker engine
and the Kubernetes API server. In addition, Bastion+ uses
the label-based configurations for container deployments and
ingress/egress network security policies in Kubernetes to gen-
erate inter-container dependencies.

Network Security Enforcement Stack: Each container’s
security enforcement network stack is implemented using
eBPF [47] and XDP [48], [49]. During the inspection, the
network stack looks up two hash maps (i.e., the container
network and inter-container dependency maps), which are
synchronized with the Bastion+ manager. Then, they employ
XDP actions to send a packet back to the incoming container,
inject a packet into a destination, and drop a packet.

Security Function Chaining: Bastion+ deploys security
applications (for evaluation, we deployed Snort IDS [50] and
Suricata IDS/IPS [51]) by using its templates and as daemon
containers for each host according to the types of the applica-
tions (i.e., inline vs. passive). For passive functions, Bastion+

internally configures the traffic controls (using “tc qdisc”
and “tc filter”) to mirror incoming traffic to the outbound
interface.

Security Policy Assistant: To monitor the network flows
between containers, Each security stack maintains an eBPF
map shared with the security policy assistant and increments
the counters for network flows after removing the random-
ness (e.g., a source port) of the network flows. Whenever
a container is terminated, the corresponding eBPF map is
removed.

VI. SECURITY EVALUATION

This section demonstrates how Bastion+ mitigates network
attacks based on the attack scenario, shown in Section III-D,
that abuses the security holes in the current container network.
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Fig. 11. An illustration of neighbor container discovery: upper panel - an
attacker can discover all peer containers, lower panel - our container discovery
and container-aware flow control only allow the inter-dependent containers to
be shown.

A. Container Discovery

When a compromised container is used to conduct peer
discovery to locate other containers, as shown in Figure 11-(a),
the current container network stack allows an attacker to
discover all neighboring containers. On the other hand,
as shown in Figure 11-(b), Bastion+’s container discovery and
container-aware network isolation reduce the reachability of
each container based on its inter-container dependencies. The
infected container (i.e., Nginx-Guest in Figure 3) has only a
limited number of dependent containers (i.e., Redis-Guest in
Figure 3), and Bastion+ ensures that the container observes
only its gateway and the dependents. In sum, our container
discovery can protect containers from L2 attacks by limiting
the topology visibility and controlling all L2 packets (i.e.,
no broadcast to containers and no response from containers).

B. Passive Packet Monitoring

As discussed previously, a compromised container may
be able to sniff the network traffic of a target container.
Further, when an attacker compromises a “network-privileged”
container, the attacker is provided access to all network traffic
with no restriction. Bastion+ mitigates these concerns by
implementing end-to-end direct container traffic forwarding.

Figure 12 illustrates the utility of Bastion+’s direct forward-
ing. The upper panel, Figure 12-(a), shows the visible network
traffic of a target container (i.e., Nginx-User in Figure 3)
after spoofing the container without direct forwarding. The
lower panel, Figure 12-(b), demonstrates the use of direct
forwarding. When direct forwarding is applied, the only visible
traffic from a given interface is traffic involving the container
itself. To highlight the differences, we intentionally make the
flow from a source to a destination visible. As a result, while
the attacker can observe the source-to-destination flow, he can
no longer observe the traffic in the reverse direction. If we
entirely apply end-to-end forwarding for all traffic, the attacker
will see no traffic between them. In sum, Bastion+ does not
allow containers and even host-privileged containers that abuse
the host network namespace to eavesdrop third-party traffic.

C. Active Packet Injection

Network-based attacks frequently rely on spoofed packet
injection techniques to send malicious packets to target con-
tainers. Bastion+ prevents these attacks by performing explicit

Fig. 12. Restricting traffic visibility: upper panel - an attacker can see the
traffic of the spoofed target container without end-to-end forwarding, lower
panel - the attacker cannot see response traffic with end-to-end forwarding.

source verification. To illustrate its impact, we demonstrate
before and after cases from the attacker and victim perspec-
tives. In the following example, we enable source verification
only and allow an attacker to conduct ARP spoofing attacks.

Figure 13-(A) illustrates cases without source verification.
The attacker spoofs the Nginx-User (in Figure 3) and receives
the traffic of the Nginx-User. Further, the attacker injects RST
packets to terminate the session of the Nginx-User. As soon
as the attacker injects the RST packets, as shown in panel
(A-2), the Nginx-User receives the injected RST packets (see
the received times of the RST packets), causing its session
to be immediately terminated. This situation is remedied with
explicit source verification. Although the attacker tries to inject
RST packets, as shown in panel (B-2), the RST packets are
rejected by the source verification component and prevented
from reaching the Nginx-User. In sum, the source verification
can protect containers from L3/L4 attacks (e.g., IP spoofing
and TCP session hijacking attacks) even though these attacks
are initiated from host-privileged containers.

VII. PERFORMANCE EVALUATION

This section summarizes our measurement results of
Bastion+’s performance overhead with respect to latencies and
throughputs between containers under various conditions.

Test Environment: We used three machines to construct
a Kubernetes cluster with the WeaveNet overlay network and
evaluate the Bastion+ prototype. One system served as the
Kubernetes master node, while the others acted as container-
hosting nodes. Each system was configured with an Intel Xeon
E5-2630v4 CPU, 64 GB of RAM, and an Intel 10 Gbps
NIC. netperf [52] and iperf [53] were used to measure
round-trip latencies and TCP stream throughputs.

A. Security Policy Inspection Overhead

We compared the matching overheads with both
iptables-based access control and Bastion+, and Figure 14
shows the TCP throughputs with different numbers of security
policies. For a fair comparison on a best-effort basis, we used
the same number of policies for each container.

In the case of iptables, security policies for all contain-
ers are maintained collectively in the host kernel. Thus, when
packets arrive from containers, iptables first looks up the
policies for the corresponding containers and inspects them
individually with the incoming packets. Also, iptables
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Fig. 13. Restriction of packet injection. Panel A-1 shows the attacker
injecting RST packets, and A-2 shows the victim session terminated by
attacker’s RST packet. Panel B-1 shows the trials of RST packet injections,
and B-2 shows the failure of RST packet injection due to source verification.

Fig. 14. Throughput variations with the increasing number of security
policies.

requires a large number of field matches (at least source and
destination IP addresses and ports for each policy) since it is
designed for general access control. As a result, as shown in
Figure 14, the throughput degraded by 23.3% with 100 policies
and 64.0% with 500 policies. This trend points to a funda-
mental scaling challenge with the current policy enforcement
approach for container networks. In contrast, the throughput
degradation caused by Bastion+ was barely noticeable as the
number of policies increased (3.2% with 500 policies). Such
performance gains stem from Bastion+’s matching process
optimized for containers, which comprises a hash-based policy
lookup for specific destinations and their port matches (no
need to match source IP addresses and ports).

B. Security Function Chaining Overhead

We measured the overheads coming from function chaining.
For this, we deployed two open-source intrusion detection and
prevention systems (i.e., SnortIDS [50] and SuricataIPS [51]).
We used the official rules in Snort 2.9 (4K rules) for Snort
IDS and the ET Open rules [54] (4K rules) for Suricata IPS.

Figure 15 shows the inter-container latencies with different
combinations of security functions. With no chaining, the
latencies of inter-container communications within a host were
17.5µs and 14.5µs for TCP and UDP packets, respectively.
When we added the Snort IDS between the containers, the
overall latencies slightly increased (+10µs on average) as the
network traffic needed to pass through the SnortIDS container.
However, no additional overhead for deep packet inspections
was included except for the overhead of packet mirroring by
traffic controls (kernel-level). When we added the Suricata
IPS, the overall latencies highly increased (130.2µs for TCP

Fig. 15. Latency measurements with different Bastio+ security functions.

Fig. 16. Latency measurements with Bastio+ components in a single host.

packets and 120.3µs for UDP packets) as all network traffic
should be copied to the Suricata IPS (userspace-level), and
then it should be copied to the outbound interface (kernel-
level). In addition, all overheads for parsing packets and
inspecting payloads increased the latencies. Note that the per-
formance optimization of security functions is out of scope in
this work. Then, when we chained both functions, the overall
latencies increased up to 9.5 times compared to the baseline
(no chain). However, despite significant overheads with the
security functions, Bastion+ provides selective security func-
tion chaining; thus, the overheads can be highly reduced by
inspecting specific packets only while for non-critical packets
bypassing the function chains.

C. Performance: Single-Host Deployment

Here, we evaluated latencies and throughputs between con-
tainers hosted in the same node to measure the overhead of
Bastion+. Figure 16 provides the round-trip latency compari-
son of four test cases within a single node. The base case pro-
vides latency measurements for a default configuration of two
containers that interacted with no Bastion+, which were 21.6µs
and 18.2µs for TCP and UDP packets, respectively. When
we applied Bastion+’s policy matching components (i.e., con-
tainer discovery and container-aware network isolation), the
latencies slightly increased by 5.7% and 9.3% due to the
newly applied security enforcement requiring additional packet
processing to derive the reachability check between containers.
When we applied Bastion+’s end-to-end direct forwarding,
the overall latencies were noticeably improved by 26.3%
because it directly fed inter-container traffic into destination
containers while bypassing the existing container networks.
Finally, we observed the overall performance improvement
with respect to the base case of 23.0% and 25.4% for TCP
and UDP packets when all Bastion+ security functions were
fully applied. Figure 17 also shows that the overall throughput
of Bastion+ was improved by 20.6% compared to that of the
base case.
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Fig. 17. Throughput measurements of the baseline and Bastio+ components.

Fig. 18. Latency measurements with Bastio+ components across hosts.

D. Performance: Cross-Host Deployment

Next, we measured the latencies and throughputs for
cross-host container deployments. Figure 18 illustrates the
measurement results with different combinations of Bastion+’s
security components. Compared to the intra-host measure-
ments, the overall latencies significantly increased due to
the physical link traversal and tunneling overheads between
hosts; thus, the latency of the base case became 100.1µs
and 91.5µs for TCP and UDP packets, respectively. Also,
given the network impact, the overhead caused by Bastion+’s
policy matching components receded (less than 1%). Next,
when we introduced Bastion+’s end-to-end direct forwarding,
the latencies were reduced by 21.3% because our secure
forwarding directly passed network packets from the source
to the destination via the external interfaces. Finally, when
we applied all security components, the latencies decreased
by 17.7%, significantly improving compared to the base case.
These improvements translated to a cross-host throughput
improvement of 12.9%, as shown in Figure 17.

E. Performance: Networking Plugins

Lastly, we compared the throughput variations in different
types of container networks with/without Bastion+. Figure 19
shows the TCP-stream throughputs between intra-host and
inter-host containers in three container networks (i.e., Flannel,
WeaveNet, and Calico). The results show that the intra-host
throughputs are improved 16.0% in the Flannel network,
20.6% in the Weave network, and 20.7% in the Calico network
by deploying Bastion+. Regarding the inter-host throughputs,
we also see the performance improvements (9.4%, 12.9%, and
4.9%, respectively) with Bastion+.

F. Performance:Bastio+ System

Here, we evaluated the resource usage of Bastion+. For this,
we divide the overall workflow into three parts: stack installa-
tion, run-time, and security policy analysis. First, we measured
the CPU usage while creating 100 containers. The result shows

Fig. 19. Throughput comparison with different CNIs. (B = with Bastio+).

that it took 13.03 µs on average for stack installation, and
it consumed up to 54.7% of CPU resources in a very short
time. However, while measuring the CPU usage during the
performance of inter-container communications, we observe
that Bastion+ generally consumed 2.3% of CPU resources on
average in rum time because most of the security operations
are done in the kernel space and Bastion+ (user-space) only
manages Bastion+ components. Lastly, the security policy
assistant consumed less than 1% of CPU resources. As a
result, we ascertain that Bastion+ can provide further network
isolation and security enforcement and better performance
with minimal overhead costs.

VIII. RELATED WORK

Container Security Analysis. Several efforts [39], [40],
[41], [55], [56], [57] have analyzed the security issues of con-
tainer implementations. For example, Dua et al. [55] analyzed
various container implementations, concluding that they are
yet insecure from filesystem, network, and memory isolation
perspectives. More specifically, Jian et al. [41] demonstrated a
Docker escape attack, which allows an adversary to break out
of the isolation of a Docker container by exploiting a Linux
kernel vulnerability. Another research area [36], [37], [58],
[59], [60] of container security focuses on container images.
Shu et al. [58] and Tak et al. [59], [60] have performed a
large-scale vulnerability assessment of Docker images on
Docker Hub and shown that many images were outdated and
vulnerable. While these studies broadly point out the security
issues of containers, their goals differ from our work. Instead,
Bastion+ focuses on container networks.

Container Security and Isolation. Bacis et al. introduced
DockerPolicyModules (DPM) [61] that allow Docker image
maintainers to specify and ship SELinux policies within their
images. Sun et al. [62] proposed security namespaces that
enable containers to independently define security policies and
apply them to a limited scope of processes. SCONE [63]
presented a secure container mechanism for Docker containers
by isolating them inside SGX enclaves. LightVM [64] wraps
containers in lightweight VMs. X-Containers [65] isolate con-
tainers that have the same concerns together on top of separate
library OSes. These efforts complement the network-focused
objectives of Bastion+ and could be combined to deliver
system- and network-wide security services.

Container Network Security. Most container network
solutions [66], [67] have focused on container network
performance, with little attention to fine-grained policy
enforcement. A few recent studies investigated the security

Authorized licensed use limited to: Univ Of Incheon. Downloaded on November 09,2024 at 02:14:34 UTC from IEEE Xplore.  Restrictions apply. 



946 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

issues in container networks. Bui [68], Comb et al. [69], and
Chelladhurai et al. [70] analyzed Docker container security.
Our work extends these results by identifying the broader class
of attacks, and we present system extensions that address these
problems.

With respect to security policies for inter-container commu-
nications, while most solutions (e.g., Weave [27], Calico [28],
and Romana [71]) have adopted iptables-based access
control, Cilium [29] provides API-aware security mechanisms
using eBPF for L3/4 policies, employing its security container
for L7 policies. While Bastion+ and Cilium share the use
of eBPF in their implementations, their design objectives
are different. Cilium pursues API-level network security fil-
tering to define and enforce both network and application
layer security policies. In contrast, Bastion+ fundamentally
redesigns a secure network stack per container to construct
an inherently secure container networking system while also
providing substantially more security features than Cilium.

IX. CONCLUSION

Containerization has emerged as a widely popular virtual-
ization technology that is being aggressively deployed into
large-scale enterprise and cloud environments. However, this
adoption could be stifled by critical security issues, which
remain understudied. We have analyzed the security challenges
involved in the current container networks and addressed these
challenges by presenting Bastion+, an intelligent communi-
cation bridge for securing container-network communications
using Linux kernel features. Bastion+ restricted the network
and traffic visibilities of containers with per-container fine-
grained network control and container-to-container network
isolation. Also, Bastion+ enabled selective security function
chaining according to containerized applications for further
application-level inspections and helped administrators cor-
rectly configure their security policies using its security policy
assistant.
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