IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 18 July 2022, accepted 12 September 2022, date of publication 20 September 2022, date of current version 30 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3208146

== RESEARCH ARTICLE

FuzzDocs: An Automated Security Evaluation
Framework for loT

MYOUNGSUNG YOU', YEONKEUN KIMZ2, JAEHAN KIM!, MINJAE SEO3,
SOOEL SON “2, (Member, IEEE), SEUNGWON SHIN ', (Member, IEEE),
AND SEUNGSOO LEE 4

!School of Electrical Engineering, KAIST, Yeonsu-gu, Daejeon 34141, Republic of Korea

2School of Computing, KAIST, Yeonsu-gu, Daejeon 34141, Republic of Korea

3National Security Research Institute, Yeonsu-gu, Daejeon 34044, Republic of Korea

4Department of Computer Science and Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea

Corresponding author: Seungsoo Lee (seungsoo@inu.ac.kr)

This work was supported by Incheon National University (International Cooperative) Research Grant in 2022.

ABSTRACT As Internet of Things (IoT) devices have rooted themselves in the daily life of billions of people,
security threats targeting [oT devices are emerging rapidly. Thus, [oT vendors have employed security testing
frameworks to examine [oT devices before releasing them. However, existing frameworks have difficulty
providing automated testing, as they require a lot of manual effort to support new devices due to the lack of
information about the input formats of the new devices. To address this challenge, we introduce FuzzDocs,
a document-based black-box IoT testing framework designed to automatically analyze publicly accessible
API documents about target IoT devices and extract information, including valid inputs used to call each
functionality of the target devices. Based on the extracted information, it generates valid-enough test inputs
that are not easily rejected by target devices but can trigger vulnerabilities deep inside them. This document-
based input generation allows FuzzDocs to support new devices without manual work, as well as provide
effective security testing. To prove its feasibility, we evaluated FuzzDocs in a real-world IoT environment,
and the results showed that FuzzDocs extracted input formats with 93% accuracy from hundreds of pages
of documents. Also, it outperformed the existing frameworks in testing coverage and found 35 potential
vulnerabilities, including two unexpected system failures in five popular IoT devices.

INDEX TERMS IoT security, IoT security scanning, fuzz testing, document-based fuzzing.

I. INTRODUCTION
Currently, IoT (Internet of Things) devices are getting smarter
and being actively deployed in diverse networking envi-
ronments, such as factory management systems and home
automation services. With the dramatic advances in hard-
ware and software technology, complicated functions can be
operated using a small chip or device and fully optimized.
Thus, IoT devices are now capable of more advanced and
complicated functions than in their early stages, and they have
become an essential component of people’s daily lives.

Now that IoT devices can manage and store much more
data, including some sensitive information, IoT security has

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masucci

102406

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

become a major issue. We can easily see many real-world
cases showing how IoT devices are vulnerable [1], [2], [3].
Worse, the overheated IoT market encourages IoT vendors
to aggressively release new devices, but a lack of budget
discourages them from conducting sufficient security checks.
For the same reason, even if vulnerabilities are found in
already-released devices, IoT vendors are unlikely to have the
chance or capability to fix the vulnerabilities properly.

One practical solution to address this problem is to iden-
tify vulnerabilities in IoT devices using automated tools and
take appropriate security precautions. Several researchers
have proposed a series of solutions to test the security of
IoT devices, ranging from fuzzing device firmware through
emulation [4], [5], [6], [7] to solutions that test IoT devices
directly over the network [8], [9], [10], [11], [12], [13].

VOLUME 10, 2022

https://orcid.org/0000-0003-0904-2875
https://orcid.org/0000-0002-1077-5606
https://orcid.org/0000-0002-6883-1869
https://orcid.org/0000-0002-1570-8576

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

IEEE Access

Firmware fuzzing can provide comprehensive and accurate
security testing by emulating and analyzing firmware through
software fuzzing techniques. However, obtaining firmware
is challenging even for vendors because of the highly frag-
mented [oT industry, which involves many small integration
and distribution vendors (e.g., OEMs) [10]. Moreover, ana-
lyzing firmware requires a lot of manual effort due to the
diversity of platforms used by IoT devices [9], [11]. Another
line of research finds vulnerabilities without firmware by
sending randomized inputs to IoT devices over the network
(i.e., network-based fuzzing) [8], [9], [10], [11], [12], [13].
Unfortunately, IoT devices reject invalid inputs that vio-
late their input format, rather than processing them. Thus,
network-based fuzzers rely on additional software analy-
sis [9], [11] or well-refined seeds [8], [10], [12], [13] (or
manually created message formats) to create inputs for test-
ing. However, this prevents automated testing and limits test
coverage. As a result, due to the difficulty of obtaining and
analyzing firmware and the limitation of seed inputs, existing
solutions fail to provide effective and automated security
testing for newly emerging IoT devices.

A. OUR APPROACH
In this paper, we propose a document-based black-box IoT
testing framework, named FuzzDocs, to achieve automatic
and effective security testing for IoT devices. The key idea
is based on the observation that most IoT vendors make API
documents of IoT devices publicly available so third-party
developers (or users) can build various [oT systems. These
API documents contain information about valid inputs for
calling IoT devices’ functionality (i.e., API). Thus, FuzzDocs
can use API documents as guidelines for test input generation.
To this end, it automatically analyzes human-readable API
documents of various types, using heuristics and NLP-based'
methods to extract input formats for [oT devices. Based on the
input formats, FuzzDocs generates valid-enough inputs for
testing that are not rejected by 10T devices at early stages but
can trigger security bugs deep inside them. After transmitting
valid-enough inputs, it detects vulnerabilities by analyzing
the responses of the IoT devices. This design allows Fuz-
zDocs to test all device functionalities listed in API docu-
ments automatically and effectively without software analysis
(e.g., firmware) or manually provided seeds. That is, to sup-
port a new device, FuzzDocs requires only API documents
for the device, rather than manual effort by security experts.
We implement a prototype of FuzzDocs and compare
it with existing solutions in real-world IoT environments,
including Hue [14] and Shelly [15] devices. As a result,
FuzzDocs extracted correct input formats with 93% accuracy
from 134 APIs (i.e., functionalities) for the five devices used
in the experiment. FuzzDocs also outperforms other solutions
in terms of test coverage and has newly discovered 35 poten-
tial vulnerabilities in five popular IoT devices, including two
DoS vulnerabilities.

INLP refers to Natural Language Processing.

VOLUME 10, 2022

loT device
Request
message Parameter ;
) 1. Message 2. Function
Endpoint —EI—> ; g i
K} parsing executing
A T |
— °] Error code
= £
|| 5
Response <C || 3. Response
message sending |Execution result

FIGURE 1. General communication model of modern loT devices. loT
devices receive a request message (input) from endpoints (users or other
devices) and then transmit a response message that contains the
execution result.

In summary, our contributions are as follows:

o We present a test input generation model leveraging
API documents for automatically identifying potential
vulnerabilities in target IoT devices.

o« We present the design and implementation of a new
document-based testing framework for 10T, called Fuz-
zDocs, which is capable of automatically generating the
test inputs from the API documents and detecting the
vulnerabilities in the target devices.

e We evaluate FuzzDocs in real-world environments,
demonstrating that the effectiveness of FuzzDocs is
superior to existing solutions and discovering 35 poten-
tial vulnerabilities in five IoT devices.

B. OUTLINE

The rest of this paper is organized as follows. Section II
gives the required background and our insights of FuzzDocs
with a running example. Section III reviews the previous
studies and their limitations. The overall system design is
presented in Section IV. Section V and VI detail two key
modules of FuzzDocs, respectively. The evaluation results are
summarized in Section VII, and Section VIII discusses the
limitations of the current design. Finally, we conclude this
paper in Section IX.

1. BACKGROUND AND MOTIVATION

A. COMMUNICATION MODEL OF IoT DEVICES

Unlike traditional embedded devices, most IoT devices inter-
act with other endpoints (i.e., devices or users) over the
network. As IoT devices become more diverse and com-
plex, interoperability between these devices gains impor-
tance. Thus, most IoT vendors open application programming
interfaces (APIs) to effectively interact with their IoT devices.
The APIs allow developers to build various IoT ecosystems
(e.g., smart homes and smart factories) by connecting multi-
ple IoT devices, regardless of vendor.

Figure 1 shows an overview of the communication model
of modern IoT devices. APIs and the API module enable the
endpoints to invoke the IoT device’s functionality by send-
ing request messages [9], [10], [11], [16]. For example, the
endpoints transmit a request message to the device through
the network (e.g., using Wi-Fi). The device then parses the

102407

IEEE Access

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

Shelly Plug/Plugs:

The returned document here is identical to the data returned in /settings for the single
output channel in the relays array. The channel index exists to preserve API compatibility
with multi-channel Shelly devices. Attributes in the response match the set of accepted

parameters.
Parameters
Parameter Type Description
name string Set relay name
appliance_type string Set custom configurable appliance type
reset any Submitting a non-empty value will reset settings for

the plug output to factory defaults

default_state string Accepted values: off, on, last

[] APIspecification

FIGURE 2. Example of partial APl document for a popular loT device [15].
The API document is publicly accessible and provides detailed
information (i.e., API specifications) needed to create a valid request
message to call the API.

message to extract its parameters and do the job requested
(e.g., turn on the light). Most IoT devices have their own mes-
sage format for efficient communications. Thus, if the device
finds any violations during the parsing process, it immedi-
ately rejects the request and transmits an error message to the
sender (i.e., the endpoint), notifying them that the message
has been rejected. Also, even if the request message complies
with the format, an error message could be generated if the
parameter values in the request violate the expected scope.
Otherwise, the device executes the corresponding function
using the extracted parameters and sends a response message
with the execution result.

There are many ways to implement the APIs in the IoT
devices, but most IoT vendors adopt HTTP-based APIs (e.g.,
REST API) due to their flexibility, scalability, and simplic-
ity [17], [18], [19]. Therefore, we focus on HTTP-based APIs
in this work for the sake of simplicity.

B. API DOCUMENTS FOR IoT DEVICES

Most IoT vendors provide an API document to help devel-
opers understand how to use their device APIs. Figure 2
depicts the partial API document for the popular IoT device
Shelly PlugS [20]. This API document is publicly accessible
on the Internet [21] and semi-structured and formatted in
HTML pages, like most API documents. An API document
typically starts with the details of the API specifications. API
specifications are information (e.g., URL, HTTP method and
parameters) required to create a request message to call a spe-
cific API of the device. Followed by the API specifications,
some concrete examples such as a JSON object for message
parameters and CURL commands [22] are often provided to
demonstrate the utilization of such APIs.

Given the purpose of the API document, it is reasonable for
the vendors to make human readability a priority. For exam-
ple, an API document describes the IoT device’s APIs on a
separate page, one by one, according to each URL and HTTP
method. On the same page, the document explains each API

102408

Request message Response message

GET HTTP/1.1 200 OK
/settings/relay/0?default_state=on Server: Mongoose/6.11
&name=test_name&schedule=fals Content-Type: application/json
e&auto_on=0&auto_off=0... Content-Length: 197
{“default_state”: “on”...

(a) A response message to a valid request message.

Request message Response message

GET HTTP/1.1 400 Bad Request
/settings/relay/0?default_state= in Server: Mongoose/6.11
valid_string&name=test_name&sc Content-Type: text/plain
hedule=1&auto_on=21325893&au Content-Length: 18
to_off=-19275921... Bad default state!

(b) A response message to an invalid request message.

Request message Response message

GET HTTP/1.1 500 Internal Server Error
/settings/relay/0?default_state=off Server: Mongoose/6.11

& Content-Type: text/plain
s5sssss&idsssss...&name=test_nam Content-Length: 31
e&schedule=1&auto_on=298312... Error saving the configuration!

(c) A response message indicating an internal error of the IoT device.

FIGURE 3. Examples of response messages received from the loT
device [20]. The device would transmit different messages resulting from
processing the input message.

specification by splitting it into sections. The tables or lists in
each section are employed to describe API specifications that
contain multiple descriptions (e.g., parameters).

C. MOTIVATING EXAMPLE

As discussed earlier, the API document guides the user
through the process of creating an valid request message
to execute a specific function (API) of the IoT device. For
example, when calling the ‘set t ings’ API, we must set the
‘default_state’ parameter to one of the three predefined
strings (‘off’, ‘on’, or ‘last’) as described in the ‘Param-
eters’ section in Figure 2. When we send a valid request
message created according to the requirements, the device
sends the response message containing the API execution
results, as shown in Figure 3a.

Let us consider an example in which a user intentionally
builds an invalid request message with parameters that vio-
late the requirements from the API document in Figure 2.
For instance, we set the "default_state’ parameter to
a random string rather than the predefined values. If the
device appropriately handles the invalid request message,
it sends the response message indicating that the message
includes invalid parameters (e.g., HTTP 400 bad requests),
as shown in Figure 3b. However, some invalid request mes-
sages cause unexpected errors that the device cannot handle.
If we set "default_state’ to a very long random string,
unexpected errors such as buffer overflows may occur when
the device processes the parameter. In this case, the device
sends response messages indicating the unhandled errors
(e.g., HTTP 500 internal errors), which could lead to severe
security vulnerabilities. Figure 3c shows the result of this
example, which makes the device unable to respond to any
further request messages until it is rebooted (i.e., DoS).

VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

IEEE Access

The API document offers information about the majority of
APIs supported by the IoT device. Therefore, we can discover
potential security vulnerabilities in most of the device’s func-
tions by sending invalid request messages, as demonstrated
in Figure 3. The biggest challenge is that it requires man-
ual effort to analyze the document and generate invalid but
high-quality request messages that are effective enough to
cause internal errors. This limitation motivates us to design
a document-based testing framework for IoT devices that is
automated.

IIl. RELATED WORK

Fuzz testing (i.e., fuzzing) is one of the dominant solutions for
testing IoT devices as well as software. Several solutions [4],
(51, [6], [71, [8], [9], [101, [11], [16], [23], [24], [25], [26],
[27], [28], [29] have emerged to discover security bugs in [oT
devices, and most of them adopt black-box fuzzing due to the
closed source of target devices and the ease of testing. These
previous black-box fuzzing techniques for IoT devices can be
classified into three main categories based on the way they
work: firmware-based fuzzing [4], [5], [6], [7], [23], [24],
network-based fuzzing [8], [10], [25], [26], [27], [28], and
companion-app-based fuzzing [9], [11], [16]. However, these
prior studies have two limitations: (i) the amount of manual
effort required (i.e., seeds or settings), and (ii) restricted test-
ing coverage. These limitations make these prior studies hard
to automate and also reduce their efficiency. We summarize
the prior studies in Table 1 and discuss their approach and
limitations in detail.

A. FIRMWARE-BASED FUZZING

The key purpose of firmware-based fuzzing is to emulate
the target IoT device firmware, which is dedicated software
for the devices to discover vulnerabilities in them. Although
this approach may be effective enough to test, it has some
critical limitations from an automation point of view. First,
the acquisition of the device firmware is a challenging task
itself. As demonstrated by several previous works [4], [5],
[6]1, [71, [23], [24], [29], IoT vendors tend not to release their
device firmware to the public due to concerns about loss
prevention and general security. Thus, without the published
firmware, security experts with hardware knowledge could
extract firmware directly from the device through debug-
ging ports (e.g., UART [30]). However, most IoT vendors
ship their IoT devices without debugging ports to prevent
hardware-based firmware leakage [9].

Second, even if we somehow obtain the firmware, emula-
tion testing is difficult because there is no unified firmware
analysis method due to the diversity of IoT device architec-
tures (e.g., MIPS [31], RISC-V [32]). For instance, we have
to set up various configurations such as firmware unpack-
ing (or decryption) and NVRAM parameter settings [5] to
set up the made-to-order emulation environments, using a
lot of manual effort. This shows that the firmware-based
fuzzing method is not suitable for an automated testing
system.

VOLUME 10, 2022

B. NETWORK-BASED FUZZING
In order to test IoT devices without firmware, researchers
have developed network-based fuzzing [10], [25], [26], [27],
[28] that tests the security of IoT devices by sending mutated
messages directly to the devices over networks. However,
most IoT devices have strict message formats in network
communication and reject invalid messages. That is, input
messages created in a brute-force manner are easily rejected
by the devices, reducing the effectiveness of fuzzing tests [9],
[11]. Thus, network-based fuzzing first takes a set of seed
messages (or grammar) from security experts and mutates the
seed messages to create input messages for testing. After this
method sends the mutated input messages to the IoT devices,
it analyzes the response messages to detect potential vulnera-
bilities. Some researchers [10] use the response messages as
feedback to create subsequent input messages, increasing the
possibility of triggering more unusual responses.
Network-based fuzzing does not require firmware analysis,
but well-formed seed messages are essential, which means its
success depends strongly on the quality of the seed messages.
Also, if the seed messages cannot invoke a specific API of
the target devices, the API cannot be tested by network-based
fuzzing, which significantly reduces the coverage of testing.
Moreover, creating high-quality seed messages requires a lot
of manual effort by security experts, which is not suitable for
automated testing.

C. COMPANION-APP-BASED FUZZING
In a parallel line of work, researchers [9], [11], [16] leverage a
companion application, which is a mobile app for [oT devices
instead of firmware. This method creates input messages by
analyzing companion apps. Technically, it retrieves message
creation functions of companion apps using reverse engineer-
ing. Then, it mutates the retrieved functions’ parameters at
runtime to send mutated input messages to IoT devices.
However, this method suffers from two fundamental prob-
lems. The first is the limited fuzzing coverage; this method
cannot guarantee that all the device’s APIs (functionalities)
are fully tested because there still remain the APIs not invoked
during the automated companion app execution. In this case,
security experts need to manually click all the Uls in the app
to trigger the remaining APIs, which takes a lot of manual
effort and is not suitable for automated testing. Moreover, this
method is unable to test APIs that are not called through the
app’s UI, such as APIs that change internal device settings
(see Section VII-C1). Second, if the companion app is obfus-
cated, this method is impractical because code obfuscation
prevents app reverse engineering. Such code obfuscation has
become very common in mobile environments due to the
surge in mobile app security issues [33].

D. OUR APPROACH

Firmware-based fuzzing is not practical for automated test-
ing. Other fuzzing methods still require a lot of manual work
and have limited test coverage due to the lack of information
about IoT devices’ input message formats. FuzzDocs can

102409

IEEE Access

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

TABLE 1. Summary of related work on loT device fuzzing. While existing solutions require firmware analysis or a lot of manual work by security experts,
such as generating seed messages, FuzzDocs can automatically test the security of 1oT devices without such a burden.

Firmware-based
[4]1-[7], [23], [24]

Network-based
[8], [10], [25]-[28]

Document-based
(FuzzDocs)

Companion-app-based
[9], [11], [16]

Requirement Device firmware

(Not disclosed)

Seed message or corpus
(Not disclosed)

Companion app
(Publicly available)

API document
(Publicly available)

Required
(Firmware de-packing,)
emulation setting)

Manual effort Required

(Message format analysis,
seed message creation)

Required N/A
(Manual de-compilations,
UI simulation)

Test coverage All APIs Limited

Limited All APIs

*Required when the companion app is obfuscated.

Information extraction module (8 V)

Apll |
ee

| 2. Message format generation |

jDDD

1. Document analysis |

APl documents

Message format

loT device Test Fuzzing module (§ VI)
n 5! K Alerts
<——| 3. Input message creation |
:c>: TFeedback
)
_.| 4. Response analysis |
Response

FIGURE 4. Overall workflow of FuzzDocs. The information extraction
module takes APl documents and creates message formats for security
testing. The fuzzing module finds potential vulnerabilities in the loT
device by sending test messages created from the message formats.

tackle these limitations. It leverages the publicly available
API documents (see Figure 2) as a testing guideline for
functionalities (APIs) of IoT devices. By analyzing API docu-
ments, FuzzDocs creates effective input messages for testing
all functionalities (APIs) described in API documents and
detects potential security holes in target devices in a fully
automated manner.

IV. SYSTEM DESIGN
In this section, we provide design requirements for FuzzDocs
and its overall workflow.

A. DESIGN REQUIREMENTS

To effectively and efficiently examine the security of IoT
devices by leveraging their API documents, the requirements
driving our framework can be summarized as follows.

1) R1: AUTOMATING INFORMATION EXTRACTION

As various IoT device vendors have provided their own APIs,
the format of the API document may differ depending on each
vendor, meaning that there is no unified APT document format
for IoT devices. For instance, from the separate IoT devices,
some API documents use table tags (e.g., <t r> or <td>),
while others use division tags (i.e., <div>) with custom
styles to describe API specifications. This diversity of format
makes extracting API specifications from an API document
difficult for a machine. Moreover, it is time-consuming to

102410

also extract API specifications from the document manu-
ally. To resolve these problems, our framework centers on
automating the API specification extraction process.

2) R2: CREATING EFFECTIVE MESSAGE FORMAT

In general, IoT devices reject invalid API request messages
at early stages (i.e., message parsing phases) that violate their
predefined message format. If we know the detailed message
formats for each target device, we can easily create input
(request) messages that are valid enough not to be easily
rejected by the devices but can trigger unexpected internal
errors beyond the parsing state. However, manually creating
such detailed message formats for target devices is time-
consuming. Therefore, our framework needs to automatically
generate effective and detailed message formats for each API
to create valid enough input messages for testing.

3) R3: MONITORING INTERNAL STATE

It is important to recognize if the target [oT device is entering
an abnormal state during security testing. The best way to
know the internal states of the device is to directly examine
state information through its firmware. In other words, with-
out direct access to the firmware, it is challenging to identify
the device’s internal state. This lack of state information
makes it hard to determine whether the input messages sent
by our framework are triggering potential security bugs on
the device. Thus, our framework should provide a remote and
automated mechanism to recognize the internal states of the
target device.

B. DESIGN OVERVIEW

Figure 4 illustrates the key modules of FuzzDocs and its over-
all workflow. There are two main modules: the information
extraction module (top) and the fuzzing module (bottom).
The information extraction module takes and parses API
documents in various formats to create a layer of abstrac-
tion around the target IoT device’s API request message
formats. (1) First, it extracts API specifications (e.g., URLSs,
parameters) required for creating valid API request messages
from the input API document. When doing so, it uses text-
based document parsing to process API documents regard-
less of their format (R1). (2) Next, it utilizes natural lan-
guage processing (NLP) techniques to analyze the extracted

VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

IEEE Access

information and create a message format for each API. Each
message format contains crucial information for testing the
corresponding API (R2). It then passes the message format
to the fuzzing module.

The fuzzing module aims to discover potential security
bugs inside the target IoT device by transmitting input
messages. (3) Based on the message format, the module
uses elaborate mutation strategies to automatically create
valid-enough input messages that are not easily filtered by
the device and can cause security bugs deep inside the device.
(4) After sending the input message, this module monitors the
response messages and networking behaviors of the device
to remotely determine whether the input messages caused the
device’s security bugs (R3). It also offers detailed reporting of
bug-inducing messages to aid security experts. The following
sections describe each module of FuzzDocs in detail.

V. INFORMATION EXTRACTION MODULE

The key idea of the information extraction module is to
reverse engineer the message formats of the target IoT device
by analyzing its API document. To do this, the module takes
an API document containing information about a specific
APIL It then produces a message format, a machine-readable
description for creating valid request messages for the corre-
sponding API.

A. DOCUMENT ANALYSIS

First, the module takes an API document in an HTML for-
mat and parses it to extract API specifications such as a
URL, an HTTP method, and parameters. When parsing the
API document, this module needs to focus on fext (i.e.,
<tag>text</tag>) rather than a specific type or structure of
HTML tags (e.g., <table>, <div>) because the text is more
likely to be related to the API specification and each docu-
ment uses a different type of tag. However, although we can
extract all the text from the document except for the tags,
it is challenging to determine whether an individual text is
directly related to API specifications without any contextual
information because the document is a mixture of a lot of
text explaining different content. Fortunately, a typical API
document has structured guidelines that inform us which texts
are relevant to the API specifications, so the module can
leverage this.

As illustrated in Figure 5 (a), the API document is divided
into multiple sections (and sub-sections), and a section title
indicates the main content of each section. For example,
if the section title is ‘“Path Params”, we can guess that
all the following text in that section contains descriptions
(e.g., name, value type) about the path parameters. Based on
these findings, this module extracts the text in the document
and tries to build a section tree that shows the relationship
between the text and section titles.

1) BUILDING SECTION TREE
Before building a section tree of an API document, the
module conducts the preprocessing as follows to eliminate

VOLUME 10, 2022

Algorithm 1 Build a Section Tree of an API
Document
1 BuildSectionTree (7')

inputs: A set of HTML tags in an API document
denoted by T'; depth-first search function
DEFS; function for adding child node to tree
addChild; function for adding sibling node
to tree addSibling
output: A section tree of the API document

denoted by ST

2 ST <« {root};

3 l; < root;

4 idx < 1;

5 H={<hl >,..., < h6 >, < heading >};

6 foreach an HTML tag t; in DFS(T) do

7 if texts ¢ t; then

8 L continue;

9 if 1; € H then

10 if t; < I, then

1 | addChild(l;, 1;, idx);

12 else

13 | addSibling(l;, t;, idx);

14 Iy < t;;

15 else

16 | addSibling(l;, t;, idx);

17 idx < idx + 1;

18 return S7T';

unnecessary parts and improve parsing efficiency. First,
it removes the optional areas (e.g., sidebars and naviga-
tion bars) in the API document, which have no meaning-
ful text for the API specifications. Next, it replaces the
tags used to emphasize keywords (e.g., , ,
<italic>) with double quotes when these tags are within
the text. For instance, ‘The brightness from’
is replaced with ‘The “brightness” from.” Normally, such
tags are employed to highlight the keywords (e.g., parameter
names), so this tag replacement helps the module extract
important keywords for the APL

After the above preprocessing, the module builds the
section tree as described in Algorithm 1. It starts (line 6) by
traversing all the HTML tags in the API document (7') in a
depth-first search (DFS) order to read the tags in the order
they appeared in the API document. For each tag, it checks to
see if there is text between the opening (<tag>) and closing
(</tag>) pairs of the current tag (#;) (line 7). Note that the
module does not consider the text inside a tag’s attributes
(e.g., href attribute). If the current tag has text, it creates a
new node for the current tag, which contains a type, the found
text, and an insertion index (idx). The insertion position of the
new node depends on whether the current tag is a title tag (H).
In the case of the title tag, the module compares the priority
of the last inserted title tag (/;) with the current tag (line 10).

102411

IEEE Access

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

B Set State 0 [Title node
Root [] candidate node
Section 1-l] section
Definition “PUT” Set State
https/apl lifx.com/v1/lights/selector/state
X Section 4:h3
Section Definition Parameters
Parameters
Sub-section 41; Sub-section Sub-section
Path Params—> Title 5:h4 10:h4
selector: string https://api... Path Params Body Params
required Tha selector to limit which lights are controlled.
Body Params Sub-section 6:div 7:div 8:div 1div || 12:div
selector: || required string °° power: string
power: string .
The power state you want to set on the selector. _on_or_off Section

(a) API document

(b) Section tree

FIGURE 5. Each section in the APl document (a) and a partial section tree originated from it (b) and processed by the information extraction module.
Regardless of the document format, the section tree captures the hierarchical relationship between the texts in the APl document and identifies

candidate nodes for each API specification.

TABLE 2. Keywords used as titles of parameter sections in APl
documentation.

Prefix Suffix
Header Path Query Body
Header, Path, Query Body, Parameters, Params

Authorization ~ URI, Request Properties, Schema

Arguments,

The lower the level of the title, the higher the priority (i.e.,
hl > ...> h6). If the current tag has a lower priority than
the last title tag (line 11), the new node becomes a child
node of the node for the last title tag (i.e., the last title node).
Otherwise, it becomes the last title node’s sibling node (line
13). The new node becomes the last title node’s child node
when the current tag is not a title tag (line 16).

Let us explore the example of the partial section tree as
shown in Figure 5 (b), which is derived from the API docu-
ment [34]. The section tree presents the text nodes (i.e., non-
title nodes) and the corresponding title nodes as a parent-child
relationship. That is, all the nodes containing descriptions
of the path parameters are child nodes of the title node
whose text is ‘Path Params’. It also expresses the hierarchical
relationship between sections. The ‘Path Params’ and ‘Body
Params’ title nodes are child nodes of ‘Parameters’, which is
the main title of the parameter section.

2) IDENTIFYING CANDIDATE NODES

Having created the section tree, the module retrieves the
candidate nodes whose texts are related to (1) the URL/HTTP
methods or (2) the parameters of the API described in the
input API document, and it pushes candidate nodes to a node
pool. As the first step, it finds the nodes for the URL and
HTTP methods from the section tree. Both the URL and
HTTP methods have unique patterns, so we adopt a regular
expression-based method [35] to easily discover them. In gen-
eral, the combination of the URL and HTTP methods is a
unique identifier for APIs, meaning that they usually appear

102412

at the beginning of the API document. These characteristics
are also reflected in the section tree. Thus, if the module
finds multiple candidate nodes that include the URL/HTTP
method, it selects the node with the lowest index for URL and
HTTP methods. It then inserts the selected candidate nodes
into the node pool.

Next, the module should find candidate nodes for the
parameters, but the parameters have no unique patterns,
unlike the URL and HTTP methods. Also, parameters are
divided into various types according to their position in
an input message (e.g., path or body). These characteris-
tics prevent the module from determining which nodes are
associated with which type of parameters. To resolve this
problem, the module leverages title nodes as an indicator
for locating the candidate nodes for parameters. For this,
we build a dictionary for each type of parameter by collecting
the keywords used as titles in the parameter sections from
about 100 API documents for 10 popular IoT vendors [15],
[36], [37], [38], [39], [40], [41], [42], [43], as shown
in Table 2.

The module leverages the dictionary for the parameters as
follows. It first selects title nodes containing any combination
of suffix and prefix. In the section tree shown in Figure 5
(b), the “Path Params” and “Body Params” are selected.
Then the module designates the child nodes (only non-title
nodes) of the selected title nodes as the candidate nodes for
corresponding parameters (i.e., path parameters and body
parameters) and pushes them into the node pool. In Figure 5
(b), the nodes from index 6 to 8 become candidate nodes for
path parameters.

An API document typically provides examples of request
messages (e.g., CURL [22] commands and JSON objects)
along with the descriptions of API specifications. Since such
examples have crucial information for the message format,
the module should identify them. Identifying examples (i.e.,
specific code) from the API document is not a new topic,
so we can just adopt a regular expression-based approach
that is similar to prior work in this field [44]. The module

VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

IEEE Access

TABLE 3. Linguistic units used for text expressing the components of a
parameter.

Information Linguistic unit Example

Parameter name Noun Selector, Power

Predefined noun

Value type Integer, Array of Integer
P or noun phrase et y &
Required flag ~ Predefined noun Required, Optional
Noun phrase, “The power state you want
Description complete to set on the selector. ‘on’
sentence or ‘off’"
Node pool
URL/method candidate nodes
| 1: Put | | 3: https://api.lifx.com/v1/lights/[:selector]/state |
Path parameter candidate nodes
| 6: selector | | 7: required | | 8: string | | 9: The selector to limit... |
<Name> <Required flag> <Value type> <Description>
Body parameter candidate nodes
| 11: power | | 12: string | | 13: The power state you... | | 14: color |
<Name> <Value type> <Description> <Name>

{ Message format

URL:https://api.lifx.com/v1/lights
/[P:selector]/state

Method:Put

Path:[selector]

Body:[power, color, ...]

Basic block

v

selector:{value_type:string,
required_flag:true},
power:{value_type:string,
required_flag:false,
description:{enum:[on, off] ...
Advanced block

FIGURE 6. Example of the message format generation step. The fuzzing
module creates a basic block with the nodes highlighted in blue and an
advanced block with red ones.

identifies tree nodes containing examples and assigns them
as example candidate nodes.

B. MESSAGE FORMAT GENERATION

While the previous step centers on locating the candidate
nodes for a specific API, in this step, the module generates
a message format for the API based on the candidate nodes.
The lower part of Figure 6 illustrates the message format
created from the section tree. The message format comprises
a basic block, which contains the requirements for a valid
input message, and an advanced block, which elaborates on
the message format with more detailed conditions.

1) CREATING BASIC BLOCK

The basic block includes the essential parts of the valid input
messages, so the module begins by analyzing the candidate
nodes for the URL and HTTP methods from the node pool.
Filling the HTTP methods is straightforward because we just
adopt the value from the HTTP method candidate nodes (e.g.,
PUT, DELETE). In contrast, the URL part typically uses a
local IP address of the device as a hostname to call the API.
However, the hostname are not included in API documents
for security reasons, meaning that they are represented as

VOLUME 10, 2022

symbolic values (e.g., <IP address>/api/light). For this rea-
son, the module receives the hostname from the administrator
and replaces the symbolic values in the URL. In general, all
the APIs of one IoT device use the same hostname, so it
receives the hostname only once from the administrator dur-
ing the entire testing process. Note that FuzzDocs performs
a ping test to verify whether the hostname is valid and sends
alerts if the test fails.

Other symbolic values inside the URL could be the value
of a path or query parameter, and these values are typically
denoted via the following syntactic symbols [45].

o Path parameter: ‘{}’, ‘[1’, °()’, ‘<>’, and ‘..
o Query parameter: ‘?” and ‘&’.

By parsing the above syntactic symbols, the module replaces
these values with its own symbols ([P : name], [Q: name])
to determine their values when transmitting input messages.
For example, the symbolic value ‘/api/light/[selector]” will be
replaced with ‘/api/light/[P:selector]’ because the selector is
surrounded by ‘[]’, which means it is the path parameter.

Next, the module analyzes the parameter candidate nodes
to find the names of each parameter used for the input mes-
sages calling the API. As shown in the upper part of Figure 6,
the parameter candidate nodes offer plenty of information
about what the names and value types are, but we have no
idea yet which node is related to which parameter names.
To address this problem, the module leverages the linguistic
units in a node’s text. As shown in Table 3, the linguistic
units in the text of the node vary depending on what kind of
parameter information the text represents. For example, if a
node’s text is a pre-defined keyword used for data types (e.g.,
string, integer, or array), it indicates a parameter’s value type.
Similarly, if a node is a noun and not a pre-defined keyword,
the node is the name of a specific parameter. Based on these
findings, the module locates nodes containing a parameter’s
name and feeds the names to the basic block.

2) CREATING ADVANCED BLOCK

The elements in the advanced block are usually the value
types, required flags (e.g., optional or mandatory), and a
range of allowed values that are used in the parameters. To fill
this block, the module revisits the parameter candidate nodes.
In the pool, we have marked the nodes with a parameter
name, but we should still determine which parameter name
the remaining nodes belong to. In general, when writing an
API document, the author first gives a parameter’s name
and then arranges other information about that parameter.
Thus, we leverage the index (idx) of the node we assigned
when building the section tree in the previous step. As shown
in Figure 6, the nodes ‘11: power’ and ‘14: color’ are the
names of body parameters. The nodes between them (i.e., ‘12:
string” and ‘13: The power state you...’) belong to the node
‘11: power’ because they are not the name and have a lower
index than the next parameter name node, ‘14: color’. In this
manner, the module inserts each parameter’s information
(e.g., value types and descriptions) into the advanced block.

102413

IEEE Access

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

TABLE 4. Examples of target relations triples of the ontology of FuzzDocs and the results. After preprocessing, the relation triples of the descriptions are
extracted based on the target (subject; relation; object) formats in the ontology.

Description (before preprocessing)

Target relation triple format example

Result relation triple example

The brightness level from 0.0 to 1.0.
Both x and y must be between 0 and 1.
It can take values of 11, 15, 20 or 25.

(<noun>; is from; <numbers with adposition>)
(<noun>; is between; <enum® of numbers>)
(<noun>; can take; <enum of nouns or noun phrases>) (It; can take; values of 11, 15, 20 or 25.)

(brightness level; is from; 0.0 to 1.0)
(x; be between; 0 and 1), (y; be between; 0 and 1)

Action is one of disabled, relay_on, relay_off (<noun>; one of; <enum of nouns or noun phrases>) (Action; one of; disabled, relay_on, relay_off)

IP address of the proxy server being used.

(<noun>; IP address of; <noun>)

(It; is IP address of; proxy server)

*enumeration

While the description of the parameter contains cru-
cial information for creating effective input messages [46],
achieving such information is not straightforward because a
human-readable description is hard for a machine to under-
stand. For instance, from the description node ‘“13: The
power state you want to set on the selector. ‘on’ or ‘off” in
the node pool, we should identify the fact that the value is
one of the predefined strings (‘on’ or ‘off”), as shown in the
lower part of Figure 6. To address this task, we adopt natural
language processing (NLP) to syntactically and semantically
understand the description and precisely extract the condi-
tions and formats of the valid input message.

First, if a description is an incomplete sentence, the mod-
ule makes the sentence complete as the preprocessing by
leveraging Stanford CoreNLP [47]. Then, the preprocessed
description is used to extract detailed information about the
target parameter. Here, we need to understand the semantic
relationship between the parameter and a word or a phrase
meaning the conditions of the valid inputs. Thus, we apply
the methods of named entity recognition (NER) and relation
extraction (RE) tasks utilizing Stanford OpenlE [48], a pop-
ular language analyzer for extracting open-domain relation
triples represented as (subject; relation; object).

By analyzing hundreds of API documents, we build an
ontology of relations based on PoS (part-of-speech) tags
and phrases for specific relations, which represent conditions
of valid inputs for given parameters, such as the range of
numeral values, enumeration of valid values, and exceptional
formats of values (e.g., IP/MAC address, timestamp). Based
on the ontology, the module extracts the conditions by seman-
tically analyzing descriptions based on the ontology and
adds the conditions to the advanced block. Some examples
of ontology maintained by FuzzDocs and extracted relation
triples from some API documents are shown in Table 4.

3) COMPLEMENTING MISSING INFORMATION

Lastly, in the case of the example candidate nodes, those
nodes offer concrete values about a URL, HTTP method,
or some parameters. The module uses such information to
supplement missing API specifications that were not iden-
tified in the previous steps. For example, when example
candidate nodes have CURL commands, the module extracts
the correct URL and HTTP method from the commands.
Then, it uses the extracted information if it fails to locate
URL/HTTP method candidate nodes. In the case of JSON
object for the request body, we could obtain body parameters’

102414

| Information extraction module

||k

Message format

Fuzzing module

[Input message creation] [Response analysis]

Selecting format]

Updating][Alerting]

) P . :- dictionary crash
'
[Inserting value]4— arameter i, New Error/
value dict. | !
‘ | response timeout

Response ->[Analyzing response
dlctlonary i g P

[Recelvmg message]

Mutatlng value

Transmlttlng message]

7y
! i

| Input message | @ | Response message |
] ° I
| loT device |

FIGURE 7. Workflow of the fuzzing module. In the input message
creation step, the module creates input messages by using the message
formats and transmits them to the loT device. It then analyzes the
response messages to detect potential vulnerabilities in the next step.

names and value types. This information is used when the
module fails to identify or analyze body parameter candidate
nodes.

VI. FUZZING MODULE

We have discussed creating message formats by parsing the
API documents of the IoT device. With these message for-
mats, the fuzzing module can examine security vulnerabilities
in the target IoT device by conducting the following two
steps as shown in Figure 7: (i) input message creation and
(ii) response analysis.

A. INPUT MESSAGE CREATION

The left part of Figure 7 shows input message creation.
Note that each message format received from the information
extraction module is matched one-to-one with an API of the
target [oT device. The fuzzing module first selects one of the
message formats according to a user-configurable scheduling
algorithm (e.g., a round robin). Then, the module uses the
message format as a template and fills the input message with
the basic block (e.g., URL, parameter names) without specific
values.

By default, the input message contains all available param-
eters. The module randomly discards some parameters that do
not have required flags by referencing the advanced block.
In addition, to trigger errors in the device’s message parsing
phase, the module intentionally randomly iterates specific

VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

IEEE Access

parameters in the input message. Next, the fuzzing module
determines the specific value of each parameter in the input
message by leveraging the message format’s advanced block.
For this, the module maintains a finite dictionary, named a
parameter value dictionary, that contains the values guided
by the advanced block. The module searches the parameter
name from the dictionary first, and if there is no value for the
parameter, the module creates one initial value and stores it
in the dictionary. For instance, in the case of the “‘brightness”
parameter shown in Figure 6, the module creates one of the
double-type values that are from 0.0 to 1.0 as the advanced
block describes, and it writes that value in the message. Also,
the parameter dictionary is dynamically updated during the
fuzzing test based on the feedback from the target device,
which will be discussed in Section VI-B.

In this way, the fuzzing module takes the parameter values
from the parameter value dictionary and inserts them into the
new input message. After that, the module randomly selects
a subset of parameters to mutate instead of mutating all the
parameters in the message format. Note that the adminis-
trator can specify which parameters are not to be mutated
through settings if desired. The module mutates the selected
parameters according to their value type and the descriptions
specified in the advanced block using the following strategies.

o String type: The module changes the contents and
length of the string type parameter by adding random
strings to trigger errors related to out-of-bound access
(e.g., buffer overflows). If the advanced block of the
parameter contains the range of its length (N), the
module can set the parameter to a string of boundary
value (e.g., N+1 or N-1) length or a string of very long
length. It also replaces the value with an empty string
or a numeric value to trigger misinterpretation and null-
pointer de-reference errors.

o Array type: Similar to string type parameters, the mod-
ule modifies contents of an array type parameter by
adding or removing arbitrary elements. If the advanced
block has a list of allowed elements (i.e., an enum) for
the parameter, the module repeatedly inserts elements
in that list into the parameter, or else inserts random
elements.

o Numeric type: The module mutates the value into
boundary cases (specifically guided by the advanced
block) or extreme values (e.g., INTMAX). It also
replaces the value with a random string or random
object.

o Object type: For the object type parameter (e.g., JSON),
the module applies the above strategies to each member
value of the parameter in a recursive manner.

Finally, the module assembles the input message for the API
based on the concretized format and sends it to the target
device over the network.

B. RESPONSE ANALYSIS
After transmitting the created input message, the module
listens to the response from the target device to know whether

VOLUME 10, 2022

the message causes unexpected errors (e.g., crashes) that can
lead to security vulnerabilities. Given that we cannot instru-
ment the device’s internal state locally, the fuzzing module
automatically analyzes the response message to the corre-
sponding input message remotely and determines whether the
input message caused errors. The right of Figure 7 shows the
response analysis step. In particular, the module considers
an input message to be potentially error-prone if any of the
following conditions are met.

o Timeout: Before testing an API, the module trans-
mits a normal request message (i.e., without mutation)
10 times with an interval of 1 second, then calcu-
lates the average of the response time to set a time-
out for that API. Next, when conducting the actual
testing for the APIL it sends an input message three
times because the network environment can affect the
timeout. When the timer expires three times, the mod-
ule gives an alert that a DoS vulnerability has been
triggered.

« Connection Lost: If the device abruptly closes an active
connection, the module considers it a sign that the device
has fallen into the error state. The module monitors
for cases where the device sends TCP RST packets in
response to the input message.

e HTTP Internal Server Error (500): If the device
returns a response message with Internal Server Error
(500), it indicates that the device has entered an error
state due to the input message.

Coverage Feedback Mechanism. Generally, a fuzzer
optimizes the input mutation process based on the feedback
of executions to find security vulnerabilities more effectively.
In the absence of a feedback mechanism, fuzz testing could be
blind during input mutation (creation). However, the fuzzing
module in FuzzDocs optimizes the input message creation
step by using the response message from the target device as
feedback, which improves the effectiveness of vulnerability
discovery. As shown in Figure 7, the module maintains a
response dictionary that stores the contents of the response
messages in previous input message transmissions. Thus,
whenever the module sends an input message, it stores the
contents of the corresponding response message (e.g., status
code, keys of a JSON body) in the dictionary. If an input mes-
sage causes a new response message that does not match the
response dictionary, this new response message indicates that
a new code block has been executed in the device firmware.
Then, the module inserts all the values of parameters in the
input message into the parameter value dictionary as well.
The inserted values are utilized as starting points for the next
input message creation, which could directly explore more
code coverage.

VII. EVALUATION

In this section, we present the prototype implementation
of FuzzDocs and evaluate it in real-world environments to
demonstrate its effectiveness and efficiency.

102415

IEEE Access

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

A. EVALUATION ENVIRONMENT

1) IMPLEMENTATION

FuzzDocs currently includes two main modules: the informa-
tion extraction module and the fuzzing module. The infor-
mation extraction module leverages BeautifulSoup4 [49],
a representative HTML parsing library to extract HTML
tags and texts of the input API documents. For the fuzzing
module, we utilize FuzzingBook [50], a Python data fuzzing
library, to mutate parameters in test messages according to
our mutation strategies. Especially, in the response analysis
step, we employ Tcpdump [51], a network traffic monitoring
tool, to record the communication traffic between FuzzDocs
and the target IoT device. In summary, to support the design
features described in Section IV, we implemented FuzzDocs
in approximately 3,000 lines of Python code.

2) TEST ENVIRONMENT

IoT devices typically require initial settings such as network
connection or user authentication to remotely call their func-
tionalities over the network. Also, some device APIs can
be invoked only when the pre-issued authentication token is
included in the input messages. Thus, we complete all such
necessary initial setups for the target devices using documents
and companion apps provided by the device vendors. The
prototype of FuzzDocs operates on a commodity Linux server
with Intel Xeon 2.1 GHz CPU and 64 GB RAM. We connect
the prototype and all the test devices to the same local Wi-Fi
router to better capture the network traffic between them.

3) loT DEVICES SELECTION

IoT devices use various communication channels such as
Wi-Fi or Bluetooth, but for convenience, we will only test
the devices that communicate via Wi-Fi in this experiment.
Also, the API documents of the device to be tested should be
publicly available. Thus, as shown in Table 5, we selected five
popular IoT devices from different types of home automation
services, including a smart bulb and a smart plug. These
devices communicate via Wi-Fi, and their API documents are
publicly accessible, so anyone can acquire the API documents
of these devices from their official websites [15], [36]. At the
time of writing the paper, the firmware of all devices is the
latest version.

4) BENCHMARK FRAMEWORKS

The goal of FuzzDocs is to test the security of IoT devices
in an automated manner without firmware analysis or inter-
vention by security experts, such as analyzing message for-
mats and creating seed messages. To fairly demonstrate Fuz-
zDocs’s performance in finding crashes and message for-
mat generation, we compared FuzzDocs with the following
network-based fuzzers [26], [27] that can run without seed
messages (or manual definition of message formats).

e Doona [27]: Doona is an extended version of
Bruteforce Exploit Detector (BED) designed to find

102416

memory-related bugs such as buffer overflows and
format string bugs in network protocol implemen-
tations. It finds vulnerabilities by mutating general
request/response packets without seed messages.

o Ffuf [26]: Ffuf is a popular network application fuzzer
that supports various protocols, including HTTP and
HTTPS. Unlike Doona, Ffuf receives a predefined word
list to mutate request messages. We used the word list
provided by Ffuf’s official website.

We believe this comparison is very reasonable, since both
frameworks and FuzzDocs do not require manual effort by
security experts. There are many other network-based fuzzing
frameworks for IoT devices, such as AFLNET [8] and Boo-
fuzz [12]. However, since they require firmware instruments
(AFLNET) or manually created input formats (Boofuzz),
it is unfair to employ those tools as benchmark tools for
FuzzDocs.

B. EFFECTIVENESS

1) DISCOVERING CRASHES

As ToT devices typically operate on limited hardware
resources, sending extremely input messages to the device
can make the experimental results worthless. Taking this into
account, we limited the maximum number of input mes-
sages the three frameworks send to IoT devices to 10 per
second during the entire experiment process, and then we
inspect each API for an hour. As a result of our experiments,
FuzzDocs discovered 35 crashes in a total of nine APIs,
including two DoS vulnerabilities (Shelly Plugs and Duo) as
summarized in the right part of Table 5.

In particular, FuzzDocs discovered at least one crash on
every single device used in the experiment, and in some
cases, it found multiple crashes in one API (e.g., Shelly
PlugS, shown in Table 5). This means that based on the
created message formats,FuzzDocs successfully generated
multiple input messages with different combinations of the
parameters, which led to causing such distinct crashes in each
API. Also, FuzzDocs only spent about 10 minutes on average
before finding a crash in each vulnerable API. In contrast,
Ffuf and Doona did not find any crashes other than the one
found on the Hue bridge. This is because, unlike FuzzDocs,
these frameworks create input messages without consider-
ing the message formats of IoT devices. Most of the input
messages created by them are filtered during the message
parsing stage of the IoT devices before triggering bugs deep
inside the IoT devices. As a result, FuzzDocs can provide
more comprehensive and broad test coverage than existing
network-based fuzzers by automatically creating message
formats for IoT devices.

2) CASE STUDY

One of the interesting results is a crash that led to a denial
of service vulnerability discovered in Shelly PlugS, which
is a smart plug device. The smart plug is a key device in
home automation services and provides residential energy

VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

IEEE Access

GET /settings?timezone=seoul&I/ng=180&magqtt_recon

ect_timeout_min=2[{u'adminadminadmina
dminadmin': u'adminadminadminadminadmin’}]&
coiot_enable=1&mqtt_max_qosk167772158
&mgtt_user=admin HTTP/1.1

Host: 192.168.0.102

FIGURE 8. Partial input message created by FuzzDocs that causes the
device denial of service (DoS) state. Parameters highlighted in red are
mutated and have invalid values.

monitoring and power control functions, allowing users to
remotely monitor and control the power of various electronic
products. Although the Shelly PlugS only provides simple
on/off functions with monitoring features and timers, it plays
a crucial role in the safety of home automation: it controls the
power of any appliance that plugs into it. Thus, adversaries
can turn on and off all the appliances connected to it and make
the user unable to control the appliances.

To test this device, FuzzDocs automatically generated the
input message shown in Figure 8 in about 1,800 attempts.
The input message targeted the device setting API and
mutated the parameters ‘mgtt_pass’, ‘mgtt_max_gos’,
and ‘coiot_peer’. For example, the ‘coiot_peer’ param-
eter should have string values, but FuzzDocs mutated it to
an empty string. The empty string could cause a null pointer
de-reference vulnerability during API processing [52]. As a
result, after the input message was delivered to the device,
the device could not respond to any input messages until we
manually rebooted it, which caused a DoS.

C. EFFICIENCY

1) ACCURACY OF MESSAGE FORMAT GENERATION

One important indicator of evaluating the efficiency of Fuz-
zDocs is automation. FuzzDocs automatically constructs a
message format for each API to create an valid-enough input
message, so we evaluated the accuracy of message formats.
First, we manually compared all the message formats gen-
erated by our framework (i.e., 135 APIs) with the original
contents of the API documents. Specifically, when comparing
them, we examined whether the URL, HTTP method, and
parameters created by FuzzDocs were correct.

As shown in Table 6, we confirmed that FuzzDocs
extracted the correct URLs and HTTP methods for all the
tested APIs. In the case of the parameters, it successfully
obtained the correct names, value types, and descriptions for
93% of the APIs, and it only failed to get information for
nine APIs. Manual analysis of these failed cases discovered
that the API documents of these APIs had no title for the
parameter section. We believe the authors of the API docu-
ments intentionally omitted the titles for conciseness, as the
descriptions of these APIs were short and explicit. Even with-
out the titles, FuzzDocs could create some restricted message
formats with a subset of parameters based on the concrete
examples in API documents. It created these restricted mes-
sage formats for seven out of the nine APIs. Therefore, Fuz-
zDocs can successfully generate message formats in various

VOLUME 10, 2022

types of documents, except where intentional omission has
occurred.

Section trees created by FuzzDocs from the 135 APIs
generally had a depth of 4 to 6 and fewer than 100 nodes. The
overhead of the message format generation is proportional
to the size of the section trees. That is, FuzzDocs can create
accurate message formats with negligible overhead.

2) COVERAGE OF API

Next, we evaluated the coverage of the API, which is impor-
tant for meeting the requirements of an intelligent assess-
ment system. To this end, we compared the API coverage of
FuzzDocs with the ones of existing studies [9], [11], which
create input messages using companion apps. One especially
noticeable point is that these previous studies only tested APIs
that could be called through the UI of companion apps and
required manual interaction with the UI at the initial stage.

For the comparison, we calculated the number of APIs that
could be called from companion apps by first referring to
the previous studies. We installed each device’s companion
app and a traffic monitoring tool on our test mobile phone
(Android OS). The monitoring tool started to collect all traffic
sent from the mobile phone to the devices as soon as the
companion apps launched. We manually simulated all Ul
inside each companion app according to the vendor-provided
manuals, as in the previous studies. After the simulation,
we obtained the number of APIs by analyzing the captured
traffic. Shelly devices provide additional web-based UI with
the companion app, so we conducted the same simulation for
the web UI and merged the results.

Figure 9 shows the experimental results. Overall, the com-
panion apps were able to call fewer APIs than listed on the
API documents (see Figure 9 (a)) because most of the APIs
not available in companion apps are developer-only APIs.
Developer-only APIs are used to modify the internal state of
devices, so they are not invoked through the companion apps
to prevent user error.

In addition to the available APIs, the number of parameters
that the companion apps use for each API is also restricted,
as shown in Figure 9 (b). For example, when calling the
‘/1light/’ API of the Shelly Duo, the companion apps
cannot use two of the seven parameters listed in its API docu-
ment, ‘effect’and ‘transition’. This lack of available
APIs and their parameters significantly degrades the coverage
of the companion-app-based fuzzing. In contrast, FuzzDocs
can test any API in the API documents without parameter
restrictions.

We did attempt to analyze the Hue companion app’s traffic,
but we could not obtain correct results because the traffic
was encrypted and we were unable to decrypt it. Instead,
we manually compared all the Uls in the Hue companion
app with the APIs described in the API document. Similar
to other devices, we could not modify the device’s internal
settings through the app’s UI. For example, the configuration
API [53] of Hue devices can change various internal settings,
such as the device’s IP address or proxy server, but we could

102417

IEEE Access

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

TABLE 5. Summary of loT devices under testing and the crashes identified by FuzzDocs and existing network-based fuzzing frameworks (Ffuf [26],
Doona [27]). The number in parentheses on the crash field indicates the number of APIs for which a crash was found.

Vendor Device Device Number of FuzzDocs Ffuf [26] Doona [27]
model type APIs Crash Avg. time Crash Avg. time Crash Avg. time
Phillips Hue bridge V3 IoT hub 49 4(2) 28 mins 1(1) 3 mins 1(1) 2 mins
Shelly PlugS V3 Smart plug 22 12 (2) 5 mins 0(0) N/A 0(0) N/A
Shelly Buttonl Smart button 21 11 (2) 11 mins 0(0) N/A 0(0) N/A
Shelly Duo RGB Smart bulb 23 6% (2) 3 mins 0(0) N/A 0(0) N/A
Shelly H&T sensor Smart sensor 19 2(1) 5 mins 0(0) N/A 0(0) N/A

*Including a DoS vulnerability.

TABLE 6. Accuracy of message formats created by FuzzDocs.

Model URL HTTP method Par

Hue bridge V3 49/49 49749 43/49
Shelly PlugS 22/22 22/22 21/22
Shelly Buttonl 21/21 21721 20/21
Shelly Duo 23/23 23/23 22/23
Shelly H&T 19/19 19719 19719

not change these settings in the companion app. This means
that the companion app has restrictions on calling developer-
only APIs. FuzzDocs can test APIs and parameters that are
not available in companion apps, so it provides a more com-
prehensive and wider range of testing coverage than existing
studies.

VIIl. LIMITATIONS AND DISCUSSIONS

Although FuzzDocs can effectively examine the security of
IoT devices in various types, it still has room for future work.
Here, we discuss the limitations of the current design and
suggest ways to improve FuzzDocs.

A. DOCUMENT TYPES

FuzzDocs utilizes vendor-provided API documents for secu-
rity testing. Currently, our system focuses on processing
HTML documents because most IoT vendors publish API
documents on the Internet in HTML formats. However, our
document analysis method (the section tree) can be easily
applied to other document formats because it is designed to
leverage the hierarchical relationships between texts inside
API documents. In other words, simply by appending the
method for extracting text and its metadata from API doc-
uments, FuzzDocs could support various document formats
(e.g., PDF and DOC). For example, we can extract API spec-
ification from API documents in PDF formats by leveraging
PDF parsing libraries [54].

B. API IMPLEMENTATION

As HTTP-based APIs are the most common API implemen-
tation in modern IoT devices [19], FuzzDocs centers on IoT
devices that use HTTP-based APIs. This design choice was
decided based on the ease of implementation and evaluation.
Note that other APIimplementations, such as MQTT [55] and

102418

(a) Comparison of APIs

PlugS Buttonl Duo
Devices

(b) Comparison of parameters

PlugS Buttonl Duo
Devices

B Document-based (FuzzDocs)

25-
100-

80-

i
o

of APIs

H
O
of parameters

0-

mm Companion app-based

FIGURE 9. Comparison results of the number of APIs and parameters
available in companion apps and APl documents. FuzzDocs can provide
more comprehensive test coverage than the app-based solution in terms
of the number of APIs and parameters.

COAP [56], are all similar in that they operate by exchanging
request/response messages with various parameters, except
for the underlying network protocols and structures for trans-
mitting messages. This means that FuzzDocs can be easily
extended to other API implementations by modifying the
method for assembling messages.

C. NESTED JSON PARAMETERS

For now, FuzzDocs cannot extract message parameters with
nested JSON objects from descriptions in API documents.
However, this limitation does not mean that FuzzDocs cannot
use nested JSON-type parameters for security testing at all.
If API documents contain concrete examples for the nested
JSON parameters, FuzzDocs can extract the parameters from
the examples and mutate them for testing. We plan to resolve
this limitation in our future work.

IX. CONCLUSION

In this work, we have proposed FuzzDocs, the first document-
based black-box IoT testing framework. To achieve more
automatic and effective security testing for IoT devices,
section-tree-based document parsing enables FuzzDocs to
extract API specifications from human-readable API doc-
uments and creates valid-enough input messages based

VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

IEEE Access

on them. Implementing the prototype of FuzzDocs and evalu-
ating it in real-world IoT environments showed that FuzzDocs
outperformed existing frameworks in testing coverage and
uncovered 35 potential vulnerabilities in five IoT devices,
including two DoS vulnerabilities.

ACKNOWLEDGMENT
(Myoungsung You and Yeonkeun Kim contributed equally to
this work.)
REFERENCES
[1] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging

[2]

[3]
[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]
[13]
[14]
[15]

[16]

[17]

[18]
[19]

[20]

[21]

smart home applications,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2016, pp. 636-654.

E. Ronen and A. Shamir, “Extended functionality attacks on IoT devices:
The case of smart lights,” in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroSP), Mar. 2016, pp. 3-12.

R. Graham, “Mirai and IoT botnet analysis,” in Proc. RSA Conf., 2017,
pp. 1-63.

J. Kim, J. Yu, H. Kim, F. Rustamov, and J. Yun, “FIRM-COV: High-
coverage greybox fuzzing for IoT firmware via optimized process emu-
lation,” IEEE Access, vol. 9, pp. 101627-101642, 2021.

D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards automated
dynamic analysis for Linux-based embedded firmware,” in Proc. Netw.
Distrib. Syst. Secur. Symp. (NDSS), 2016, p. 1.

G. Hernandez, M. Muench, D. Maier, A. Milburn, S. Park, T. Scharnowski,
T. Tucker, P. Traynor, and K. R. Butler, “FIRMWIRE: Transparent
dynamic analysis for cellular baseband firmware,” in Proc. NDSS, 2022,
pp. 1-19.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “FIRM-
AFL: High-throughput greybox fuzzing of IoT firmware via augmented
process emulation,” in Proc. USENIX Secur. Symp. (USENIX Security),
2019, pp. 1099-1114.

V.-T. Pham, M. Bohme, and A. Roychoudhury, “AFLNET: A greybox
fuzzer for network protocols,” in Proc. IEEE 13th Int. Conf. Softw. Test.,
Validation Verification (ICST), Oct. 2020, pp. 460—465.

J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “IoTFuzzer: Discovering memory corruptions in
IoT through app-based fuzzing,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2018, pp. 1-15.

X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and Y. Xiang,
“Snipuzz: Black-box fuzzing of IoT firmware via message snippet infer-
ence,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2021,
pp. 337-350.

N. Redini, A. Continella, D. Das, G. De Pasquale, N. Spahn, A. Machiry,
A. Bianchi, C. Kruegel, and G. Vigna, “Diane: Identifying fuzzing triggers
in apps to generate under-constrained inputs for IoT devices,” in Proc.
IEEE Symp. Secur. Privacy (SP), May 2021, pp. 484-500.

Boofuzz: Network Protocol Fuzzing for Humans. Accessed: Sep. 22, 2022.
[Online]. Available: https://boofuzz.readthedocs.io/en/stable/

Bed—A Network Protocol Fuzzer. Accessed: Sep. 22, 2022. [Online].
Available: https://www.kali.org/tools/bed/

Royal Philips Electronics. Philips Hue. Accessed: Sep. 22, 2022. [Online].
Available: http://www2.meethue.com/en-us

Shelly Cloud. [Online]. Accessed: Sep. 22,
https://shelly.cloud/

X. Wang, Y. Sun, S. Nanda, and X. Wang, “Looking from the mirror:
Evaluating IoT device security through mobile companion apps,” in Proc.
USENIX Secur. Symp. (USENIX Security), 2019, pp. 1151-1167.

H. Garg and M. Dave, “Securing IoT devices and securely connecting the
dots using REST API and middleware,” in Proc. 4th Int. Conf. Internet
Things, Smart Innov. Usages (I0T-SIU), Apr. 2019, pp. 1-6.

J.-Y. Yu and Y.-G. Kim, “Analysis of IoT platform security: A survey,” in
Proc. Int. Conf. Platform Technol. Service (PlatCon), Jan. 2019, pp. 1-5.

P. P. Ray, “A survey of IoT cloud platforms,” Future Comput. Informat. J.,
vol. 1, nos. 1-2, pp. 35-46, Dec. 2016.

Shelly Plugs: The WiFi Smart Plug That Fits Everywhere. Accessed:
Sep. 22, 2022. [Online]. Available: https://shelly.cloud/products/shelly-
plug-s-smart-home-automation-device/

Shelly Cloud API. Accessed: Sep. 22, 2022. [Online]. Available:
https://shelly-api-docs.shelly.cloud/gen1/

2022. Available:

VOLUME 10, 2022

(22]

(23]

(24]

[25]

(26]
(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]
(37]

(38]

(39]

[40]

[41]

(42]
[43]

[44]

(45]

[46]

(47]

(48]

Curl: Command Line Tool and Library for Transferring Data With URLs.
Accessed: Sep. 22, 2022. [Online]. Available: https://curl.se/

P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer, “Firm-
Fuzz: Automated IoT firmware introspection and analysis,” in Proc. 2nd
Int. ACM Workshop Secur. Privacy Internet-of-Things, 2019, pp. 15-21.
M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “FirmAE: Towards
large-scale emulation of IoT firmware for dynamic analysis,” in Proc.
Annu. Comput. Secur. Appl. Conf., Dec. 2020, pp. 733-745.

C. Song, B. Yu, X. Zhou, and Q. Yang, “SPFuzz: A hierarchical scheduling
framework for stateful network protocol fuzzing,” IEEE Access, vol. 7,
pp. 18490-18499, 2019.

FFuF—Fuzz Faster U Fool. Accessed: Sep. 22, 2022. [Online]. Available:
https://github.com/ffuf/ffuf

Doona—Network Fuzzing Tool. Accessed: Sep. 22, 2022. [Online]. Avail-
able: https://github.com/wireghoul/doona

Z. Shu and G. Yan, “IoTInfer: Automated blackbox fuzz testing of IoT
network protocols guided by finite state machine inference,” IEEE Internet
Things J., early access, Jun. 13, 2022, doi: 10.1109/JI0T.2022.3182589.
American Fuzzy Lop. Accessed: Sep. 22, 2022. [Online]. Available:
http://lcamtuf.coredump.cx/afl/

S. Vasile, D. Oswald, and T. Chothia, ‘“Breaking all the things—A system-
atic survey of firmware extraction techniques for IoT devices,” in Proc.
Int. Conf. Smart Card Res. Adv. Appl. Cannes, France: Springer, 2018,
pp.- 171-185.

T. N. Phu, K. H. Dang, D. N. Quoc, N. T. Dai, and N. N. Binh, ““A novel
framework to classify malware in MIPS architecture-based IoT devices,”
Secur. Commun. Netw., vol. 2019, Dec. 2019, Art. no. 4073940.

C. Palmiero, G. Di Guglielmo, L. Lavagno, and L. P. Carloni, “Design
and implementation of a dynamic information flow tracking architecture to
secure a RISC-V core for IoT applications,” in Proc. IEEE High Perform.
Extreme Comput. Conf. (HPEC), Sep. 2018, pp. 1-7.

M. Hammad, J. Garcia, and S. Malek, ““A large-scale empirical study on the
effects of code obfuscations on Android apps and anti-malware products,”
in Proc. 40th Int. Conf. Softw. Eng., May 2018, pp. 421-431.

The LIFX Switch Range Just Got a Whole Lot Smarter. Accessed:
Sep. 22, 2022. [Online]. Available: https://api.developer.lifx.com/

P. A. Ly, C. Pedrinaci, and J. Domingue, “‘Automated information extrac-
tion from web APIs documentation,” in Proc. Int. Conf. Web Inf. Syst. Eng.
Berlin, Germany: Springer, 2012, pp. 497-511.
Philips Hue. Accessed: Sep. 22, 2022.
http://www2.meethue.com/en-us

Google Cloud IoT Rest API. Accessed: Sep. 22, 2022. [Online]. Available:
https://cloud.google.com/iot/docs/reference/cloudiot/rest

Google Home Rest API. Accessed: Sep. 22, 2022. [Online].
Available: https:/rithvikvibhu.github.io/GHLocal Api/#section/Google-
Home-Local-API

KAA IoT Platform Rest API. Accessed: Sep. 22, 2022. [Online]. Available:
https://docs.kaaiot.io/KAA/docs/v1.3.0/Features/Device-management/
EPR/REST-API/

Microsoft IoT Hub Rest API. Accessed: Sep. 22, 2022. [Online]. Available:
https://docs.microsoft.com/en-us/rest/api/iothub/

Rest API for Oracle Internet of Things Cloud Service. Accessed:
Sep. 22, 2022. [Online]. Available: https://docs.oracle.com/en/cloud/
paas/iot-cloud/iotrg/rest-endpoints.html

Losant IoT Platform Rest API. Accessed: Sep. 22, 2022. [Online]. Avail-
able: https://docs.losant.com/rest-api/data/

Smartthings API (1.0-Preview). Accessed: Sep. 22, 2022. [Online]. Avail-
able: https://developer-preview.smartthings.com/docs/api/public

S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm, “DOM-based content
extraction of HTML documents,” in Proc. 12th Int. Conf. World Wide Web,
2003, pp. 207-214.

A. Rodriguez, ‘“‘Restful web services: The basics,” IBM Developer Works,
Armonk, NY, USA, Tech. Rep. 33, 2008.

H. Zhong, L. Zhang, T. Xie, and H. Mei, ‘“Inferring resource specifications
from natural language API documentation,” in Proc. IEEE/ACM Int. Conf.
Automated Softw. Eng., Nov. 2009, pp. 307-318.

C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in Proc. 52nd Annu. Meeting Assoc. Comput. Linguistics, Syst.
Demonstrations, 2014, pp. 55-60.

G. Angeli, M. J. J. Premkumar, and C. D. Manning, “‘Leveraging linguistic
structure for open domain information extraction,” in Proc. 53rd Annu.
Meeting Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural Lang.
Process., vol. 1, 2015, pp. 344-354.

[Online]. Available:

102419

http://dx.doi.org/10.1109/JIOT.2022.3182589

IEEE Access

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for loT

[49]
[50]
[51]

[52]

[53]
[54]

[55]

[56]

Beautiful Soup Documentation. Accessed: Sep. 22, 2022. [Online]. Avail-
able: https://beautiful-soup-4.readthedocs.io/en/latest/

Fuzzing: Breaking Things With Random Inputs. Accessed: Sep. 22, 2022.
[Online]. Available: https://www.fuzzingbook.org/html/Fuzzer.html/
TCPDUMP and LIBPCAP. Accessed: Sep. 22, 2022. [Online]. Available:
https://www.tcpdump.org/

D. Romano, M. Di Penta, and G. Antoniol, “‘An approach for search based
testing of null pointer exceptions,” in Proc. 4th IEEE Int. Conf. Softw. Test.,
Verification Validation, Mar. 2011, pp. 160-169.

Hue Configuration API. Accessed: Sep. 22, 2022. [Online]. Available:
https://developers.meethue.com/develop/hue-api/7-configuration-api/
PDF Parser and Analyzer for Python. Accessed: Sep. 22, 2022. [Online].
Available: https://pypi.org/project/pdfminer/

U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S—A pub-
lish/subscribe protocol for wireless sensor networks,” in Proc. IEEE
Int. Conf. Commun. Syst. Softw. Middleware Workshops (COMSWARE),
Jan. 2008, pp. 791-798.

C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An application pro-
tocol for billions of tiny internet nodes,” IEEE Internet Comput., vol. 16,
no. 2, pp. 62-67, Mar. 2012.

MYOUNGSUNG YOU received the B.S. degree
in computer science from Chungbuk National
University, South Korea, and the M.S. degree in
information security from KAIST, where he is cur-
rently pursuing the Ph.D. degree with the School
of Electrical Engineering. His research interests
include programmable network data planes, cloud
security, and distributed systems.

YEONKEUN KIM received the B.S. degree in
computer science engineering from the Ulsan
National Institute of Science and Technology
(UNIST), South Korea, and the M.S. degree in
information security from KAIST, where he is
currently pursuing the Ph.D. degree with the Grad-
uate School of Information Security, KAIST. His
research interests include network security issues
of the IoT and embedding systems.

JAEHAN KIM received the B.S. and M.S. degrees
from the School of Electrical Engineering, KAIST,
where he is currently pursuing the Ph.D. degree.
His research interests include cyber threat intel-
ligence, natural language processing, and data
mining.

102420

il .

MINIJAE SEO received the B.S. degree in com-
puter engineering from Mississippi State Uni-
versity, and the M.S. degree from the Graduate
School of Information Security, KAIST. He is
currently a Researcher at the National Security
Research Institute, Daejeon, South Korea. His cur-
rent research interests include software-defined
networking security, network fingerprinting, and
deep learning—based network systems.

SOOEL SON (Member, IEEE) received the Ph.D.
degree from the Department of Computer Sci-
ence, The University of Texas at Austin. He is an
Associate Professor at the School of Computing,
KAIST. He is working on various topics regarding
web security and privacy.

SEUNGWON SHIN (Member, IEEE) received
the B.S. and M.S. degrees from KAIST, both in
electrical and computer engineering, and the Ph.D.
degree in computer engineering from the Electri-
cal and Computer Engineering Department, Texas
A&M University. He is an Associate Professor at
the School of Electrical Engineering, KAIST. His
research interests include software-defined net-
working security, dark web analysis, and cyber
threat intelligence.

SEUNGSOO LEE received the B.S. degree
in computer science from Soongsil University,
South Korea, and the M.S. degree in information
security from KAIST, and the Ph.D. degree in
information security from KAIST, in 2020. He is
an Assistant Professor at the Department of Com-
puter Science and Engineering, Incheon National
University. His research interests include secure
and robust SDN controllers and protecting SDN
environments from threats.

VOLUME 10, 2022

