
Received 18 July 2022, accepted 12 September 2022, date of publication 20 September 2022, date of current version 30 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3208146

FuzzDocs: An Automated Security Evaluation
Framework for IoT
MYOUNGSUNG YOU1, YEONKEUN KIM2, JAEHAN KIM1, MINJAE SEO3,
SOOEL SON 2, (Member, IEEE), SEUNGWON SHIN 1, (Member, IEEE),
AND SEUNGSOO LEE 4
1School of Electrical Engineering, KAIST, Yeonsu-gu, Daejeon 34141, Republic of Korea
2School of Computing, KAIST, Yeonsu-gu, Daejeon 34141, Republic of Korea
3National Security Research Institute, Yeonsu-gu, Daejeon 34044, Republic of Korea
4Department of Computer Science and Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea

Corresponding author: Seungsoo Lee (seungsoo@inu.ac.kr)

This work was supported by Incheon National University (International Cooperative) Research Grant in 2022.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ABSTRACT As Internet of Things (IoT) devices have rooted themselves in the daily life of billions of people,
security threats targeting IoT devices are emerging rapidly. Thus, IoT vendors have employed security testing
frameworks to examine IoT devices before releasing them. However, existing frameworks have difficulty
providing automated testing, as they require a lot of manual effort to support new devices due to the lack of
information about the input formats of the new devices. To address this challenge, we introduce FuzzDocs,
a document-based black-box IoT testing framework designed to automatically analyze publicly accessible
API documents about target IoT devices and extract information, including valid inputs used to call each
functionality of the target devices. Based on the extracted information, it generates valid-enough test inputs
that are not easily rejected by target devices but can trigger vulnerabilities deep inside them. This document-
based input generation allows FuzzDocs to support new devices without manual work, as well as provide
effective security testing. To prove its feasibility, we evaluated FuzzDocs in a real-world IoT environment,
and the results showed that FuzzDocs extracted input formats with 93% accuracy from hundreds of pages
of documents. Also, it outperformed the existing frameworks in testing coverage and found 35 potential
vulnerabilities, including two unexpected system failures in five popular IoT devices.

15 INDEX TERMS IoT security, IoT security scanning, fuzz testing, document-based fuzzing.

I. INTRODUCTION16

Currently, IoT (Internet of Things) devices are getting smarter17

and being actively deployed in diverse networking envi-18

ronments, such as factory management systems and home19

automation services. With the dramatic advances in hard-20

ware and software technology, complicated functions can be21

operated using a small chip or device and fully optimized.22

Thus, IoT devices are now capable of more advanced and23

complicated functions than in their early stages, and they have24

become an essential component of people’s daily lives.25

Now that IoT devices can manage and store much more26

data, including some sensitive information, IoT security has27

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masucci .

become a major issue. We can easily see many real-world 28

cases showing how IoT devices are vulnerable [1], [2], [3]. 29

Worse, the overheated IoT market encourages IoT vendors 30

to aggressively release new devices, but a lack of budget 31

discourages them from conducting sufficient security checks. 32

For the same reason, even if vulnerabilities are found in 33

already-released devices, IoT vendors are unlikely to have the 34

chance or capability to fix the vulnerabilities properly. 35

One practical solution to address this problem is to iden- 36

tify vulnerabilities in IoT devices using automated tools and 37

take appropriate security precautions. Several researchers 38

have proposed a series of solutions to test the security of 39

IoT devices, ranging from fuzzing device firmware through 40

emulation [4], [5], [6], [7] to solutions that test IoT devices 41

directly over the network [8], [9], [10], [11], [12], [13]. 42

102406 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-0904-2875
https://orcid.org/0000-0002-1077-5606
https://orcid.org/0000-0002-6883-1869
https://orcid.org/0000-0002-1570-8576

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

Firmware fuzzing can provide comprehensive and accurate43

security testing by emulating and analyzing firmware through44

software fuzzing techniques. However, obtaining firmware45

is challenging even for vendors because of the highly frag-46

mented IoT industry, which involves many small integration47

and distribution vendors (e.g., OEMs) [10]. Moreover, ana-48

lyzing firmware requires a lot of manual effort due to the49

diversity of platforms used by IoT devices [9], [11]. Another50

line of research finds vulnerabilities without firmware by51

sending randomized inputs to IoT devices over the network52

(i.e., network-based fuzzing) [8], [9], [10], [11], [12], [13].53

Unfortunately, IoT devices reject invalid inputs that vio-54

late their input format, rather than processing them. Thus,55

network-based fuzzers rely on additional software analy-56

sis [9], [11] or well-refined seeds [8], [10], [12], [13] (or57

manually created message formats) to create inputs for test-58

ing. However, this prevents automated testing and limits test59

coverage. As a result, due to the difficulty of obtaining and60

analyzing firmware and the limitation of seed inputs, existing61

solutions fail to provide effective and automated security62

testing for newly emerging IoT devices.63

A. OUR APPROACH64

In this paper, we propose a document-based black-box IoT65

testing framework, named FuzzDocs, to achieve automatic66

and effective security testing for IoT devices. The key idea67

is based on the observation that most IoT vendors make API68

documents of IoT devices publicly available so third-party69

developers (or users) can build various IoT systems. These70

API documents contain information about valid inputs for71

calling IoT devices’ functionality (i.e., API). Thus, FuzzDocs72

can useAPI documents as guidelines for test input generation.73

To this end, it automatically analyzes human-readable API74

documents of various types, using heuristics and NLP-based175

methods to extract input formats for IoT devices. Based on the76

input formats, FuzzDocs generates valid-enough inputs for77

testing that are not rejected by IoT devices at early stages but78

can trigger security bugs deep inside them. After transmitting79

valid-enough inputs, it detects vulnerabilities by analyzing80

the responses of the IoT devices. This design allows Fuz-81

zDocs to test all device functionalities listed in API docu-82

ments automatically and effectivelywithout software analysis83

(e.g., firmware) or manually provided seeds. That is, to sup-84

port a new device, FuzzDocs requires only API documents85

for the device, rather than manual effort by security experts.86

We implement a prototype of FuzzDocs and compare87

it with existing solutions in real-world IoT environments,88

including Hue [14] and Shelly [15] devices. As a result,89

FuzzDocs extracted correct input formats with 93% accuracy90

from 134 APIs (i.e., functionalities) for the five devices used91

in the experiment. FuzzDocs also outperforms other solutions92

in terms of test coverage and has newly discovered 35 poten-93

tial vulnerabilities in five popular IoT devices, including two94

DoS vulnerabilities.95

1NLP refers to Natural Language Processing.

FIGURE 1. General communication model of modern IoT devices. IoT
devices receive a request message (input) from endpoints (users or other
devices) and then transmit a response message that contains the
execution result.

In summary, our contributions are as follows: 96

• We present a test input generation model leveraging 97

API documents for automatically identifying potential 98

vulnerabilities in target IoT devices. 99

• We present the design and implementation of a new 100

document-based testing framework for IoT, called Fuz- 101

zDocs, which is capable of automatically generating the 102

test inputs from the API documents and detecting the 103

vulnerabilities in the target devices. 104

• We evaluate FuzzDocs in real-world environments, 105

demonstrating that the effectiveness of FuzzDocs is 106

superior to existing solutions and discovering 35 poten- 107

tial vulnerabilities in five IoT devices. 108

109

B. OUTLINE 110

The rest of this paper is organized as follows. Section II 111

gives the required background and our insights of FuzzDocs 112

with a running example. Section III reviews the previous 113

studies and their limitations. The overall system design is 114

presented in Section IV. Section V and VI detail two key 115

modules of FuzzDocs, respectively. The evaluation results are 116

summarized in Section VII, and Section VIII discusses the 117

limitations of the current design. Finally, we conclude this 118

paper in Section IX. 119

II. BACKGROUND AND MOTIVATION 120

A. COMMUNICATION MODEL OF IoT DEVICES 121

Unlike traditional embedded devices, most IoT devices inter- 122

act with other endpoints (i.e., devices or users) over the 123

network. As IoT devices become more diverse and com- 124

plex, interoperability between these devices gains impor- 125

tance. Thus, most IoT vendors open application programming 126

interfaces (APIs) to effectively interact with their IoT devices. 127

The APIs allow developers to build various IoT ecosystems 128

(e.g., smart homes and smart factories) by connecting multi- 129

ple IoT devices, regardless of vendor. 130

Figure 1 shows an overview of the communication model 131

of modern IoT devices. APIs and the API module enable the 132

endpoints to invoke the IoT device’s functionality by send- 133

ing request messages [9], [10], [11], [16]. For example, the 134

endpoints transmit a request message to the device through 135

the network (e.g., using Wi-Fi). The device then parses the 136

VOLUME 10, 2022 102407

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

FIGURE 2. Example of partial API document for a popular IoT device [15].
The API document is publicly accessible and provides detailed
information (i.e., API specifications) needed to create a valid request
message to call the API.

message to extract its parameters and do the job requested137

(e.g., turn on the light). Most IoT devices have their ownmes-138

sage format for efficient communications. Thus, if the device139

finds any violations during the parsing process, it immedi-140

ately rejects the request and transmits an error message to the141

sender (i.e., the endpoint), notifying them that the message142

has been rejected. Also, even if the request message complies143

with the format, an error message could be generated if the144

parameter values in the request violate the expected scope.145

Otherwise, the device executes the corresponding function146

using the extracted parameters and sends a response message147

with the execution result.148

There are many ways to implement the APIs in the IoT149

devices, but most IoT vendors adopt HTTP-based APIs (e.g.,150

REST API) due to their flexibility, scalability, and simplic-151

ity [17], [18], [19]. Therefore, we focus on HTTP-based APIs152

in this work for the sake of simplicity.153

B. API DOCUMENTS FOR IoT DEVICES154

Most IoT vendors provide an API document to help devel-155

opers understand how to use their device APIs. Figure 2156

depicts the partial API document for the popular IoT device157

Shelly PlugS [20]. This API document is publicly accessible158

on the Internet [21] and semi-structured and formatted in159

HTML pages, like most API documents. An API document160

typically starts with the details of the API specifications. API161

specifications are information (e.g., URL, HTTP method and162

parameters) required to create a request message to call a spe-163

cific API of the device. Followed by the API specifications,164

some concrete examples such as a JSON object for message165

parameters and CURL commands [22] are often provided to166

demonstrate the utilization of such APIs.167

Given the purpose of the API document, it is reasonable for168

the vendors to make human readability a priority. For exam-169

ple, an API document describes the IoT device’s APIs on a170

separate page, one by one, according to each URL and HTTP171

method. On the same page, the document explains each API172

FIGURE 3. Examples of response messages received from the IoT
device [20]. The device would transmit different messages resulting from
processing the input message.

specification by splitting it into sections. The tables or lists in 173

each section are employed to describe API specifications that 174

contain multiple descriptions (e.g., parameters). 175

C. MOTIVATING EXAMPLE 176

As discussed earlier, the API document guides the user 177

through the process of creating an valid request message 178

to execute a specific function (API) of the IoT device. For 179

example, when calling the ‘settings’ API, we must set the 180

‘default_state’ parameter to one of the three predefined 181

strings (‘off’, ‘on’, or ‘last’) as described in the ‘Param- 182

eters’ section in Figure 2. When we send a valid request 183

message created according to the requirements, the device 184

sends the response message containing the API execution 185

results, as shown in Figure 3a. 186

Let us consider an example in which a user intentionally 187

builds an invalid request message with parameters that vio- 188

late the requirements from the API document in Figure 2. 189

For instance, we set the ’default_state’ parameter to 190

a random string rather than the predefined values. If the 191

device appropriately handles the invalid request message, 192

it sends the response message indicating that the message 193

includes invalid parameters (e.g., HTTP 400 bad requests), 194

as shown in Figure 3b. However, some invalid request mes- 195

sages cause unexpected errors that the device cannot handle. 196

If we set ’default_state’ to a very long random string, 197

unexpected errors such as buffer overflows may occur when 198

the device processes the parameter. In this case, the device 199

sends response messages indicating the unhandled errors 200

(e.g., HTTP 500 internal errors), which could lead to severe 201

security vulnerabilities. Figure 3c shows the result of this 202

example, which makes the device unable to respond to any 203

further request messages until it is rebooted (i.e., DoS). 204

102408 VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

TheAPI document offers information about themajority of205

APIs supported by the IoT device. Therefore, we can discover206

potential security vulnerabilities in most of the device’s func-207

tions by sending invalid request messages, as demonstrated208

in Figure 3. The biggest challenge is that it requires man-209

ual effort to analyze the document and generate invalid but210

high-quality request messages that are effective enough to211

cause internal errors. This limitation motivates us to design212

a document-based testing framework for IoT devices that is213

automated.214

III. RELATED WORK215

Fuzz testing (i.e., fuzzing) is one of the dominant solutions for216

testing IoT devices as well as software. Several solutions [4],217

[5], [6], [7], [8], [9], [10], [11], [16], [23], [24], [25], [26],218

[27], [28], [29] have emerged to discover security bugs in IoT219

devices, and most of them adopt black-box fuzzing due to the220

closed source of target devices and the ease of testing. These221

previous black-box fuzzing techniques for IoT devices can be222

classified into three main categories based on the way they223

work: firmware-based fuzzing [4], [5], [6], [7], [23], [24],224

network-based fuzzing [8], [10], [25], [26], [27], [28], and225

companion-app-based fuzzing [9], [11], [16]. However, these226

prior studies have two limitations: (i) the amount of manual227

effort required (i.e., seeds or settings), and (ii) restricted test-228

ing coverage. These limitations make these prior studies hard229

to automate and also reduce their efficiency. We summarize230

the prior studies in Table 1 and discuss their approach and231

limitations in detail.232

A. FIRMWARE-BASED FUZZING233

The key purpose of firmware-based fuzzing is to emulate234

the target IoT device firmware, which is dedicated software235

for the devices to discover vulnerabilities in them. Although236

this approach may be effective enough to test, it has some237

critical limitations from an automation point of view. First,238

the acquisition of the device firmware is a challenging task239

itself. As demonstrated by several previous works [4], [5],240

[6], [7], [23], [24], [29], IoT vendors tend not to release their241

device firmware to the public due to concerns about loss242

prevention and general security. Thus, without the published243

firmware, security experts with hardware knowledge could244

extract firmware directly from the device through debug-245

ging ports (e.g., UART [30]). However, most IoT vendors246

ship their IoT devices without debugging ports to prevent247

hardware-based firmware leakage [9].248

Second, even if we somehow obtain the firmware, emula-249

tion testing is difficult because there is no unified firmware250

analysis method due to the diversity of IoT device architec-251

tures (e.g., MIPS [31], RISC-V [32]). For instance, we have252

to set up various configurations such as firmware unpack-253

ing (or decryption) and NVRAM parameter settings [5] to254

set up the made-to-order emulation environments, using a255

lot of manual effort. This shows that the firmware-based256

fuzzing method is not suitable for an automated testing257

system.258

B. NETWORK-BASED FUZZING 259

In order to test IoT devices without firmware, researchers 260

have developed network-based fuzzing [10], [25], [26], [27], 261

[28] that tests the security of IoT devices by sending mutated 262

messages directly to the devices over networks. However, 263

most IoT devices have strict message formats in network 264

communication and reject invalid messages. That is, input 265

messages created in a brute-force manner are easily rejected 266

by the devices, reducing the effectiveness of fuzzing tests [9], 267

[11]. Thus, network-based fuzzing first takes a set of seed 268

messages (or grammar) from security experts and mutates the 269

seed messages to create input messages for testing. After this 270

method sends the mutated input messages to the IoT devices, 271

it analyzes the response messages to detect potential vulnera- 272

bilities. Some researchers [10] use the response messages as 273

feedback to create subsequent input messages, increasing the 274

possibility of triggering more unusual responses. 275

Network-based fuzzing does not require firmware analysis, 276

but well-formed seed messages are essential, which means its 277

success depends strongly on the quality of the seed messages. 278

Also, if the seed messages cannot invoke a specific API of 279

the target devices, the API cannot be tested by network-based 280

fuzzing, which significantly reduces the coverage of testing. 281

Moreover, creating high-quality seed messages requires a lot 282

of manual effort by security experts, which is not suitable for 283

automated testing. 284

C. COMPANION-APP-BASED FUZZING 285

In a parallel line of work, researchers [9], [11], [16] leverage a 286

companion application, which is a mobile app for IoT devices 287

instead of firmware. This method creates input messages by 288

analyzing companion apps. Technically, it retrieves message 289

creation functions of companion apps using reverse engineer- 290

ing. Then, it mutates the retrieved functions’ parameters at 291

runtime to send mutated input messages to IoT devices. 292

However, this method suffers from two fundamental prob- 293

lems. The first is the limited fuzzing coverage; this method 294

cannot guarantee that all the device’s APIs (functionalities) 295

are fully tested because there still remain theAPIs not invoked 296

during the automated companion app execution. In this case, 297

security experts need to manually click all the UIs in the app 298

to trigger the remaining APIs, which takes a lot of manual 299

effort and is not suitable for automated testing. Moreover, this 300

method is unable to test APIs that are not called through the 301

app’s UI, such as APIs that change internal device settings 302

(see Section VII-C1). Second, if the companion app is obfus- 303

cated, this method is impractical because code obfuscation 304

prevents app reverse engineering. Such code obfuscation has 305

become very common in mobile environments due to the 306

surge in mobile app security issues [33]. 307

D. OUR APPROACH 308

Firmware-based fuzzing is not practical for automated test- 309

ing. Other fuzzing methods still require a lot of manual work 310

and have limited test coverage due to the lack of information 311

about IoT devices’ input message formats. FuzzDocs can 312

VOLUME 10, 2022 102409

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

TABLE 1. Summary of related work on IoT device fuzzing. While existing solutions require firmware analysis or a lot of manual work by security experts,
such as generating seed messages, FuzzDocs can automatically test the security of IoT devices without such a burden.

FIGURE 4. Overall workflow of FuzzDocs. The information extraction
module takes API documents and creates message formats for security
testing. The fuzzing module finds potential vulnerabilities in the IoT
device by sending test messages created from the message formats.

tackle these limitations. It leverages the publicly available313

API documents (see Figure 2) as a testing guideline for314

functionalities (APIs) of IoT devices. By analyzingAPI docu-315

ments, FuzzDocs creates effective input messages for testing316

all functionalities (APIs) described in API documents and317

detects potential security holes in target devices in a fully318

automated manner.319

IV. SYSTEM DESIGN320

In this section, we provide design requirements for FuzzDocs321

and its overall workflow.322

A. DESIGN REQUIREMENTS323

To effectively and efficiently examine the security of IoT324

devices by leveraging their API documents, the requirements325

driving our framework can be summarized as follows.326

1) R1: AUTOMATING INFORMATION EXTRACTION327

As various IoT device vendors have provided their own APIs,328

the format of the API document may differ depending on each329

vendor, meaning that there is no unifiedAPI document format330

for IoT devices. For instance, from the separate IoT devices,331

some API documents use table tags (e.g., <tr> or <td>),332

while others use division tags (i.e., <div>) with custom333

styles to describe API specifications. This diversity of format334

makes extracting API specifications from an API document335

difficult for a machine. Moreover, it is time-consuming to336

also extract API specifications from the document manu- 337

ally. To resolve these problems, our framework centers on 338

automating the API specification extraction process. 339

2) R2: CREATING EFFECTIVE MESSAGE FORMAT 340

In general, IoT devices reject invalid API request messages 341

at early stages (i.e., message parsing phases) that violate their 342

predefined message format. If we know the detailed message 343

formats for each target device, we can easily create input 344

(request) messages that are valid enough not to be easily 345

rejected by the devices but can trigger unexpected internal 346

errors beyond the parsing state. However, manually creating 347

such detailed message formats for target devices is time- 348

consuming. Therefore, our framework needs to automatically 349

generate effective and detailed message formats for each API 350

to create valid enough input messages for testing. 351

3) R3: MONITORING INTERNAL STATE 352

It is important to recognize if the target IoT device is entering 353

an abnormal state during security testing. The best way to 354

know the internal states of the device is to directly examine 355

state information through its firmware. In other words, with- 356

out direct access to the firmware, it is challenging to identify 357

the device’s internal state. This lack of state information 358

makes it hard to determine whether the input messages sent 359

by our framework are triggering potential security bugs on 360

the device. Thus, our framework should provide a remote and 361

automated mechanism to recognize the internal states of the 362

target device. 363

B. DESIGN OVERVIEW 364

Figure 4 illustrates the key modules of FuzzDocs and its over- 365

all workflow. There are two main modules: the information 366

extraction module (top) and the fuzzing module (bottom). 367

The information extraction module takes and parses API 368

documents in various formats to create a layer of abstrac- 369

tion around the target IoT device’s API request message 370

formats. (1) First, it extracts API specifications (e.g., URLs, 371

parameters) required for creating valid API request messages 372

from the input API document. When doing so, it uses text- 373

based document parsing to process API documents regard- 374

less of their format (R1). (2) Next, it utilizes natural lan- 375

guage processing (NLP) techniques to analyze the extracted 376

102410 VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

information and create a message format for each API. Each377

message format contains crucial information for testing the378

corresponding API (R2). It then passes the message format379

to the fuzzing module.380

The fuzzing module aims to discover potential security381

bugs inside the target IoT device by transmitting input382

messages. (3) Based on the message format, the module383

uses elaborate mutation strategies to automatically create384

valid-enough input messages that are not easily filtered by385

the device and can cause security bugs deep inside the device.386

(4) After sending the input message, this module monitors the387

response messages and networking behaviors of the device388

to remotely determine whether the input messages caused the389

device’s security bugs (R3). It also offers detailed reporting of390

bug-inducing messages to aid security experts. The following391

sections describe each module of FuzzDocs in detail.392

V. INFORMATION EXTRACTION MODULE393

The key idea of the information extraction module is to394

reverse engineer the message formats of the target IoT device395

by analyzing its API document. To do this, the module takes396

an API document containing information about a specific397

API. It then produces a message format, a machine-readable398

description for creating valid request messages for the corre-399

sponding API.400

A. DOCUMENT ANALYSIS401

First, the module takes an API document in an HTML for-402

mat and parses it to extract API specifications such as a403

URL, an HTTP method, and parameters. When parsing the404

API document, this module needs to focus on text (i.e.,405

<tag>text</tag>) rather than a specific type or structure of406

HTML tags (e.g., <table>, <div>) because the text is more407

likely to be related to the API specification and each docu-408

ment uses a different type of tag. However, although we can409

extract all the text from the document except for the tags,410

it is challenging to determine whether an individual text is411

directly related to API specifications without any contextual412

information because the document is a mixture of a lot of413

text explaining different content. Fortunately, a typical API414

document has structured guidelines that inform uswhich texts415

are relevant to the API specifications, so the module can416

leverage this.417

As illustrated in Figure 5 (a), the API document is divided418

into multiple sections (and sub-sections), and a section title419

indicates the main content of each section. For example,420

if the section title is ‘‘Path Params’’, we can guess that421

all the following text in that section contains descriptions422

(e.g., name, value type) about the path parameters. Based on423

these findings, this module extracts the text in the document424

and tries to build a section tree that shows the relationship425

between the text and section titles.426

1) BUILDING SECTION TREE427

Before building a section tree of an API document, the428

module conducts the preprocessing as follows to eliminate429

Algorithm 1 Build a Section Tree of an API
Document
1 BuildSectionTree (T)

inputs : A set of HTML tags in an API document
denoted by T ; depth-first search function
DFS; function for adding child node to tree
addChild; function for adding sibling node
to tree addSibling

output: A section tree of the API document
denoted by ST

2 ST ← {root};
3 lt ← root;
4 idx ← 1;
5 H = {< h1 >, . . . , < h6 >, < heading >};
6 foreach an HTML tag ti in DFS(T) do
7 if texts /∈ ti then
8 continue;

9 if ti ∈ H then
10 if ti ≤ lt then
11 addChild(lt , ti, idx);
12 else
13 addSibling(lt , ti, idx);

14 lt ← ti;
15 else
16 addSibling(lt , ti, idx);

17 idx ← idx + 1;

18 return ST ;

unnecessary parts and improve parsing efficiency. First, 430

it removes the optional areas (e.g., sidebars and naviga- 431

tion bars) in the API document, which have no meaning- 432

ful text for the API specifications. Next, it replaces the 433

tags used to emphasize keywords (e.g., , , 434

<italic>) with double quotes when these tags are within 435

the text. For instance, ‘The brightness from’ 436

is replaced with ‘The ‘‘brightness’’ from.’ Normally, such 437

tags are employed to highlight the keywords (e.g., parameter 438

names), so this tag replacement helps the module extract 439

important keywords for the API. 440

After the above preprocessing, the module builds the 441

section tree as described in Algorithm 1. It starts (line 6) by 442

traversing all the HTML tags in the API document (T) in a 443

depth-first search (DFS) order to read the tags in the order 444

they appeared in the API document. For each tag, it checks to 445

see if there is text between the opening (<tag>) and closing 446

(</tag>) pairs of the current tag (ti) (line 7). Note that the 447

module does not consider the text inside a tag’s attributes 448

(e.g., href attribute). If the current tag has text, it creates a 449

new node for the current tag, which contains a type, the found 450

text, and an insertion index (idx). The insertion position of the 451

new node depends on whether the current tag is a title tag (H). 452

In the case of the title tag, the module compares the priority 453

of the last inserted title tag (lt) with the current tag (line 10). 454

VOLUME 10, 2022 102411

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

FIGURE 5. Each section in the API document (a) and a partial section tree originated from it (b) and processed by the information extraction module.
Regardless of the document format, the section tree captures the hierarchical relationship between the texts in the API document and identifies
candidate nodes for each API specification.

TABLE 2. Keywords used as titles of parameter sections in API
documentation.

The lower the level of the title, the higher the priority (i.e.,455

h1 > . . .> h6). If the current tag has a lower priority than456

the last title tag (line 11), the new node becomes a child457

node of the node for the last title tag (i.e., the last title node).458

Otherwise, it becomes the last title node’s sibling node (line459

13). The new node becomes the last title node’s child node460

when the current tag is not a title tag (line 16).461

Let us explore the example of the partial section tree as462

shown in Figure 5 (b), which is derived from the API docu-463

ment [34]. The section tree presents the text nodes (i.e., non-464

title nodes) and the corresponding title nodes as a parent-child465

relationship. That is, all the nodes containing descriptions466

of the path parameters are child nodes of the title node467

whose text is ‘Path Params’. It also expresses the hierarchical468

relationship between sections. The ‘Path Params’ and ‘Body469

Params’ title nodes are child nodes of ‘Parameters’, which is470

the main title of the parameter section.471

2) IDENTIFYING CANDIDATE NODES472

Having created the section tree, the module retrieves the473

candidate nodes whose texts are related to (1) the URL/HTTP474

methods or (2) the parameters of the API described in the475

input API document, and it pushes candidate nodes to a node476

pool. As the first step, it finds the nodes for the URL and477

HTTP methods from the section tree. Both the URL and478

HTTP methods have unique patterns, so we adopt a regular479

expression-basedmethod [35] to easily discover them. In gen-480

eral, the combination of the URL and HTTP methods is a481

unique identifier for APIs, meaning that they usually appear482

at the beginning of the API document. These characteristics 483

are also reflected in the section tree. Thus, if the module 484

finds multiple candidate nodes that include the URL/HTTP 485

method, it selects the node with the lowest index for URL and 486

HTTP methods. It then inserts the selected candidate nodes 487

into the node pool. 488

Next, the module should find candidate nodes for the 489

parameters, but the parameters have no unique patterns, 490

unlike the URL and HTTP methods. Also, parameters are 491

divided into various types according to their position in 492

an input message (e.g., path or body). These characteris- 493

tics prevent the module from determining which nodes are 494

associated with which type of parameters. To resolve this 495

problem, the module leverages title nodes as an indicator 496

for locating the candidate nodes for parameters. For this, 497

we build a dictionary for each type of parameter by collecting 498

the keywords used as titles in the parameter sections from 499

about 100 API documents for 10 popular IoT vendors [15], 500

[36], [37], [38], [39], [40], [41], [42], [43], as shown 501

in Table 2. 502

The module leverages the dictionary for the parameters as 503

follows. It first selects title nodes containing any combination 504

of suffix and prefix. In the section tree shown in Figure 5 505

(b), the ‘‘Path Params’’ and ‘‘Body Params’’ are selected. 506

Then the module designates the child nodes (only non-title 507

nodes) of the selected title nodes as the candidate nodes for 508

corresponding parameters (i.e., path parameters and body 509

parameters) and pushes them into the node pool. In Figure 5 510

(b), the nodes from index 6 to 8 become candidate nodes for 511

path parameters. 512

An API document typically provides examples of request 513

messages (e.g., CURL [22] commands and JSON objects) 514

along with the descriptions of API specifications. Since such 515

examples have crucial information for the message format, 516

the module should identify them. Identifying examples (i.e., 517

specific code) from the API document is not a new topic, 518

so we can just adopt a regular expression-based approach 519

that is similar to prior work in this field [44]. The module 520

102412 VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

TABLE 3. Linguistic units used for text expressing the components of a
parameter.

FIGURE 6. Example of the message format generation step. The fuzzing
module creates a basic block with the nodes highlighted in blue and an
advanced block with red ones.

identifies tree nodes containing examples and assigns them521

as example candidate nodes.522

B. MESSAGE FORMAT GENERATION523

While the previous step centers on locating the candidate524

nodes for a specific API, in this step, the module generates525

a message format for the API based on the candidate nodes.526

The lower part of Figure 6 illustrates the message format527

created from the section tree. The message format comprises528

a basic block, which contains the requirements for a valid529

input message, and an advanced block, which elaborates on530

the message format with more detailed conditions.531

1) CREATING BASIC BLOCK532

The basic block includes the essential parts of the valid input533

messages, so the module begins by analyzing the candidate534

nodes for the URL and HTTP methods from the node pool.535

Filling the HTTP methods is straightforward because we just536

adopt the value from the HTTPmethod candidate nodes (e.g.,537

PUT, DELETE). In contrast, the URL part typically uses a538

local IP address of the device as a hostname to call the API.539

However, the hostname are not included in API documents540

for security reasons, meaning that they are represented as541

symbolic values (e.g., <IP address>/api/light). For this rea- 542

son, the module receives the hostname from the administrator 543

and replaces the symbolic values in the URL. In general, all 544

the APIs of one IoT device use the same hostname, so it 545

receives the hostname only once from the administrator dur- 546

ing the entire testing process. Note that FuzzDocs performs 547

a ping test to verify whether the hostname is valid and sends 548

alerts if the test fails. 549

Other symbolic values inside the URL could be the value 550

of a path or query parameter, and these values are typically 551

denoted via the following syntactic symbols [45]. 552

• Path parameter: ‘{}’, ‘[]’, ‘()’, ‘<>’, and ‘:’. 553

• Query parameter: ‘?’ and ‘&’. 554

By parsing the above syntactic symbols, the module replaces 555

these values with its own symbols ([P:name], [Q:name]) 556

to determine their values when transmitting input messages. 557

For example, the symbolic value ‘/api/light/[selector]’ will be 558

replaced with ‘/api/light/[P:selector]’ because the selector is 559

surrounded by ‘[]’, which means it is the path parameter. 560

Next, the module analyzes the parameter candidate nodes 561

to find the names of each parameter used for the input mes- 562

sages calling the API. As shown in the upper part of Figure 6, 563

the parameter candidate nodes offer plenty of information 564

about what the names and value types are, but we have no 565

idea yet which node is related to which parameter names. 566

To address this problem, the module leverages the linguistic 567

units in a node’s text. As shown in Table 3, the linguistic 568

units in the text of the node vary depending on what kind of 569

parameter information the text represents. For example, if a 570

node’s text is a pre-defined keyword used for data types (e.g., 571

string, integer, or array), it indicates a parameter’s value type. 572

Similarly, if a node is a noun and not a pre-defined keyword, 573

the node is the name of a specific parameter. Based on these 574

findings, the module locates nodes containing a parameter’s 575

name and feeds the names to the basic block. 576

2) CREATING ADVANCED BLOCK 577

The elements in the advanced block are usually the value 578

types, required flags (e.g., optional or mandatory), and a 579

range of allowed values that are used in the parameters. To fill 580

this block, the module revisits the parameter candidate nodes. 581

In the pool, we have marked the nodes with a parameter 582

name, but we should still determine which parameter name 583

the remaining nodes belong to. In general, when writing an 584

API document, the author first gives a parameter’s name 585

and then arranges other information about that parameter. 586

Thus, we leverage the index (idx) of the node we assigned 587

when building the section tree in the previous step. As shown 588

in Figure 6, the nodes ‘11: power’ and ‘14: color’ are the 589

names of body parameters. The nodes between them (i.e., ‘12: 590

string’ and ‘13: The power state you. . . ’) belong to the node 591

‘11: power’ because they are not the name and have a lower 592

index than the next parameter name node, ‘14: color’. In this 593

manner, the module inserts each parameter’s information 594

(e.g., value types and descriptions) into the advanced block. 595

VOLUME 10, 2022 102413

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

TABLE 4. Examples of target relations triples of the ontology of FuzzDocs and the results. After preprocessing, the relation triples of the descriptions are
extracted based on the target (subject; relation; object) formats in the ontology.

While the description of the parameter contains cru-596

cial information for creating effective input messages [46],597

achieving such information is not straightforward because a598

human-readable description is hard for a machine to under-599

stand. For instance, from the description node ‘‘13: The600

power state you want to set on the selector. ‘on’ or ‘off’’ in601

the node pool, we should identify the fact that the value is602

one of the predefined strings (‘on’ or ‘off’), as shown in the603

lower part of Figure 6. To address this task, we adopt natural604

language processing (NLP) to syntactically and semantically605

understand the description and precisely extract the condi-606

tions and formats of the valid input message.607

First, if a description is an incomplete sentence, the mod-608

ule makes the sentence complete as the preprocessing by609

leveraging Stanford CoreNLP [47]. Then, the preprocessed610

description is used to extract detailed information about the611

target parameter. Here, we need to understand the semantic612

relationship between the parameter and a word or a phrase613

meaning the conditions of the valid inputs. Thus, we apply614

the methods of named entity recognition (NER) and relation615

extraction (RE) tasks utilizing Stanford OpenIE [48], a pop-616

ular language analyzer for extracting open-domain relation617

triples represented as (subject; relation; object).618

By analyzing hundreds of API documents, we build an619

ontology of relations based on PoS (part-of-speech) tags620

and phrases for specific relations, which represent conditions621

of valid inputs for given parameters, such as the range of622

numeral values, enumeration of valid values, and exceptional623

formats of values (e.g., IP/MAC address, timestamp). Based624

on the ontology, the module extracts the conditions by seman-625

tically analyzing descriptions based on the ontology and626

adds the conditions to the advanced block. Some examples627

of ontology maintained by FuzzDocs and extracted relation628

triples from some API documents are shown in Table 4.629

3) COMPLEMENTING MISSING INFORMATION630

Lastly, in the case of the example candidate nodes, those631

nodes offer concrete values about a URL, HTTP method,632

or some parameters. The module uses such information to633

supplement missing API specifications that were not iden-634

tified in the previous steps. For example, when example635

candidate nodes have CURL commands, the module extracts636

the correct URL and HTTP method from the commands.637

Then, it uses the extracted information if it fails to locate638

URL/HTTP method candidate nodes. In the case of JSON639

object for the request body, we could obtain body parameters’640

FIGURE 7. Workflow of the fuzzing module. In the input message
creation step, the module creates input messages by using the message
formats and transmits them to the IoT device. It then analyzes the
response messages to detect potential vulnerabilities in the next step.

names and value types. This information is used when the 641

module fails to identify or analyze body parameter candidate 642

nodes. 643

VI. FUZZING MODULE 644

We have discussed creating message formats by parsing the 645

API documents of the IoT device. With these message for- 646

mats, the fuzzingmodule can examine security vulnerabilities 647

in the target IoT device by conducting the following two 648

steps as shown in Figure 7: (i) input message creation and 649

(ii) response analysis. 650

A. INPUT MESSAGE CREATION 651

The left part of Figure 7 shows input message creation. 652

Note that each message format received from the information 653

extraction module is matched one-to-one with an API of the 654

target IoT device. The fuzzing module first selects one of the 655

message formats according to a user-configurable scheduling 656

algorithm (e.g., a round robin). Then, the module uses the 657

message format as a template and fills the input message with 658

the basic block (e.g., URL, parameter names) without specific 659

values. 660

By default, the input message contains all available param- 661

eters. Themodule randomly discards some parameters that do 662

not have required flags by referencing the advanced block. 663

In addition, to trigger errors in the device’s message parsing 664

phase, the module intentionally randomly iterates specific 665

102414 VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

parameters in the input message. Next, the fuzzing module666

determines the specific value of each parameter in the input667

message by leveraging the message format’s advanced block.668

For this, the module maintains a finite dictionary, named a669

parameter value dictionary, that contains the values guided670

by the advanced block. The module searches the parameter671

name from the dictionary first, and if there is no value for the672

parameter, the module creates one initial value and stores it673

in the dictionary. For instance, in the case of the ‘‘brightness’’674

parameter shown in Figure 6, the module creates one of the675

double-type values that are from 0.0 to 1.0 as the advanced676

block describes, and it writes that value in the message. Also,677

the parameter dictionary is dynamically updated during the678

fuzzing test based on the feedback from the target device,679

which will be discussed in Section VI-B.680

In this way, the fuzzing module takes the parameter values681

from the parameter value dictionary and inserts them into the682

new input message. After that, the module randomly selects683

a subset of parameters to mutate instead of mutating all the684

parameters in the message format. Note that the adminis-685

trator can specify which parameters are not to be mutated686

through settings if desired. The module mutates the selected687

parameters according to their value type and the descriptions688

specified in the advanced block using the following strategies.689

• String type: The module changes the contents and690

length of the string type parameter by adding random691

strings to trigger errors related to out-of-bound access692

(e.g., buffer overflows). If the advanced block of the693

parameter contains the range of its length (N), the694

module can set the parameter to a string of boundary695

value (e.g., N+1 or N-1) length or a string of very long696

length. It also replaces the value with an empty string697

or a numeric value to trigger misinterpretation and null-698

pointer de-reference errors.699

• Array type: Similar to string type parameters, the mod-700

ule modifies contents of an array type parameter by701

adding or removing arbitrary elements. If the advanced702

block has a list of allowed elements (i.e., an enum) for703

the parameter, the module repeatedly inserts elements704

in that list into the parameter, or else inserts random705

elements.706

• Numeric type: The module mutates the value into707

boundary cases (specifically guided by the advanced708

block) or extreme values (e.g., INTMAX). It also709

replaces the value with a random string or random710

object.711

• Object type: For the object type parameter (e.g., JSON),712

the module applies the above strategies to each member713

value of the parameter in a recursive manner.714

Finally, the module assembles the input message for the API715

based on the concretized format and sends it to the target716

device over the network.717

B. RESPONSE ANALYSIS718

After transmitting the created input message, the module719

listens to the response from the target device to knowwhether720

the message causes unexpected errors (e.g., crashes) that can 721

lead to security vulnerabilities. Given that we cannot instru- 722

ment the device’s internal state locally, the fuzzing module 723

automatically analyzes the response message to the corre- 724

sponding input message remotely and determines whether the 725

input message caused errors. The right of Figure 7 shows the 726

response analysis step. In particular, the module considers 727

an input message to be potentially error-prone if any of the 728

following conditions are met. 729

• Timeout: Before testing an API, the module trans- 730

mits a normal request message (i.e., without mutation) 731

10 times with an interval of 1 second, then calcu- 732

lates the average of the response time to set a time- 733

out for that API. Next, when conducting the actual 734

testing for the API, it sends an input message three 735

times because the network environment can affect the 736

timeout. When the timer expires three times, the mod- 737

ule gives an alert that a DoS vulnerability has been 738

triggered. 739

• Connection Lost: If the device abruptly closes an active 740

connection, themodule considers it a sign that the device 741

has fallen into the error state. The module monitors 742

for cases where the device sends TCP RST packets in 743

response to the input message. 744

• HTTP Internal Server Error (500): If the device 745

returns a response message with Internal Server Error 746

(500), it indicates that the device has entered an error 747

state due to the input message. 748

Coverage Feedback Mechanism. Generally, a fuzzer 749

optimizes the input mutation process based on the feedback 750

of executions to find security vulnerabilities more effectively. 751

In the absence of a feedbackmechanism, fuzz testing could be 752

blind during input mutation (creation). However, the fuzzing 753

module in FuzzDocs optimizes the input message creation 754

step by using the response message from the target device as 755

feedback, which improves the effectiveness of vulnerability 756

discovery. As shown in Figure 7, the module maintains a 757

response dictionary that stores the contents of the response 758

messages in previous input message transmissions. Thus, 759

whenever the module sends an input message, it stores the 760

contents of the corresponding response message (e.g., status 761

code, keys of a JSON body) in the dictionary. If an input mes- 762

sage causes a new response message that does not match the 763

response dictionary, this new response message indicates that 764

a new code block has been executed in the device firmware. 765

Then, the module inserts all the values of parameters in the 766

input message into the parameter value dictionary as well. 767

The inserted values are utilized as starting points for the next 768

input message creation, which could directly explore more 769

code coverage. 770

VII. EVALUATION 771

In this section, we present the prototype implementation 772

of FuzzDocs and evaluate it in real-world environments to 773

demonstrate its effectiveness and efficiency. 774

VOLUME 10, 2022 102415

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

A. EVALUATION ENVIRONMENT775

1) IMPLEMENTATION776

FuzzDocs currently includes two main modules: the informa-777

tion extraction module and the fuzzing module. The infor-778

mation extraction module leverages BeautifulSoup4 [49],779

a representative HTML parsing library to extract HTML780

tags and texts of the input API documents. For the fuzzing781

module, we utilize FuzzingBook [50], a Python data fuzzing782

library, to mutate parameters in test messages according to783

our mutation strategies. Especially, in the response analysis784

step, we employ Tcpdump [51], a network traffic monitoring785

tool, to record the communication traffic between FuzzDocs786

and the target IoT device. In summary, to support the design787

features described in Section IV, we implemented FuzzDocs788

in approximately 3,000 lines of Python code.789

2) TEST ENVIRONMENT790

IoT devices typically require initial settings such as network791

connection or user authentication to remotely call their func-792

tionalities over the network. Also, some device APIs can793

be invoked only when the pre-issued authentication token is794

included in the input messages. Thus, we complete all such795

necessary initial setups for the target devices using documents796

and companion apps provided by the device vendors. The797

prototype of FuzzDocs operates on a commodity Linux server798

with Intel Xeon 2.1 GHz CPU and 64 GB RAM. We connect799

the prototype and all the test devices to the same local Wi-Fi800

router to better capture the network traffic between them.801

3) IoT DEVICES SELECTION802

IoT devices use various communication channels such as803

Wi-Fi or Bluetooth, but for convenience, we will only test804

the devices that communicate via Wi-Fi in this experiment.805

Also, the API documents of the device to be tested should be806

publicly available. Thus, as shown in Table 5, we selected five807

popular IoT devices from different types of home automation808

services, including a smart bulb and a smart plug. These809

devices communicate viaWi-Fi, and their API documents are810

publicly accessible, so anyone can acquire theAPI documents811

of these devices from their official websites [15], [36]. At the812

time of writing the paper, the firmware of all devices is the813

latest version.814

815

4) BENCHMARK FRAMEWORKS816

The goal of FuzzDocs is to test the security of IoT devices817

in an automated manner without firmware analysis or inter-818

vention by security experts, such as analyzing message for-819

mats and creating seed messages. To fairly demonstrate Fuz-820

zDocs’s performance in finding crashes and message for-821

mat generation, we compared FuzzDocs with the following822

network-based fuzzers [26], [27] that can run without seed823

messages (or manual definition of message formats).824

• Doona [27]: Doona is an extended version of825

Bruteforce Exploit Detector (BED) designed to find826

memory-related bugs such as buffer overflows and 827

format string bugs in network protocol implemen- 828

tations. It finds vulnerabilities by mutating general 829

request/response packets without seed messages. 830

• Ffuf [26]: Ffuf is a popular network application fuzzer 831

that supports various protocols, including HTTP and 832

HTTPS. Unlike Doona, Ffuf receives a predefined word 833

list to mutate request messages. We used the word list 834

provided by Ffuf’s official website. 835

We believe this comparison is very reasonable, since both 836

frameworks and FuzzDocs do not require manual effort by 837

security experts. There aremany other network-based fuzzing 838

frameworks for IoT devices, such as AFLNET [8] and Boo- 839

fuzz [12]. However, since they require firmware instruments 840

(AFLNET) or manually created input formats (Boofuzz), 841

it is unfair to employ those tools as benchmark tools for 842

FuzzDocs. 843

B. EFFECTIVENESS 844

1) DISCOVERING CRASHES 845

As IoT devices typically operate on limited hardware 846

resources, sending extremely input messages to the device 847

can make the experimental results worthless. Taking this into 848

account, we limited the maximum number of input mes- 849

sages the three frameworks send to IoT devices to 10 per 850

second during the entire experiment process, and then we 851

inspect each API for an hour. As a result of our experiments, 852

FuzzDocs discovered 35 crashes in a total of nine APIs, 853

including two DoS vulnerabilities (Shelly Plugs and Duo) as 854

summarized in the right part of Table 5. 855

In particular, FuzzDocs discovered at least one crash on 856

every single device used in the experiment, and in some 857

cases, it found multiple crashes in one API (e.g., Shelly 858

PlugS, shown in Table 5). This means that based on the 859

created message formats,FuzzDocs successfully generated 860

multiple input messages with different combinations of the 861

parameters, which led to causing such distinct crashes in each 862

API. Also, FuzzDocs only spent about 10 minutes on average 863

before finding a crash in each vulnerable API. In contrast, 864

Ffuf and Doona did not find any crashes other than the one 865

found on the Hue bridge. This is because, unlike FuzzDocs, 866

these frameworks create input messages without consider- 867

ing the message formats of IoT devices. Most of the input 868

messages created by them are filtered during the message 869

parsing stage of the IoT devices before triggering bugs deep 870

inside the IoT devices. As a result, FuzzDocs can provide 871

more comprehensive and broad test coverage than existing 872

network-based fuzzers by automatically creating message 873

formats for IoT devices. 874

2) CASE STUDY 875

One of the interesting results is a crash that led to a denial 876

of service vulnerability discovered in Shelly PlugS, which 877

is a smart plug device. The smart plug is a key device in 878

home automation services and provides residential energy 879

102416 VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

FIGURE 8. Partial input message created by FuzzDocs that causes the
device denial of service (DoS) state. Parameters highlighted in red are
mutated and have invalid values.

monitoring and power control functions, allowing users to880

remotely monitor and control the power of various electronic881

products. Although the Shelly PlugS only provides simple882

on/off functions with monitoring features and timers, it plays883

a crucial role in the safety of home automation: it controls the884

power of any appliance that plugs into it. Thus, adversaries885

can turn on and off all the appliances connected to it andmake886

the user unable to control the appliances.887

To test this device, FuzzDocs automatically generated the888

input message shown in Figure 8 in about 1,800 attempts.889

The input message targeted the device setting API and890

mutated the parameters ‘mqtt_pass’, ‘mqtt_max_qos’,891

and ‘coiot_peer’. For example, the ‘coiot_peer’ param-892

eter should have string values, but FuzzDocs mutated it to893

an empty string. The empty string could cause a null pointer894

de-reference vulnerability during API processing [52]. As a895

result, after the input message was delivered to the device,896

the device could not respond to any input messages until we897

manually rebooted it, which caused a DoS.898

C. EFFICIENCY899

1) ACCURACY OF MESSAGE FORMAT GENERATION900

One important indicator of evaluating the efficiency of Fuz-901

zDocs is automation. FuzzDocs automatically constructs a902

message format for each API to create an valid-enough input903

message, so we evaluated the accuracy of message formats.904

First, we manually compared all the message formats gen-905

erated by our framework (i.e., 135 APIs) with the original906

contents of the API documents. Specifically, when comparing907

them, we examined whether the URL, HTTP method, and908

parameters created by FuzzDocs were correct.909

As shown in Table 6, we confirmed that FuzzDocs910

extracted the correct URLs and HTTP methods for all the911

tested APIs. In the case of the parameters, it successfully912

obtained the correct names, value types, and descriptions for913

93% of the APIs, and it only failed to get information for914

nine APIs. Manual analysis of these failed cases discovered915

that the API documents of these APIs had no title for the916

parameter section. We believe the authors of the API docu-917

ments intentionally omitted the titles for conciseness, as the918

descriptions of these APIs were short and explicit. Even with-919

out the titles, FuzzDocs could create some restricted message920

formats with a subset of parameters based on the concrete921

examples in API documents. It created these restricted mes-922

sage formats for seven out of the nine APIs. Therefore, Fuz-923

zDocs can successfully generate message formats in various924

types of documents, except where intentional omission has 925

occurred. 926

Section trees created by FuzzDocs from the 135 APIs 927

generally had a depth of 4 to 6 and fewer than 100 nodes. The 928

overhead of the message format generation is proportional 929

to the size of the section trees. That is, FuzzDocs can create 930

accurate message formats with negligible overhead. 931

2) COVERAGE OF API 932

Next, we evaluated the coverage of the API, which is impor- 933

tant for meeting the requirements of an intelligent assess- 934

ment system. To this end, we compared the API coverage of 935

FuzzDocs with the ones of existing studies [9], [11], which 936

create input messages using companion apps. One especially 937

noticeable point is that these previous studies only testedAPIs 938

that could be called through the UI of companion apps and 939

required manual interaction with the UI at the initial stage. 940

For the comparison, we calculated the number of APIs that 941

could be called from companion apps by first referring to 942

the previous studies. We installed each device’s companion 943

app and a traffic monitoring tool on our test mobile phone 944

(Android OS). Themonitoring tool started to collect all traffic 945

sent from the mobile phone to the devices as soon as the 946

companion apps launched. We manually simulated all UI 947

inside each companion app according to the vendor-provided 948

manuals, as in the previous studies. After the simulation, 949

we obtained the number of APIs by analyzing the captured 950

traffic. Shelly devices provide additional web-based UI with 951

the companion app, so we conducted the same simulation for 952

the web UI and merged the results. 953

Figure 9 shows the experimental results. Overall, the com- 954

panion apps were able to call fewer APIs than listed on the 955

API documents (see Figure 9 (a)) because most of the APIs 956

not available in companion apps are developer-only APIs. 957

Developer-only APIs are used to modify the internal state of 958

devices, so they are not invoked through the companion apps 959

to prevent user error. 960

In addition to the available APIs, the number of parameters 961

that the companion apps use for each API is also restricted, 962

as shown in Figure 9 (b). For example, when calling the 963

‘/light/’ API of the Shelly Duo, the companion apps 964

cannot use two of the seven parameters listed in its API docu- 965

ment, ‘effect’ and ‘transition’. This lack of available 966

APIs and their parameters significantly degrades the coverage 967

of the companion-app-based fuzzing. In contrast, FuzzDocs 968

can test any API in the API documents without parameter 969

restrictions. 970

We did attempt to analyze the Hue companion app’s traffic, 971

but we could not obtain correct results because the traffic 972

was encrypted and we were unable to decrypt it. Instead, 973

we manually compared all the UIs in the Hue companion 974

app with the APIs described in the API document. Similar 975

to other devices, we could not modify the device’s internal 976

settings through the app’s UI. For example, the configuration 977

API [53] of Hue devices can change various internal settings, 978

such as the device’s IP address or proxy server, but we could 979

VOLUME 10, 2022 102417

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

TABLE 5. Summary of IoT devices under testing and the crashes identified by FuzzDocs and existing network-based fuzzing frameworks (Ffuf [26],
Doona [27]). The number in parentheses on the crash field indicates the number of APIs for which a crash was found.

TABLE 6. Accuracy of message formats created by FuzzDocs.

not change these settings in the companion app. This means980

that the companion app has restrictions on calling developer-981

only APIs. FuzzDocs can test APIs and parameters that are982

not available in companion apps, so it provides a more com-983

prehensive and wider range of testing coverage than existing984

studies.985

VIII. LIMITATIONS AND DISCUSSIONS986

Although FuzzDocs can effectively examine the security of987

IoT devices in various types, it still has room for future work.988

Here, we discuss the limitations of the current design and989

suggest ways to improve FuzzDocs.990991

A. DOCUMENT TYPES992

FuzzDocs utilizes vendor-provided API documents for secu-993

rity testing. Currently, our system focuses on processing994

HTML documents because most IoT vendors publish API995

documents on the Internet in HTML formats. However, our996

document analysis method (the section tree) can be easily997

applied to other document formats because it is designed to998

leverage the hierarchical relationships between texts inside999

API documents. In other words, simply by appending the1000

method for extracting text and its metadata from API doc-1001

uments, FuzzDocs could support various document formats1002

(e.g., PDF and DOC). For example, we can extract API spec-1003

ification from API documents in PDF formats by leveraging1004

PDF parsing libraries [54].10051006

B. API IMPLEMENTATION1007

As HTTP-based APIs are the most common API implemen-1008

tation in modern IoT devices [19], FuzzDocs centers on IoT1009

devices that use HTTP-based APIs. This design choice was1010

decided based on the ease of implementation and evaluation.1011

Note that other API implementations, such asMQTT [55] and1012

FIGURE 9. Comparison results of the number of APIs and parameters
available in companion apps and API documents. FuzzDocs can provide
more comprehensive test coverage than the app-based solution in terms
of the number of APIs and parameters.

COAP [56], are all similar in that they operate by exchanging 1013

request/response messages with various parameters, except 1014

for the underlying network protocols and structures for trans- 1015

mitting messages. This means that FuzzDocs can be easily 1016

extended to other API implementations by modifying the 1017

method for assembling messages. 10181019

C. NESTED JSON PARAMETERS 1020

For now, FuzzDocs cannot extract message parameters with 1021

nested JSON objects from descriptions in API documents. 1022

However, this limitation does not mean that FuzzDocs cannot 1023

use nested JSON-type parameters for security testing at all. 1024

If API documents contain concrete examples for the nested 1025

JSON parameters, FuzzDocs can extract the parameters from 1026

the examples and mutate them for testing. We plan to resolve 1027

this limitation in our future work. 1028

IX. CONCLUSION 1029

In this work, we have proposed FuzzDocs, the first document- 1030

based black-box IoT testing framework. To achieve more 1031

automatic and effective security testing for IoT devices, 1032

section-tree-based document parsing enables FuzzDocs to 1033

extract API specifications from human-readable API doc- 1034

uments and creates valid-enough input messages based 1035

102418 VOLUME 10, 2022

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

on them. Implementing the prototype of FuzzDocs and evalu-1036

ating it in real-world IoT environments showed that FuzzDocs1037

outperformed existing frameworks in testing coverage and1038

uncovered 35 potential vulnerabilities in five IoT devices,1039

including two DoS vulnerabilities.1040

ACKNOWLEDGMENT1041

(Myoungsung You and Yeonkeun Kim contributed equally to1042

this work.)1043

REFERENCES1044

[1] E. Fernandes, J. Jung, and A. Prakash, ‘‘Security analysis of emerging1045

smart home applications,’’ in Proc. IEEE Symp. Secur. Privacy (SP),1046

May 2016, pp. 636–654.1047

[2] E. Ronen and A. Shamir, ‘‘Extended functionality attacks on IoT devices:1048

The case of smart lights,’’ in Proc. IEEE Eur. Symp. Secur. Privacy1049

(EuroSP), Mar. 2016, pp. 3–12.1050

[3] R. Graham, ‘‘Mirai and IoT botnet analysis,’’ in Proc. RSA Conf., 2017,1051

pp. 1–63.1052

[4] J. Kim, J. Yu, H. Kim, F. Rustamov, and J. Yun, ‘‘FIRM-COV: High-1053

coverage greybox fuzzing for IoT firmware via optimized process emu-1054

lation,’’ IEEE Access, vol. 9, pp. 101627–101642, 2021.1055

[5] D. D. Chen, M. Egele, M. Woo, and D. Brumley, ‘‘Towards automated1056

dynamic analysis for Linux-based embedded firmware,’’ in Proc. Netw.1057

Distrib. Syst. Secur. Symp. (NDSS), 2016, p. 1.1058

[6] G. Hernandez, M.Muench, D. Maier, A. Milburn, S. Park, T. Scharnowski,1059

T. Tucker, P. Traynor, and K. R. Butler, ‘‘FIRMWIRE: Transparent1060

dynamic analysis for cellular baseband firmware,’’ in Proc. NDSS, 2022,1061

pp. 1–19.1062

[7] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, ‘‘FIRM-1063

AFL: High-throughput greybox fuzzing of IoT firmware via augmented1064

process emulation,’’ in Proc. USENIX Secur. Symp. (USENIX Security),1065

2019, pp. 1099–1114.1066

[8] V.-T. Pham, M. Böhme, and A. Roychoudhury, ‘‘AFLNET: A greybox1067

fuzzer for network protocols,’’ in Proc. IEEE 13th Int. Conf. Softw. Test.,1068

Validation Verification (ICST), Oct. 2020, pp. 460–465.1069

[9] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,1070

R. Yang, and K. Zhang, ‘‘IoTFuzzer: Discovering memory corruptions in1071

IoT through app-based fuzzing,’’ in Proc. Netw. Distrib. Syst. Secur. Symp.,1072

2018, pp. 1–15.1073

[10] X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and Y. Xiang,1074

‘‘Snipuzz: Black-box fuzzing of IoT firmware via message snippet infer-1075

ence,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2021,1076

pp. 337–350.1077

[11] N. Redini, A. Continella, D. Das, G. De Pasquale, N. Spahn, A. Machiry,1078

A. Bianchi, C. Kruegel, and G. Vigna, ‘‘Diane: Identifying fuzzing triggers1079

in apps to generate under-constrained inputs for IoT devices,’’ in Proc.1080

IEEE Symp. Secur. Privacy (SP), May 2021, pp. 484–500.1081

[12] Boofuzz: Network Protocol Fuzzing for Humans. Accessed: Sep. 22, 2022.1082

[Online]. Available: https://boofuzz.readthedocs.io/en/stable/1083

[13] Bed—A Network Protocol Fuzzer. Accessed: Sep. 22, 2022. [Online].1084

Available: https://www.kali.org/tools/bed/1085

[14] Royal Philips Electronics. Philips Hue. Accessed: Sep. 22, 2022. [Online].1086

Available: http://www2.meethue.com/en-us1087

[15] Shelly Cloud. [Online]. Accessed: Sep. 22, 2022. Available:1088

https://shelly.cloud/1089

[16] X. Wang, Y. Sun, S. Nanda, and X. Wang, ‘‘Looking from the mirror:1090

Evaluating IoT device security through mobile companion apps,’’ in Proc.1091

USENIX Secur. Symp. (USENIX Security), 2019, pp. 1151–1167.1092

[17] H. Garg and M. Dave, ‘‘Securing IoT devices and securely connecting the1093

dots using REST API and middleware,’’ in Proc. 4th Int. Conf. Internet1094

Things, Smart Innov. Usages (IoT-SIU), Apr. 2019, pp. 1–6.1095

[18] J.-Y. Yu and Y.-G. Kim, ‘‘Analysis of IoT platform security: A survey,’’ in1096

Proc. Int. Conf. Platform Technol. Service (PlatCon), Jan. 2019, pp. 1–5.1097

[19] P. P. Ray, ‘‘A survey of IoT cloud platforms,’’ Future Comput. Informat. J.,1098

vol. 1, nos. 1–2, pp. 35–46, Dec. 2016.1099

[20] Shelly Plugs: The WiFi Smart Plug That Fits Everywhere. Accessed:1100

Sep. 22, 2022. [Online]. Available: https://shelly.cloud/products/shelly-1101

plug-s-smart-home-automation-device/1102

[21] Shelly Cloud API. Accessed: Sep. 22, 2022. [Online]. Available:1103

https://shelly-api-docs.shelly.cloud/gen1/1104

[22] Curl: Command Line Tool and Library for Transferring Data With URLs. 1105

Accessed: Sep. 22, 2022. [Online]. Available: https://curl.se/ 1106

[23] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer, ‘‘Firm- 1107

Fuzz: Automated IoT firmware introspection and analysis,’’ in Proc. 2nd 1108

Int. ACM Workshop Secur. Privacy Internet-of-Things, 2019, pp. 15–21. 1109

[24] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, ‘‘FirmAE: Towards 1110

large-scale emulation of IoT firmware for dynamic analysis,’’ in Proc. 1111

Annu. Comput. Secur. Appl. Conf., Dec. 2020, pp. 733–745. 1112

[25] C. Song, B. Yu, X. Zhou, and Q. Yang, ‘‘SPFuzz: A hierarchical scheduling 1113

framework for stateful network protocol fuzzing,’’ IEEE Access, vol. 7, 1114

pp. 18490–18499, 2019. 1115

[26] FFuF—Fuzz Faster U Fool. Accessed: Sep. 22, 2022. [Online]. Available: 1116

https://github.com/ffuf/ffuf 1117

[27] Doona—Network Fuzzing Tool. Accessed: Sep. 22, 2022. [Online]. Avail- 1118

able: https://github.com/wireghoul/doona 1119

[28] Z. Shu and G. Yan, ‘‘IoTInfer: Automated blackbox fuzz testing of IoT 1120

network protocols guided by finite state machine inference,’’ IEEE Internet 1121

Things J., early access, Jun. 13, 2022, doi: 10.1109/JIOT.2022.3182589. 1122

[29] American Fuzzy Lop. Accessed: Sep. 22, 2022. [Online]. Available: 1123

http://lcamtuf.coredump.cx/afl/ 1124

[30] S. Vasile, D. Oswald, and T. Chothia, ‘‘Breaking all the things—A system- 1125

atic survey of firmware extraction techniques for IoT devices,’’ in Proc. 1126

Int. Conf. Smart Card Res. Adv. Appl. Cannes, France: Springer, 2018, 1127

pp. 171–185. 1128

[31] T. N. Phu, K. H. Dang, D. N. Quoc, N. T. Dai, and N. N. Binh, ‘‘A novel 1129

framework to classify malware in MIPS architecture-based IoT devices,’’ 1130

Secur. Commun. Netw., vol. 2019, Dec. 2019, Art. no. 4073940. 1131

[32] C. Palmiero, G. Di Guglielmo, L. Lavagno, and L. P. Carloni, ‘‘Design 1132

and implementation of a dynamic information flow tracking architecture to 1133

secure a RISC-V core for IoT applications,’’ in Proc. IEEE High Perform. 1134

Extreme Comput. Conf. (HPEC), Sep. 2018, pp. 1–7. 1135

[33] M. Hammad, J. Garcia, and S.Malek, ‘‘A large-scale empirical study on the 1136

effects of code obfuscations on Android apps and anti-malware products,’’ 1137

in Proc. 40th Int. Conf. Softw. Eng., May 2018, pp. 421–431. 1138

[34] The LIFX Switch Range Just Got a Whole Lot Smarter. Accessed: 1139

Sep. 22, 2022. [Online]. Available: https://api.developer.lifx.com/ 1140

[35] P. A. Ly, C. Pedrinaci, and J. Domingue, ‘‘Automated information extrac- 1141

tion from web APIs documentation,’’ in Proc. Int. Conf. Web Inf. Syst. Eng. 1142

Berlin, Germany: Springer, 2012, pp. 497–511. 1143

[36] Philips Hue. Accessed: Sep. 22, 2022. [Online]. Available: 1144

http://www2.meethue.com/en-us 1145

[37] Google Cloud IoT Rest API. Accessed: Sep. 22, 2022. [Online]. Available: 1146

https://cloud.google.com/iot/docs/reference/cloudiot/rest 1147

[38] Google Home Rest API. Accessed: Sep. 22, 2022. [Online]. 1148

Available: https://rithvikvibhu.github.io/GHLocalApi/#section/Google- 1149

Home-Local-API 1150

[39] KAA IoT Platform Rest API. Accessed: Sep. 22, 2022. [Online]. Available: 1151

https://docs.kaaiot.io/KAA/docs/v1.3.0/Features/Device-management/ 1152

EPR/REST-API/ 1153

[40] Microsoft IoT Hub Rest API. Accessed: Sep. 22, 2022. [Online]. Available: 1154

https://docs.microsoft.com/en-us/rest/api/iothub/ 1155

[41] Rest API for Oracle Internet of Things Cloud Service. Accessed: 1156

Sep. 22, 2022. [Online]. Available: https://docs.oracle.com/en/cloud/ 1157

paas/iot-cloud/iotrq/rest-endpoints.html 1158

[42] Losant IoT Platform Rest API. Accessed: Sep. 22, 2022. [Online]. Avail- 1159

able: https://docs.losant.com/rest-api/data/ 1160

[43] Smartthings API (1.0-Preview). Accessed: Sep. 22, 2022. [Online]. Avail- 1161

able: https://developer-preview.smartthings.com/docs/api/public 1162

[44] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm, ‘‘DOM-based content 1163

extraction of HTML documents,’’ in Proc. 12th Int. Conf. World Wide Web, 1164

2003, pp. 207–214. 1165

[45] A. Rodriguez, ‘‘Restful web services: The basics,’’ IBMDeveloper Works, 1166

Armonk, NY, USA, Tech. Rep. 33, 2008. 1167

[46] H. Zhong, L. Zhang, T. Xie, and H. Mei, ‘‘Inferring resource specifications 1168

from natural language API documentation,’’ in Proc. IEEE/ACM Int. Conf. 1169

Automated Softw. Eng., Nov. 2009, pp. 307–318. 1170

[47] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, 1171

and D. McClosky, ‘‘The Stanford CoreNLP natural language processing 1172

toolkit,’’ in Proc. 52nd Annu. Meeting Assoc. Comput. Linguistics, Syst. 1173

Demonstrations, 2014, pp. 55–60. 1174

[48] G. Angeli, M. J. J. Premkumar, and C. D. Manning, ‘‘Leveraging linguistic 1175

structure for open domain information extraction,’’ in Proc. 53rd Annu. 1176

Meeting Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural Lang. 1177

Process., vol. 1, 2015, pp. 344–354. 1178

VOLUME 10, 2022 102419

http://dx.doi.org/10.1109/JIOT.2022.3182589

M. You et al.: FuzzDocs: An Automated Security Evaluation Framework for IoT

[49] Beautiful Soup Documentation. Accessed: Sep. 22, 2022. [Online]. Avail-1179

able: https://beautiful-soup-4.readthedocs.io/en/latest/1180

[50] Fuzzing: Breaking Things With Random Inputs. Accessed: Sep. 22, 2022.1181

[Online]. Available: https://www.fuzzingbook.org/html/Fuzzer.html/1182

[51] TCPDUMP and LIBPCAP. Accessed: Sep. 22, 2022. [Online]. Available:1183

https://www.tcpdump.org/1184

[52] D. Romano, M. Di Penta, and G. Antoniol, ‘‘An approach for search based1185

testing of null pointer exceptions,’’ inProc. 4th IEEE Int. Conf. Softw. Test.,1186

Verification Validation, Mar. 2011, pp. 160–169.1187

[53] Hue Configuration API. Accessed: Sep. 22, 2022. [Online]. Available:1188

https://developers.meethue.com/develop/hue-api/7-configuration-api/1189

[54] PDF Parser and Analyzer for Python. Accessed: Sep. 22, 2022. [Online].1190

Available: https://pypi.org/project/pdfminer/1191

[55] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, ‘‘MQTT-S—A pub-1192

lish/subscribe protocol for wireless sensor networks,’’ in Proc. IEEE1193

Int. Conf. Commun. Syst. Softw. Middleware Workshops (COMSWARE),1194

Jan. 2008, pp. 791–798.1195

[56] C. Bormann, A. P. Castellani, and Z. Shelby, ‘‘CoAP: An application pro-1196

tocol for billions of tiny internet nodes,’’ IEEE Internet Comput., vol. 16,1197

no. 2, pp. 62–67, Mar. 2012.1198

MYOUNGSUNG YOU received the B.S. degree1199

in computer science from Chungbuk National1200

University, South Korea, and the M.S. degree in1201

information security fromKAIST, where he is cur-1202

rently pursuing the Ph.D. degree with the School1203

of Electrical Engineering. His research interests1204

include programmable network data planes, cloud1205

security, and distributed systems.1206

YEONKEUN KIM received the B.S. degree in1207

computer science engineering from the Ulsan1208

National Institute of Science and Technology1209

(UNIST), South Korea, and the M.S. degree in1210

information security from KAIST, where he is1211

currently pursuing the Ph.D. degree with the Grad-1212

uate School of Information Security, KAIST. His1213

research interests include network security issues1214

of the IoT and embedding systems.1215

JAEHAN KIM received the B.S. and M.S. degrees1216

from the School of Electrical Engineering, KAIST,1217

where he is currently pursuing the Ph.D. degree.1218

His research interests include cyber threat intel-1219

ligence, natural language processing, and data1220

mining.1221

MINJAE SEO received the B.S. degree in com- 1222

puter engineering from Mississippi State Uni- 1223

versity, and the M.S. degree from the Graduate 1224

School of Information Security, KAIST. He is 1225

currently a Researcher at the National Security 1226

Research Institute, Daejeon, South Korea. His cur- 1227

rent research interests include software-defined 1228

networking security, network fingerprinting, and 1229

deep learning–based network systems. 1230

1231

SOOEL SON (Member, IEEE) received the Ph.D. 1232

degree from the Department of Computer Sci- 1233

ence, The University of Texas at Austin. He is an 1234

Associate Professor at the School of Computing, 1235

KAIST. He is working on various topics regarding 1236

web security and privacy. 1237

SEUNGWON SHIN (Member, IEEE) received 1238

the B.S. and M.S. degrees from KAIST, both in 1239

electrical and computer engineering, and the Ph.D. 1240

degree in computer engineering from the Electri- 1241

cal and Computer Engineering Department, Texas 1242

A&M University. He is an Associate Professor at 1243

the School of Electrical Engineering, KAIST. His 1244

research interests include software-defined net- 1245

working security, dark web analysis, and cyber 1246

threat intelligence. 1247

SEUNGSOO LEE received the B.S. degree 1248

in computer science from Soongsil University, 1249

South Korea, and the M.S. degree in information 1250

security from KAIST, and the Ph.D. degree in 1251

information security from KAIST, in 2020. He is 1252

an Assistant Professor at the Department of Com- 1253

puter Science and Engineering, Incheon National 1254

University. His research interests include secure 1255

and robust SDN controllers and protecting SDN 1256

environments from threats. 1257

1258

102420 VOLUME 10, 2022

