IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 16 August 2023, accepted 27 August 2023, date of publication 30 August 2023, date of current version 7 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3310281

== RESEARCH ARTICLE

Kunerva: Automated Network Policy Discovery
Framework for Containers

SEUNGSOO LEE“! AND JAEHYUN NAM 2

! Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
2Department of Computer Engineering, Dankook University, Yongin 16890, Republic of Korea

Corresponding author: Jachyun Nam (jachyun.nam @dankook.ac.kr)
This work was supported by the Institute of Information and Communications Technology Planning and Evaluation (II'TP) Grant funded by

the Korea Government through MSIT (Development of Darkweb Hidden Service Identification and Real IP Trace Technology) under
Grant 2022-0-00740.

ABSTRACT Containerization has gained significant popularity in cloud-native applications, offering
lightweight and portable capabilities, with container orchestration platforms such as Kubernetes, simplifying
deployment and management. However, the presence of human errors, especially misconfigurations, contin-
ues to pose substantial security risks to containers. One specific challenge lies in generating effective network
security policies, given the intricate nature of label-based container management and the dynamic charac-
teristics of container deployments. This paper introduces KUNERVA, an innovative and automated solution
specifically designed to tackle the critical security challenge in container environments. KUNERVA focuses
on policy discovery utilizing network logs to generate a minimum set of network security policies to achieve
maximum network traffic coverage while ensuring the security isolation between containers. To enhance
the reliability of the generated policies, KUNERVA seamlessly integrates with a policy enforcement system,
Gatekeeper, for accurate policy verification. Consequently, KUNERVA ensures the discovery of an efficient

and effective network policy set, blocking the enforcement of malicious network policies.

INDEX TERMS Container security, network security policy, policy discovery, policy verification.

I. INTRODUCTION

Recently, containers have increasingly been used as a virtual-
ization technology to develop, deploy, and run applications or
software infrastructures. Portworx and Aqua Security surveys
revealed that 87% of organizations were using containers in
2019, compared to 67% in 2017 [1]. With this popularity, the
container market was predicted to expand from 1.2 billion
in 2018 to 4.9 billion (USD) by 2023 [2]. A container can
be defined as a stand-alone executable unit of software that
includes an entire runtime environment [3], which promotes
modularity and reproducibility, two main reasons for contain-
ers being widely used [4]. The use of containers brings several
benefits, including fast software delivery, application code
reuse across environments, and reduction of infrastructure
costs. Especially in such environments, container orchestra-
tion platforms, such as Kubernetes [5], are commonly used

The associate editor coordinating the review of this manuscript and

approving it for publication was Somchart Fugkeaw

to facilitate the deployment and management of large-scale
containerized applications.

Despite containers’ numerous benefits, security configura-
tion and policy management remain significant concerns [1],
[4]. From previous research [6], they highlight the infeasibil-
ity and error-prone nature of manually configuring various
security policies for containerized applications. A notable
example occurred in 2019 when attackers exploited a mis-
configured container in Capital One’s system, gaining access
to 30 GB of application data containing the sensitive personal
and financial information of 106 million individuals [7].
In addition, the dynamic and complex nature of container
workloads significantly complicates security configuration
and policy, further exacerbated by emerging security attacks,
vulnerabilities, and malware. Socchi et al. [8] predict that the
average number of new vulnerabilities caused by system
packages in containers is expected to increase by approxi-
mately 105 vulnerabilities per year between 2019 and 2025.
Furthermore, recent studies reveal that existing Linux-based

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

95616

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-6883-1869
https://orcid.org/0000-0001-8907-5495
https://orcid.org/0000-0001-7156-184X

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

IEEE Access

security implementations, such as Linux Security Module
(LSM) utilized in containers, are vulnerable to cyber attacks
due to their obsolescence and inability to accommodate
the latest security vulnerabilities and malware behavior [9].
Hence, it is crucial to establish and enforce accurate and
effective security policies to prevent such attacks and threats.

However, the dynamic nature of containers introduces sev-
eral practical challenges in generating security policies. First,
it is exceedingly challenging to manually create and enforce
security policies in environments where containers are con-
stantly being created and terminated in real-time. Second,
as the role of labels attached to containers is instrumental in
crafting these policies, it is vital to understand the context
of these labels that provide and maintain this understanding
consistently throughout policy discovery and enforcement.
Lastly, the verification of policy accuracy is of paramount
importance. Even seemingly minor errors (e.g., specifying an
incorrect service port) can lead to severe outcomes, including
denial of service or information leakage [10], [11].

This paper introduces KUNERVA to address those signifi-
cant challenges. KUNERVA is the first automated, container-
aware framework that conducts a comprehensive discovery
of network security policies, while being highly attuned to
the dynamics of container operation. KUNERVA is designed
to efficiently handle large volumes of network logs with
minimal impact on performance. This approach facilitates
the creation of highly effective network policies encompass-
ing maximum data flow between containers. In addition,
KUNERVA seamlessly integrates with Gatekeeper [12], a well-
regarded open-source policy engine, to ensure the accuracy
and validation of the generated network policies. Our evalu-
ation demonstrates that KUNERVA enables the automated dis-
covery and verification of network security policies under the
complexities of containerized environments while incurring
negligible performance overhead, even in scenarios involving
large volumes of network logs.

In summary, our main contributions are as follows:

e Minimax discovery method: the proposed approach
automatically aggregates network logs and generates
the minimum set of policies, thereby enabling max-
imal network flow coverage among containers while
maintaining rigorous security isolation.

o Effective safety measures: to ensure the accurate
validation of the discovered network security poli-
cies, the proposed approach implements a measure
designed to prevent the enforcement of potentially mali-
cious policies that could lead to information leakage
situations.

o Practical evaluation: we have tested the proposed
approach within the context of a real-world web-
based e-commerce microservices application on Kuber-
netes, a leading container orchestration platform. This
effectively demonstrates its capability to successfully
discover and validate network policies.

The rest of this paper is organized as follows: Section II

provides the background and challenges in generating

VOLUME 11, 2023

1 L T e T L e L R L e |
: t{t[_Appo. Jit[App. Ju[App. [ii[App. i
i Container '] | Container 1 Container 1 Container I} Container 1
| Orchestrator | ===------ s oo - !
1 N ="~~~ """~ °==°=° 1
:(e'g" KUbemetes): 1Container Orchestratorlnstance: :Container Orchestrator Instance!
| L (e.g., Kubernetes Node) I : (e.g., Kubernetes Node) I
[L | 1
VM VM
\ Hypervisor |
Virtual Virtualization Layer
Infrastructure
Manager (VIM) Computing Storage Networking
Resources Resources Resources
Hardware Resources

FIGURE 1. ETSI Container Environment Architecture [19]. Gray-colored
components are related to containers.

network policies. Section III reviews previous studies and
their limitations. The overall design of KUNERVA and its
workflow are presented in Section IV and Section V respec-
tively. The implementation of KUNERVA is described in
Section VI, while its evaluation results are summarized in
Section VII. Section VIII discusses the limitations of the
current design. Finally, we conclude this paper in Section IX.

Il. BACKGROUND AND CHALLENGES
This section provides a background on containerization and
describes the key challenges to realize our framework.

A. BACKGROUND

1) CONTAINERIZATION

Cloud environments offer numerous benefits for application
deployment, including scalability, reliability, and observabil-
ity. Traditionally, frameworks such as OpenStack [13] have
allowed organizations to build their cloud infrastructures
using virtual machines (VMs) [14]. However, containeriza-
tion has surfaced as an appealing alternative due to lim-
ited portability and significant overhead imposed by VMs.
The adoption of containers provides a myriad of benefits
for practitioners in software development and deployment,
including agility, portability, reproducibility, modularity, and
flexibility [9], [15], [16], [17]. With these benefits, microser-
vices architecture has incorporated containers to boost the
operational efficacy of large-scale systems [18].

As depicted in Figure 1, a container is a standardized
software unit that packages source code, dependencies, and
all other executable executables together [19]. This com-
prehensive encapsulation enables software developers to run
containerized software across diverse computing platforms.
There exist various solutions to facilitate the creation, opera-
tion, and maintenance of containers (e.g., Docker [3] and Pod-
man [20]). They are often referred to as container engines [21]
or container runtimes [17], underlining their pivotal role in the
realm of containerized applications.

While containers and virtual machines (VMs) share simi-
larities in isolation and resource allocation, they fundamen-
tally differ in their abstraction levels [15], [17]. Containers
operate at the operating system (OS) level, encapsulating
elements such as binaries, libraries, and executables, while

95617

IEEE Access

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

VMs provide hardware-level abstraction (e.g., CPU, Mem-
ory, and storage). This OS-level abstraction allows containers
to be more resource-efficient and have quicker startup times
on a host machine compared to VMs [17]. A hypervisor man-
ages the lifecycle of VMs, whereas a container orchestration
platform, such as Kubernetes [5], indirectly oversees contain-
ers throughout their entire life cycle, including scheduling,
deployment, patching, and deletion. Depending on an orches-
tration platform, containers can be managed and organized
collectively (e.g., pod' in the case of Kubernetes).

2) NETWORK POLICY ENFORCEMENT IN CLOUD

Network policy enforcement is vital in securing containerized
applications within a cloud environment [22]. While a single-
node-based container environment (e.g., Docker) implements
network policies within bridge networks using iptables to
regulate network flow, a multi-node-based container envi-
ronment (e.g., Kubernetes) necessitates the deployment of
various network plugins, known as container network inter-
faces (CNIs). These CNIs, such as Calico [23], Cilium [24],
and Weave Net [25], facilitate network policy enforcement
within the container cluster. Once one of the CNIs is in place,
administrators can regulate network traffic within the cluster
by manipulating NetworkPolicy resources - creating, updat-
ing, or deleting them as needed. This task involves defining
and implementing rules dictating how pods interact with one
another and external networks. By enforcing these network
policies, administrators can effectively control network traf-
fic, isolate sensitive workloads, and shrink the attack surface,
significantly reducing potential security threats [26].

In Kubernetes, for instance, network policies are specified
in a declarative way using YAML or JSON configuration
files [27]. These files comprise three primary parts: a selec-
tor, ingress rules, and egress rules. The selector is used to
determine the pods to which the network policy applies.
On the other hand, ingress rules establish which incoming
connections are permissible, whereas egress rules define the
allowed outgoing connections. Each rule can be formulated
based on various criteria (e.g., pod labels, namespace labels,
and IP address ranges). Upon the application of a network
policy, the network plugin translates the defined rules into
low-level network constructs, such as iptables rules [28],
eBPF programs [29], or OpenFlow entries [30]. This con-
version ensures the enforcement of the intended network
behavior at the infrastructure level.

Let us consider a scenario, as depicted in Figure 2, to under-
stand how network policies operate in a container-based
cloud environment. Here, four pods (Pod A, B, C, and D)
are deployed within a two-node Kubernetes cluster, each
pod possessing unique label information. An egress policy
applied to Pod B initially allows network flows directed
towards pods labeled app:david (i.e., Pod D), targeting
port 6379. Conversely, Pod D permits network traffic only

1n Kubernetes, the term ‘pod’ is commonly used to denote a container or
a group of containers. This paper uses both terms interchangeably.

95618

kind: NetworkPolicy | egress:
metadata: -to:
name: egress-policy - podSelector:
spec: matchLabels:
podSelector: app: david
matchLabels: ports:
app: bob - protocol: TCP
policyTypes: port: 6379

- Egress
egress_policy.yaml| a

kind: NetworkPolicy | ingress:
metadata: - from:

name: ingress-policy - podSelector:
spec: matchLabels:

podSelector: app: bob
matchLabels: ports:
app: david - protocol: TCP

policyTypes: port: 6379

- Ingress
’Fgress_policy‘yaml &

FIGURE 2. Example of network policy enforcement in cluster. Dashed-line
box refers to the label assigned to each pod.

Kubernetes
Node 1

Kubernetes
Node 2

from pods bearing the label app : bob (i.e., Pod B), and the
destination port is 6379, which aligns with its service port.
All other connections are effectively denied.

B. CHALLENGES IN NETWORK POLICY GENERATION
Generally, in the absence of any deployed network policy,
all pods within a cluster are free to communicate with each
other. Hence, as the previous section underscores, network
policies must be accurately established in the cluster to ensure
its security and isolation aspects. Nevertheless, manually
generating appropriate network policies can be extremely
time-consuming and laborious. Here, we delineate three key
challenges that surface during network policy generation.

1) C1: AUTOMATION

One significant challenge in network policy discovery is
automation, which involves managing a multitude of con-
tainers efficiently. This task can render policy management
complicated and prone to errors. As the number of labels,
namespaces, and pods in a cloud environment prolifer-
ates, defining and maintaining adaptive policies for changes
through manual efforts becomes increasingly challenging.
Furthermore, an automated system should possess the capa-
bility to intelligently create, update, and delete policies in
response to shifts in the cloud environment.

Moreover, implementing an automation process in network
policy generation necessitates the development of algorithms
and methodologies. They should be capable of interpreting
the relationships between containers and network connec-
tions, and then formulate suitable network policies in line
with application requirements and security constraints. These
processes should also consider the integration with vari-
ous network plugins, such as Cilium [24]. This necessitates
seamless compatibility between the orchestration system, the
network policy API, and the chosen network plugin.

2) C2: CONTAINER-AWARENESS

The second challenge in generating network policies for
container systems lies in container-awareness, the capacity
to recognize and handle network policies within the con-
text of dynamic, container-based environments. Containers

VOLUME 11, 2023

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

IEEE Access

and their corresponding workloads can be instantaneously
created, scaled, or terminated on demand, leading to a con-
stantly changing network topology. This dynamic nature
poses unique challenges for designing and enforcing network
policies.

Furthermore, understanding the label context of con-
tainerized applications is another challenge in defining
network policies from a container-awareness perspec-
tive. For instance, most container orchestration systems
(e.g., Kubernetes) group containers into pods and allocate
labels to these pods for identification, and network policies
highly rely on these labels to establish communication rules.
However, these labels can be dynamically updated based on
the administrator’s needs. As a result, network policies should
be flexible enough to allow essential communication between
containers while ensuring security and isolation.

3) C3: VERIFICATION

The third challenge in orchestrating network policies for
container-based orchestration systems is guaranteeing that
the established policies accurately mirror the intended com-
munication norms and restrictions while preserving security
and isolation parameters. Consequently, a verification pro-
cess is essential for identifying and rectifying any errors or
misconfigurations in the network policies, which could result
in unintended negative consequences such as unauthorized
access or data leakage.

An integral part of the verification process involves validat-
ing the correctness of the network policy rules, particularly
within ingress or egress directives. This process necessitates
confirming that these rules promote requisite communication
paths between pods while eliminating unauthorized con-
nections. Given the significance of labels and selectors in
establishing communication parameters within Kubernetes
network policies, it becomes imperative to accurately config-
ure these elements to align with the desired network behavior.
Therefore, an efficient verification process should incorpo-
rate real-time network behavior monitoring mechanisms to
evaluate the implications of any policy alterations on the
overall security and performance of the cluster.

lll. RELATED WORK

A. CONTAINER SECURITY

A substantial amount of research highlights that Docker
images contain a significant number of high-risk vulnerabili-
ties, ranging from 30% to 90% [31], [32], [33], underscoring
a severe concern with these images. Although various vul-
nerability assessment tools are available for Docker images,
the question raised is whether such tools are used in pro-
duction environments and if their use could impede the
deployment process. Thus, some studies [22], [34], [35],
[36] have been conducted on container security, primarily
focusing on verifying the security of container images [34],
ensuring their integrity [35], [36]. However, these studies
limit their focus to a single security aspect, such as creating

VOLUME 11, 2023

vulnerability-free container images or integrity attestation.
They do not provide solutions for verifying and enforcing
security policies during runtime. For instance, Ahamed et al.
present a vulnerability-centric approach for identifying and
assessing vulnerabilities in Docker container images [34].
Similarly, other works offer solutions for container integrity
attestation throughout the entire lifecycle of containers and
their underlying images [35], [36].

On the other hand, the majority of container network
security solutions [37], [38] have primarily concentrated on
container network performance while largely overlooking
fine-grained policy enforcement. A small number of recent
studies have explored security issues in container networks.
Bui [39], Comb et al. [40], and Chelladhurai et al. [41] con-
ducted analyses of Docker container network security.
Nam et al. [22] proposed a robust, secure network stack
that enforces the principle of least privilege for con-
tainer network access by restricting connectivity solely
to the inter-dependencies between the container itself
and any required containers necessary for composing a
service.

B. KUBERNETES SECURITY

Kubernetes [5], an open-source container orchestration plat-
form, revolutionizes the automation of deploying, scaling,
and managing containerized applications. Initially developed
by Google [42], its maintenance is now under the purview
of the Cloud Native Computing Foundation (CNCF) [43].
Offering a robust infrastructure for managing containerized
workloads and services, Kubernetes emphasizes both declar-
ative configuration and automation. Its capabilities extend to
efficient resource utilization and streamlining the manage-
ment of large-scale, distributed applications across diverse
computing environments.

The majority of existing solutions [44], [45], [46] propose
reactive measures, which detect security policy violations
after they occur, potentially creating larger attack windows
and elevating security risks. Sysdig [45] offers a security
attack detection approach at the system-call level, while
Falco [44] presents an online anomaly detection tool for con-
tainerized applications. KubAnomaly [46] is a learning-based
anomaly detection system that provides real-time monitoring
capabilities in Kubernetes. Conversely, KubeArmor [47] is a
runtime security enforcement system that protects contain-
ers from potential threats and vulnerabilities by monitoring
and enforcing security policies at the container level using
extended Berkeley Packet Filter (eBPF) and Linux Secu-
rity Module (LSM). Moreover, OPA(Open Policy Agent) is
a security policy engine [48], and Gatekeeper [12], as its
sidecar, serves as an enforcement tool designed explicitly for
Kubernetes.

C. SECURITY POLICY VERIFICATION
Several proactive security compliance verification approaches
[13], [49], [50], [51] have been proposed for non-container

95619

IEEE Access

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

configuration file @——"

Configuration Manager ‘

i __ E > network policy for default K8S
raw network logs @ i e % Enhancer <> Policy 1
E Collector refined Policy Discover Converter g @ network policy for CNI A
N e T T?t_vi'?r_k_l?_g_s ___ — @ network policy for CNI B
Discovery Phase
E Pod Info. Policy
1 Cluster Resource g
K8S API Server t —>|| Endpoint Info. » Constraint
! Collector i i)
Webhook | Service Info. Builder policy constraints

v

Allow/Deny ¢

Policy Enforcement Framework (i.e., Gatekeeper) ‘

Verification Phase

FIGURE 3. Overall architecture of KUNERVA with six key components; (/) Configuration Manager, (i) Network Log Collector, (iii) Policy Discover,
(iv) Policy Converter, (v) Cluster Resource Collector, and (vi) Policy Constraint Builder.

environments such as OpenStack [13]. For instance,
Weatherman [49] utilizes graph-based and Datalog-based
models to verify security policies in cloud environments.
A proactive protection approach [14] for potential secu-
rity breaches in the cloud is proposed in another work.
LeaPS [51] and Proactivizer [52] are also proactive security
auditing solutions for cloud environments. However, these
approaches are not designed to address the complexities
and challenges unique to container environments, such as
capturing container-specific events, handling dependencies
among diverse types of resources, and deriving predic-
tive models from those dependencies. ProSPEC [53] lever-
ages learning-based prediction to perform computationally
intensive tasks, such as security verification, in advance,
improving process efficiency while maintaining a lightweight
runtime for tasks such as policy enforcement.

In contrast, KUNERVA primarily focuses on discovering
network policies and the corresponding verification pro-
cess. First, it automates policy discovery based on network
log information. Second, it automatically updates the pre-
viously discovered network policies according to the most
recent log information, keeping container awareness at the
forefront. Lastly, it verifies the discovered network policies
using a popular policy enforcement framework, Gatekeeper
[12]. This unique approach distinguishes KUNERVA from
other solutions by emphasizing the dynamic nature of pol-
icy discovery, adaptation, and verification in containerized
environments.

IV. SYSTEM DESIGN

This section clarifies the design considerations motivating
KUNERVA. Then, it provides a comprehensive description of
its system architecture designed to create network policies
specifically for containerized environments while ensuring
the accuracy of the network policies through verification.

A. DESIGN CONSIDERATIONS

We first derive the following design considerations that a
system must follow to generate network policies tailored for
containerized environments.

95620

1) AUTOMATIC DISCOVERY

A system should minimize human intervention and reduce
the time in generating network policies to ensure network
security and isolation. Since manual policy generation can be
error-prone and laborious, with the potential for misconfig-
urations, a system should be able to automatically compute
network policy candidates by leveraging network logs with
container-related data (e.g., labels).

2) EFFICIENT EVOLUTION

A system should efficiently and effectively compute network
policies with container awareness. Since generating network
policies statically applied to individual pods could lead to an
overwhelming number of policies, especially in environments
with a large number of pods, a system should produce a min-
imum set of network policies while covering the maximum
number of network flows within containerized environments.

3) PROACTIVE VERIFICATION

A system should verify the suitability of the discovered net-
work policies with the intention of cloud-native applications.
In the same vein, a system should be able to integrate with
a policy enforcement framework (e.g., Gatekeeper [12]) to
proactively assess the discovered network policies before
applying them to pods, ensuring that only appropriate
and suitable network policies are implemented within the
intended operation.

B. SYSTEM ARCHITECTURE

This section presents the overall architecture of KUNERVA.
As depicted in Figure 3, KUNERVA comprises six primary
components: configuration manager, network log collector,
policy discoverer, policy converter, cluster resource collector,
and policy constraint builder. Based on the design considera-
tions, it is designed to support two distinct phases, represented
by the dashed line box in Figure 3. The discovery phase
focuses on generating network policies within the cluster by
analyzing raw network logs. The verification phase allows for
evaluating the suitability of the discovered network policies
for individual pods before application.

VOLUME 11, 2023

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

IEEE Access

1) CONFIGURATION MANAGER

The configuration manager plays a role in managing and
organizing various settings and configurations associated
with KUNERVA. It ensures that the appropriate parameters
are provided for the discovery and verification phases and
the other components within this framework. An essential
responsibility of the configuration manager is instructing
the network log converter to connect to a designated log
monitor, such as Cilium Hubble [54]. Furthermore, it can
direct the policy converter to convert the discovered policy
into a specific CNI’s network policy in addition to the default
Kubernetes network policy.

2) NETWORK LOG COLLECTOR

The network log collector is responsible for processing and
transforming raw network logs generated by the log monitor
into a structured format that can be easily analyzed and
utilized by the policy discover. These network logs contain
key information about communication patterns and network
flows between different pods within the cluster. However,
since each log monitor may include unnecessary details, the
network log collector eliminates such data and converts the
logs into a structured format that includes only the essential
information required for the discovery process.

3) POLICY DISCOVER

The policy discover is a crucial component of KUNERVA,
tasked with analyzing the structured network logs and
autonomously identifying the communication patterns
between pods within the cluster. Through this analysis, this
component generates network policy candidates that capture
the observed communication behaviors while adhering to the
cluster’s security and isolation requirements. In addition, the
enhancer of this component plays a vital role in computing
the minimum set of policies necessary to cover the maximum
network flows and efficiently updating policies from older to
newer versions.

4) POLICY CONVERTER

The policy converter is designed to ensure compatibility and
adaptability with various CNIs (e.g., Cilium and Calico) and
the default network policy in Kubernetes. Its primary func-
tion is to take the network policies discovered by the policy
discover and convert them into the specific network policy
format required by the target CNI in the containerized cloud
environment. This capability enables KUNERVA to be highly
versatile, as it can seamlessly integrate with different network
plugins, expanding its applicability and usefulness in a wide
range of scenarios.

5) CLUSTER RESOURCE COLLECTOR

The cluster resource collector is responsible for extracting
and processing relevant Kubernetes resources needed to gen-
erate network policies. It interacts with the API server of
a container orchestration system, specifically Kubernetes,

VOLUME 11, 2023

@ > ‘Step 1. Deduplicate raw network logs |

raw network logs

‘Step 2. Refactor by the labels of source pod |

‘Step 3. Merge the labels based on the same targets |

‘Step 4. Consolidate protocol/port based on the same targets |

@ ‘Step 5. Aggregate HTTP rules via a dependency tree |

‘Step 6. Build candidate network policy sets |
|

‘Step 7. Generate and update network policy sets |

@ discovered network policy sets

FIGURE 4. Workflow for discovering a network policy.

to gather information about resources such as pods, services,
and endpoints. This collected information is then processed
into a structured format that the discovery and verification
phases in KUNERVA can easily utilize. Through effective
management and conversion of resource data, the resource
collector ensures that the generated policies accurately align
with the current state of the containerized environment.

6) POLICY CONSTRAINT BUILDER

The policy constraint builder is essential for verify-
ing network policies with a policy enforcement frame-
work such as Gatekeeper [12]. Utilizing the Kubernetes
resource data, this component generates constraint files in
ConstraintTemplates, which the enforcement frame-
work requires to evaluate the discovered network policies.
By incorporating these constraint files, the enforcement
framework can validate the discovered policies against the
desired security and isolation requirements for the container-
ized environment. As a result, this proactive verification
of network policies before their application to the cluster
reduces the potential for misconfigurations.

C. SYSTEM WORKFLOW

Here, we describe the overall workflow of KUNERVA.
As shown in Figure 3, KUNERVA operates in two distinct
phases: policy discovery and verification.

1) POLICY DISCOVERY PHASE

The collaboration of the network log collector, cluster
resource collector, policy discover, and policy converter com-
ponents involves a series of steps. First, the network log
collector obtains raw network logs from log monitors or
databases and filters out unnecessary information.

Then, the policy discover utilizes the refined logs and
cluster resource data to generate network policy candidates
that capture the observed communication behaviors follow-
ing the steps as shown in Figure 4. Especially, the policy
discovery also utilizes the enhancer module to evolve the
policies, and eventually builds network policies in the form
of Kunerva network policy (Appendix). The key features of

95621

IEEE Access

S. Lee, J. Nam: Kunerva:

Automated Network Policy Discovery Framework for Containers

timestamp namespace/src_pod_name:src port

IMai 11 18:51:25.445'"boutique/Loadqenerator‘fb665d87fffchbp: Jc1p:28338)

->|boutique/frontend-56cf64f596-kx4s9: Z8ZSS)|httEfr‘e9uest|} ORWARDLD'

L(.HTTP/l.l POST http://frontend/cart) protocol action
traffic flow namespace/dst_pod_name:dst port

FIGURE 5. An example of a network log generated by the log monitor
(i.e., Cilium Hubble).

the enhancer module as they relate to discovery are described
in the following sections.

Finally, the policy converter component takes the discov-
ered network policies and converts them into the specific
network policy format required by the target CNI. This col-
laborative process ensures the effective discovery, analysis,
and conversion of network policies.

2) POLICY VERIFICATION PHASE

The collaboration of the cluster resource collector and pol-
icy constraint builder involves several steps. First, the clus-
ter resource collector retrieves the necessary resource data
from the cluster’s API server and refines it into the essen-
tial information required for the verification process (1).
Subsequently, the policy constraint builder utilizes these
refined data to construct policy constraints that define the
allowed access of pods and endpoints to specific network
resources within the cluster (2). Finally, the constraint builder
applies these constraints to the policy enforcement frame-
work, enabling proactive verification of the generated net-
work policies to ensure compliance with the intended security
and isolation requirements (3). This collaborative process
ensures that network policies are thoroughly verified before
their application, mitigating the risks of misconfigurations
and bolstering overall security.

V. CONTAINER-AWARE POLICY DISCOVERY

This section outlines the container-specialized functionalities
of KUNERVA for both the policy discovery and verification
phases. It highlights the specific features and capabilities of
our framework that are tailored to the containerized envi-
ronment, enabling effective network policy discovery and
proactive verification in such contexts.

A. EFFICIENT CONSOLIDATION
In essence, a network log in KUNERVA represents a single
instance of network traffic, and its structure may vary slightly
depending on the log monitor used. As illustrated in Figure 5,
each network log contains information such as the source and
destination pod names, protocol, port details, and flow type
(e.g., egress or ingress). However, generating a separate net-
work policy for each network log could lead to an excessive
number of policies being created within a short period.
KUNERVA incorporates rule consolidation as a solution to
tackle the challenge of a potentially overwhelming number of
network policies. The process begins by generating candidate
network policies. These policies are then analyzed to identify
common attributes, such as matching pod selectors and rule
types (e.g., egress or ingress). If the candidate policies with

95622

TCP 27017
TCP 3306
TCP 5432
egress:
egress: egress: egress: ” to:
“to: “to: “to: - EeiReE
- podSelector: - podSelector: - podSelector: P :
matchLabels:
matchLabels: matchLabels: matchLabels:
app: bob
app: bob app: bob app: bob o
ports: ports: ports: N
° I: TCP
- protocol: TCP - protocol: TCP - protocol: TCP ::::f’;;ul;:
port: 27017 port: 3306 port: 5432 - protocol: TCP
candidatel.yaml candidate2.yaml candidate3.yaml port: 3306
- protocol: TCP
port: 5432
merged_egress.yaml|

FIGURE 6. An example of merging multiple policy candidates into a
single network policy.

Pod A GET /product/DEFGWE23 Pod B
appialicel) GET/product/CEFS32 app: bobi
GET /product/A1VGW22
GET /product/CE11APE
egress:
egress: toHTTPs: “to:
-to: - method: GET - podselector:
- podSelector: path: /product/DEFGWE23 matchLabels:
matchLabels: - method: GET app: bob
app: bob path: /product/CEFS32 ports:
ports: - method: GET - protocol: TCP
- protocol: TCP path: /product/AIVGW22 port: 8080
port: 8080 - method: GET toHTTPs:
path: /product/CE11APE - method: GET
candidate.yaml path: /product/*
merged_http.yaml|

FIGURE 7. An example of merging multiple toHTTPs rule candidates into
a single policy rule.

matching attributes are found, the policy discover merges
them into a single policy while preserving the original secu-
rity and isolation properties within the cluster. This consoli-
dation approach ensures a more concise and manageable set
of network policies, reducing complexity.

Consider the scenario depicted in Figure 6, where we
have two pods, Pod A and Pod B. Pod A initiates three
distinct network traffic flows to Pod B, each with a different
destination port: 27017, 3306, and 5432. The policy dis-
cover generates three initial policy candidates in KUNERVA
and analyzes their pod selectors and egress policy types.
While the label selectors of the candidates are not explic-
itly shown in the illustration, they point to Pod A. As a
result of analyzing the candidates, it is determined that they
share identical pod selectors (Pod B) and egress types. Con-
sequently, the enhancer module within the policy discover
merges these candidates into a single policy, represented
as “merged_egress.yaml” in Figure 6. This consolidation
simplifies the network policies, reducing redundancy and
enhancing overall manageability.

While merging multiple candidate policies into a single
policy can improve manageability to some extent, it is not
a universal solution. The resulting single policy can still
be quite large, depending on the number of policy rules
involved. This is especially true when a CNI supports L7
policy rules (e.g., toHTTPs). In such cases, a candidate
policy can significantly expand in size as more distinct types
of HTTP traffic are discovered. For example, if Pod A sends

VOLUME 11, 2023

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

IEEE Access

<wildcard>
-

\ view) [detaisg) [detais [view 6

/
[config é\ config é [config 6\ config é

<Before> <After>

FIGURE 8. An example of an L7 dependency tree. The number within
each circle refers to the count of child nodes.

four distinct types of HTTP data to Pod B, the candidate
policy would contain four toHTTPs rules, as depicted in
Figure 7. Consequently, if there are 100 distinct toHTTPs
URLs, the resulting policy could contain 100 individual
toHTTPs rules. This highlights the potential for larger poli-
cies when dealing with a substantial number of distinct rule
variations.

Algorithm 1 Building a L7 Dependency Tree

1 BuildDependencyTree (Root, Paths, T)
Inputs : Root: L7 dependency tree (initially,

empty), Paths: URI, an array of paths

split with °/’, T: Pre-defined threshold

for aggregation

2 Root = buildL7Tree(Root, Paths);

/* traverse the built tree by
merging the children nodes */

3 foreach node in Root do

4 L if Number of node.Child > T then

L node.Child = MergeChild(node);

6 return Root;

7 MergeChild (Node)
Inputs : Node: Current node in the dependency

tree
8 newChild = NewChildNode();
9 foreach child in Node.Child do

10 if Number of child.Child # 0 then
1 foreach c in child.Child do
12 if ¢ in newChild.Child then
13 newChild.Child[c] =
L append(c.Child);
14 else
15 L newChild.Child = append(c);

16 newChild.Path = wildcard,
17 newChild.Depth = node.Depth+1;
18 return newChild;

To address the challenge of numerous L7 rules, the
enhancer module in the policy discover utilizes an L7 depen-
dency tree approach based on multiple toHTTPs rule candi-
dates, as outlined in Algorithm 1. This module constructs the

VOLUME 11, 2023

lapp: alice |
froup: new: TCP 80
...........
;
-----------‘ TCP 80
spec: spec: spec:
podSelector: podSelector: podSelector:
matchLabels: matchLabels: matchLabels:
app: alice app: bob group: new
group: new group: new egress:
egress: egress: -to:
-to: - to: - podSelector:
] - podSelector: - podSelector: matchLabels:
matchLabels: matchLabels: app: charlie
app: charlie app: charlie ports:
ports: ports: - protocol: TCP
- protocol: TCP - protocol: TCP port: 80
port: 80 port: 80 aggregated_egress.yam|
candidatel.yaml| candidate2.yaml|

FIGURE 9. An example of aggregating the intersecting labels for multiple
pods and merging the candidates into a policy.

L7 dependency tree and traverses its nodes, keeping track of
the number of child nodes and their depth simultaneously.
When the number of child nodes exceeds a user-defined
threshold, the enhancer module merges them into a wildcard.
For example, in Figure 8, the enhancer module identifies that
the product node has four child nodes at the same depth
(Before in Figure 8). To simplify the policy, the enhancer
module combines these child nodes into a wildcard (in this
case, the threshold value is 3) using regular expressions (After
in Figure 8). This approach effectively reduces the complex-
ity and size of the resulting policy by consolidating similar
L7 rules.

B. EFFECTIVE INTERSECTION MERGING

Labels play a critical role in efficiently managing and orga-
nizing resources, such as pods and services, in containerized
cloud environments. In the context of network policy enforce-
ment, labels are especially valuable as they allow for the spec-
ification of network policies based on selectors that match
the labels associated with pods. This ensures that policies are
applied only to the intended pods. By effectively leveraging
label information, it becomes possible to generate a minimal
set of network policies that can cover the maximum number
of network flows, optimizing the policy set and improving
overall efficiency.

Consider the scenario depicted in Figure 9, where three
pods are deployed, and two of them share the common
label ‘group:new’. Both of these pods generate identical TCP
traffic directed to Pod C on destination port 80. In a naive
approach, two separate network policies could be applied
to manage this traffic (candidatel and candidate2 policies
in Figure 9). However, for more efficient policy manage-
ment, our framework consolidates these policies into a single
aggregated policy (aggregated policy in Figure 9). This aggre-
gated policy specifies the label ‘group:new’, thus affecting
both Pod A and Pod B simultaneously. This aggregation
approach allows for more streamlined and concise policy
management, reducing complexity and enhancing overall
efficiency.

95623

IEEE Access

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

myService example.com
—p | aeeccemeeao —_—
(1)TCP 443 | fvceexternal; 10.0.0.1
(2) TCP 443
egress: egress: egress:
-to: - to: -to:
- ipBlock: - toServices: - toFQDNSs:
cidr: 10.0.0.1/32 - k8sServiceSelector: or - matchName: “example.com”
ports: selector: toPorts:
- protocol: TCP matchLabels: - ports:
port: 443 svc:external - port: 443
protocol: TCP
candidate.yaml service.yam| fqdn.yaml

FIGURE 10. An example of replacing a CIDR policy with an external
service or FQDN policy as a more flexible form.

C. ADVANCED EVOLUTION

In addition to basic evolution for policy discovery (i.e.,
merging or aggregating network policies), KUNERVA offers
advanced evolution techniques to further improve policy
management effectiveness. One such technique involves
transforming raw network policies into high-level policies
that enhance security within the cluster. This advanced evolu-
tion aims to streamline and optimize policies, enabling more
robust and effective security measures to be implemented.

The process of evolving raw policies into high-level poli-
cies is illustrated in Figure 10. The scenario involves two
distinct ways in which Pod A can send traffic to example.com,
an external service not residing within the cluster. The first
approach entails Pod A directing the traffic to a pre-defined
service resource within the cluster, which points to the
IP address 10.0.0.1 (1). Alternatively, Pod A can directly
send the traffic to example.com (2). However, log monitors
only provide traffic information indicating that Pod A sent
the traffic to 10.0.0.1, which is challenging to determine
whether this traffic originates from the service or a direct
connection.

To address the challenge of identifying the origin of traffic
directed towards external services, KUNERVA incorporates an
internal database that maintains a record of external service
resources and domain information related to pod connections.
During the network policy discovery process, when a CIDR
(Classless Inter-Domain Routing) policy is identified as a
candidate, our framework checks if it matches any service
resource or domain information in the database. If a match
is found, it updates the policy to a service or FQDN (Fully
Qualified Domain Name) policy accordingly. This approach
enables the generation of more accurate and high-level net-
work policies that align with the actual communication pat-
terns and requirements within the containerized environment,
improving overall precision and security.

In summary, the processes outlined in Sections V-A, V-B,
and V-C contribute to reducing the complexity and redun-
dancy of network policy rules, resulting in a more efficient
and effective representation of the desired network security
and isolation requirements in the cluster. They enable net-
work administrators and researchers to work with a more
manageable and comprehensible set of network policy rules,

95624

Algorithm 2 Verifying Discovered Policy

1 VerifyDiscoveredPolicy (Policy, Pods)

Inputs : Policy: Discovered policy to be enforced,
Pods: An array of Pod running in the
cluster

foreach pod in Pods do

2
3 if pod.Labels in Policy.podSelector then
4 foreach port in pod.ServicePorts do
5 if port.Protocol is TCP then
6 if port.port is Policy.L4.tcpPort
then
7 | return Allow;
8 if port. Protocol is UDP then
9 if port.port is Policy.L4.udpPort
then
10 L return Allow:;
11 if port.Protocol is ICMP then
12 if port.port is Policy.L4.icmpType
then
13 L return Allow:;

14 return Deny;

enhancing the overall manageability and understandability of
the network policies in the containerized environment.

D. EFFECTIVE SAFETY MEASURES

One significant concern in a containerized cluster is the
possibility for pods to send traffic to different ports of a
server pod, despite the server pod specifying a specific port
number for communication. This situation can expose the
server pod to unauthorized access or malicious traffic, leading
to the generation of unintended policies during the discovery
process based on network logs. To mitigate this issue, the
verification of network policies becomes crucial as network
policies enforce strict communication rules between pods,
ensuring that only the intended ports are accessible and
preventing unauthorized access or unintended traffic to the
server pod. By incorporating thorough policy verification,
as outlined in Algorithm 2, our framework first addresses
this problem and enhances the overall security of the
cluster.

Then, to ensure minimum safety measures, KUNERVA
seamlessly integrates with a policy enforcement system,
as depicted in Figure 11. A fundamental assumption is made
that all pods specify the open ports in their service resources
within the cluster. For instance, when Pod A and its corre-
sponding service resource are created, KUNERVA automati-
cally generates a constraint file specifically for Pod A. This
constraint file contains details about the permitted ports and
protocols (e.g., 27017 and 3306 in this example), and it is

VOLUME 11, 2023

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

IEEE Access

constraint.yaml benign.yaml| malicious.yaml
podSelector: egress: egress:
matchLabels: -to: -to:
app: alice - podSelector: - podSelector:
ports: matchLabels: matchLabels:
- protocol: TCP app: alice app: alice
port: 27017 ports: ports:
- protocol: TCP - protocol: TCP - protocol: TCP
port: 3306 port: 27017 port: 5432
(2) allow benign (3) deny malicious

(1) register

traint: Policy Enforcement
constraints Framework K8S API Server
Webhook

(i.e., Gatekeeper)

FIGURE 11. An example of verifying the discovered policy (benign) and
malicious one.

then registered with the policy enforcement system. This inte-
gration enables the enforcement system to effectively verify
network policies against the allowed ports and protocols spec-
ified in the service resources, thereby enhancing adherence to
the cluster’s intended communication rules.

Subsequently, whenever a network policy (whether discov-
ered or manually created) is applied to the cluster through
the Kubernetes API server, the server performs a validation
check on the policy for correctness. As depicted in Figure 11,
the benign policy can be applied since it aligns with the
ports and protocols served by Pod A. On the other hand,
the malicious policy is denied because it attempts to access
port 5432, which is not served by Pod A according to the
specified service resource. This verification process ensures
that network policies adhere to the intended security and
isolation requirements, minimizing the potential for miscon-
figurations and unauthorized access within the containerized
cluster.

VI. IMPLEMENTATION

To prove the feasibility and effectiveness of KUNERVA,
we have implemented a prototype using Go language and
shell scripts comprising six key components totaling approx-
imately 7.5K lines of code. The network log collector is
designed to interface with the Hubble log monitor [54] in
real-time, refining logs to optimize policy discovery. The
cluster resource collector gathers essential pod, endpoint, and
service data from the Kubernetes API server, which the policy
discover and constraint builder utilize. In addition, KUNERVA
provides support for MySQL [55] and MongoDB [56]
databases for storing discovered policies.

KUNERVA supports three major network policy types:
Kubernetes, Cilium, and Calico, enabling the generation
of network policies specifically designed for the enforce-
ment mechanisms provided by these CNIs within the
cluster. KUNERVA offers flexibility in its operation mode,
allowing for real-time or offline network policy dis-
covery. Network policies can be discovered either from
pre-collected logs or by connecting to the log monitor
and performing the discovery process at predetermined
intervals.

VOLUME 11, 2023

m-{ GateKeeper ‘ ‘CiliumHubee|

master node

L v v
checkout payment email >
¥
(redis) shipping currenc>
£ £

worker node 2

worker node 1

FIGURE 12. Test environments and deployed microservices. The solid
lines represent traffic between the pods, while dashed ones indicate
traffic that our framework interacts with.

VII. EVALUATION

In this section, we conduct a real-world evaluation of
KUNERVA to showcase its effectiveness and performance in
practical environments.

A. TEST ENVIRONMENT

We set up a Kubernetes cluster with the Cilium overlay
network using three virtual machines (VMs). One of the
VMs functioned as the Kubernetes master node, while the
remaining two VMs served as worker nodes. The VMs were
hosted on a physical machine equipped with an Intel Xeon
E5-2630v4 CPU and 64 GB of RAM. This hardware con-
figuration provided the necessary resources for running the
cluster and conducting performance evaluations.

To test the effectiveness of our system, we utilized the
Online Boutique [57] application, which is a cloud-native,
microservices-based demo application for e-commerce. The
application consists of an 11-tier microservices architecture
that enables users to browse items, add them to their cart,
and make purchases. Additionally, we incorporated a load
generator that continuously sends requests, simulating real-
istic user shopping flows to the frontend. This resulted in
a total of 12 pods for the demo application. As depicted
in Figure 12, our framework operated on the Kubernetes
master node alongside Gatekeeper and Cilium Hubble, while
the demo applications were deployed on separate worker
nodes. This setup allowed us to assess the performance and
effectiveness of our framework in a realistic environment.

Connectivity Check: As indicated in Table 1, the Boutique
microservices applications have their own distinct labels and
service ports assigned by default. To enable communication
between each pod, a total of 16 egress network policies
are required, considering the existence of 16 distinct egress
traffic flows between the pods, as illustrated in Figure 12.
Each egress network policy corresponds to a specific pod
and its associated communication requirements, ensuring the
necessary connectivity and access within the microservices
architecture of the Boutique application.

To validate the correctness and effectiveness of the dis-
covered network policies, we follow a two-step approach.

95625

IEEE Access

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

TABLE 1. 11 microservices and load generator under test. 20
16
Service Name Service Port Label =
3 12
app: frontend Q —
frontend 8080 pp k; Original
i app: cartservice 2
cartservice 7070 pp = 8 I Integrated
. o
redis-cart 6379 app: redis-cart 4
roductcatalogservice app: productcatalogservice /
p! g 3550 pp: p! g 0 A
currencyservice 7000 app: currencyservice Egress Ingress
paymentservice 50051 app: paymentservice ; ..
FIGURE 13. Measurements of the changes in the number of policies
shippingservice 50051 app: shippingservice resulting from label integration.
emailservice 8080 app: emailservice
checkoutservice 5050 app: checkoutservice Name Frontend-56CF647596-kx4s9 apiVersion: ciliun. lo7ve
- - mespace boutique kind: CiliumNetworkPolicy
recommendationservice 8080 app: recommendationservice Priority: metadata:
Service Account: default name: kunerva-egress-awnwekrbemfdzdc
. . . Node: worker1/172.17.0.203 namespace: boutique
adservice 9555 app: adservice Start Time: Tue, 02 May 2023 13:09:32 +0000 | |spec:
Labels: app=frontend endpointSelector:
loadgenerator - app: loadgenerator [Tabel=integrated | —— matchLabels:

Firstly, we capture the traffic generated by the load gen-
erator, which continuously sends requests to the front end.
This traffic is then replayed to verify if the discovered
network policies are functioning correctly. We monitor the
log monitor and ensure no traffic is being dropped, indi-
cating that the network policies are appropriately config-
ured. Secondly, we continue operating our framework until
it successfully discovers the 16 default network policies
required for the Boutique application. Throughout this pro-
cess, we collect and utilize approximately 5,000 network
logs, which serve as valuable data for policy discovery and
verification.

B. EFFECTIVENESS

1) USE CASE 1: LABEL INTEGRATION

As depicted in Figure 12, the frontend and checkout pods
establish communication with four other pods: productcata-
log, cart, shipping, and currency. Moreover, these pods send
packets to the same service ports associated with these four
pods. This observation indicates that the network policies
for these pods can be consolidated into a single common
network policy by introducing an intersecting label shared by
the frontend and checkout pods. By leveraging this consol-
idation, we can streamline the network policy management
process and reduce redundancy, resulting in a more concise
and efficient set of network policies within the containerized
environment.

Before the integration of labels, as illustrated in Figure 13,
KUNERVA discovered a total of 16 egress and 15 ingress
policies for the Boutique application. The number of egress
policies was one more than the ingress policies due to the load
generator not providing any service port, thereby not requir-
ing an ingress policy. To consolidate the frontend and check-
out pods, we introduced a common label (label=integrated)
to both pods (A-1 and A-2 in Figure 14). After perform-
ing the discovery process again, our framework generated
a total of 12 egress and 13 ingress policies, including the

95626

=I| label: inteamted I
egress:
- toEndpoints:
- matchLabels:
app: productcatalogservice
k8s:1io.kubernetes.pod.namespace:
boutique
toPorts:
- ports:
- port: "3550"
protocol: TCP

(A-1) Pod(frontend) Information

Name: checkoutservice-b965b5974-xnpfp
Namespace: boutique

Priority:]

Service Account: default

Node: worker2/172.17.0.204
Start Time: Tue, 02 May 2023 13:09:33 +00¢0

Labels: app=checkoutservice
I label=integrated Ii

(A-2) Pod(checkout) Information

(B) Label-integrated Policy

FIGURE 14. The regenerated network policy specification resulting from
label integration.

newly introduced label-integrated policy (B in Figure 14).
This consolidation resulted in an approximate reduction of
25% in the number of policies required. Following the appli-
cation of these policies, we verified that there were no
dropped packets, confirming the successful implementation
and effectiveness of the network policies discovered by our
framework.

2) USE CASE 2: HTTP RULE AGGREGATION

To facilitate effective L7 network policy discovery, it is essen-
tial for the log monitor to include L7 information, such as
HTTP and DNS data, within the network logs. In our evalu-
ation, we utilized Hubble as our log monitor, as it provides
this required L7 information by adding annotation marks to
the relevant pods. To capture HTTP log information sent to
the frontend pod, we specifically annotated the loadgener-
ator pod, ensuring that the necessary L7 data was included
in the network logs collected by KUNERVA. This enabled
us to accurately analyze and discover L7 network policies
based on the HTTP traffic flows within the containerized
environment.

Based on the collected HTTP logs, KUNERVA initially
generates an egress policy that includes five separate
‘GET’ method HTTP rules for the loadgenerator (Before in
Figure 15). However, when we activate the enhancer module
within the discovery component, the ‘GET’ rules are success-
fully aggregated into a single rule, which is then represented
as a regular expression (After in Figure 15). This aggregation

VOLUME 11, 2023

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

IEEE Access

egress: egress:
- toEndpoints: - toEndpoints:
- matchLabels: matchLabels:
app: frontend app: frontend
K8s:io-kubernetes. pod.nanespace: boutique k8s:10.kubernetes.pod.namespace: boutique
toPorts:
toPorts:
- ports: - ports
- port: "8080" - .
protocol: TCP port: "2080
lee: protocol: TCP
Lig: rules:
- method: GET http:
path: /product/6E92ZMYYFZ { - method: GET
method: GET 1 path: /product/.[A/1+
path: /product/LIECAVZKIM ~method: POST
- method: GET path: /cart After
path: /product/@PUKGVEEVO - method: POST
- method: GET path: /cart/checkout
path: /product/66VCHSINUP ~ method: POST

- method: GET path: /setCurrency
ath: /product/2ZYFI3GM2N

~method: POST
path: /cart Before

method: POST

path: /cart/checkout
- method: POST
path: /setCurrency

FIGURE 15. Results of toHTTP rule aggregation.

apiversion: constraints.gatekeeper.sh/vibetal
kind: KunervaAdmission
metadata: metadata:
name: paymentservice name: malicious-policy
spec: namespace: boutique
match: spec:
kinds: endpointSelector:
- apiGroups: ["cilium.io"] matchLabels:
kinds: ["CiliumNetworkPolicy"] app: checkoutservice
parameters: egress:
matchLabels: - toEndpoints:
app: paymentservice - matchLabels:
toPorts: app: paymentservice
~ports: k8s:io. kubernetes.pod. namespace: boutique
- port: "50051" toPorts:
protocol: TCP i = ports:
- port: "8080"

(A) Generated Constraint protocol: TCP

apiversion: cilium.io/v2
ind: CiliumNetworkPolicy

(B) Malicious Network Policy

Error from server (Forbidden): error when eating gatekeeper.yaml: admission webhook
validation.gatekeeper.sh|denied the request:| [paymentservice] type 3: requried toPorts|

: {{port: 50051, protocol: TCP}} but provided: {{port: 8080, protocol: TCP}}
(C) Denied Malicious Policy

FIGURE 16. Results of label integration.

process allows us to effectively manage the L7 rule within
the network policies, reducing complexity and enhancing the
manageability of the policies. By consolidating similar L7
rules, our framework optimizes the resulting network poli-
cies, leading to improved efficiency and more streamlined
policy management within the containerized environment.

3) USE CASE 3: POLICY VERIFICATION
To ensure the correctness of the discovered network policies,
KUNERVA integrates with the policy enforcement system,
Gatekeeper [12]. To facilitate the accurate verification of the
policies generated by our framework, we provide a constraint
file that outlines the specific standards and criteria for val-
idating the network policy. This constraint file serves as a
guide for the enforcement system to effectively assess the
compliance of the network policy. As part of KUNERVA’S
operation, whenever a new pod is created within the clus-
ter, it automatically generates the corresponding constraint
file and registers it with the policy enforcement system.
This integration enables the proactive verification of network
policies against the intended security and isolation require-
ments, ensuring adherence to established standards within the
containerized environment.

In our test environment, consisting of 11 pods excluding
the loadgenerator, KUNERVA generated a total of 11 constraint

VOLUME 11, 2023

files. Each constraint file corresponds to a specific pod within
the cluster and provides information about the services it
offers, including the port numbers and protocols used. For
instance, one constraint file specifies that the paymentservice
pod provides its service on port 50051 using the TCP protocol
(A in Figure 16). Following the application of this constraint
file, we attempted to install a malicious network policy that
would allow traffic to be sent to port 8080 of the paymentser-
vice (B in Figure 16). However, we verified that the policy
enforcement system rejects this malicious policy based on
the constraint file (C in Figure 16). This successful rejection
demonstrates the effectiveness of KUNERVA in ensuring the
enforcement of desired network policies and maintaining
the intended security and isolation requirements within the
containerized cluster.

C. FUNCTIONAL BENCHMARK SUMMARY

To enable the discovery of network policies within con-
tainerized cloud environments, KUNERVA relies on minimal
data, including the names of the source and destination
pods, as well as port information. This approach ensures the
portability and compatibility of the log collector component
across different environments. In our evaluation, we uti-
lize Cilium Hubble as the network monitoring system to
obtain the necessary network logs for testing. However, it is
important to note that KUNERVA can seamlessly integrate
with other network monitoring systems that provide the
required minimal log data. This flexibility allows our frame-
work to adapt to diverse monitoring setups and effectively
leverage network logs for policy discovery in various cloud
environments.

Table 2 provides an overview of the different types of
network policies and sub-rules supported by KUNERVA. The
network policies can be classified into three main types:
L3, L4, and L7, depending on the CNI adopted within the
containerized cluster. For example, Cilium offers compre-
hensive support for the full stack, from L3 to L7. On the
other hand, default Kubernetes and Calico network policies
primarily focus on L3 and L4. The policy converter com-
ponent in KUNERVA plays a crucial role in converting the
discovered network policies into formats compatible with
Kubernetes, Cilium, and Calico, ensuring seamless integra-
tion and enforcement of the policies within the respective
CNIs. This capability enables KUNERVA to accommodate
a wide range of network policy requirements in different
environments.

D. PERFORMANCE BENCHMARK SUMMARY

To assess the performance impact of KUNERVA, we con-
ducted a systematic evaluation within a Kubernetes cluster.
Our evaluation comprised four distinct stages in the work-
flow: L3-4 log collection exclusively, combined L3-4 log
collection with policy discovery, 13-4 and L7 log collection
only, and integrated L3-7 log collection with policy dis-
covery. It is noteworthy that all KUNERVA components ran
on the master node, with the exception of the network log

95627

IEEE Access

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

TABLE 2. Network policy types and network policy plugins supported by
KUNERVA.

K8s [5] Cilium [24] Calico[23] KUNERVA
L3 Label v v v v
CIDR v v v v
LA Port v v v v
Protocol v v v v
L7 HTTP v v
FQDN v v

Master Node [Worker Nodes

CPU Usage (%)
O B N W b U1 O N

Baseline L3-4 L3-4 L3-7 L3-7
Collection Discovery Collection Discovery

FIGURE 17. Measurements of the changes in CPU usage with different
combinations of KUNERVA components.

collector, which operated alongside microservice containers
on individual nodes. Throughout the evaluation, we mon-
itored both CPU and MEM usage in 5-minute intervals
for each scenario, while executing policy discovery every
10 seconds.

Figure 17 provides the average CPU usage distribution
among various configurations of KUNERVA components.
In the baseline scenario, microservice containers consume
3.28% of the CPU on worker nodes in total, while Kubernetes
components utilize 1.95% on the master node. Upon the
initiation of (L.3-7) network log collection, the log collector
introduces a minimal 0.25% increase in CPU usage on worker
nodes, with no discernible impact on the performance of other
microservices. Conversely, as L3-4 network logs reach the
master node, KUNERVA designates 1% of CPU usage to store
these logs within its database. The inclusion of L3-7 network
logs results in a 0.23% rise in CPU usage attributed to the
processing of URIs. Further, policy discovery from L3-4 logs
contributes an additional 0.5% to the CPU usage. In aggre-
gate, activating all functionalities, including L7 policy dis-
covery, culminates in a CPU usage of 4.53%, representing a
2.58% increase compared to the baseline scenario.

Turning to Figure 18, we depict the average memory usage
measurements for various KUNERVA component configura-
tions. In contrast to the CPU usage distribution, consistent
memory consumption is observed on both the master and
worker nodes (400MB and 97MB, respectively), although
slight increases are seen when collecting L7 logs and discov-
ering L7 policies. As a result, these measurements reaffirm

95628

2.0
@A Master Node [Worker Nodes]
1.6
143 145
a 130 1.36
e
o 1.2 1.06
Qo
3
>
0.8
=
w
2 0.4
0.0
Baseline L3-4 L3-4 L3-7 L3-7

Collection Discovery Collection Discovery

FIGURE 18. Measurements of the changes in MEM usage with different
combinations of KUNERVA components.

KUNERVA’s capability to deliver container-aware network
policy discovery and verification with minimal overhead.

VIIl. LIMITATIONS AND DISCUSSIONS

While KUNERVA demonstrates effective and efficient network
policy discovery in containerized environments, there are still
limitations that can be addressed for further enhancement.
In this section, we highlight the current design’s limita-
tions and propose potential improvements to our framework,
aiming to refine its capabilities and extend its applicability
in addressing various challenges related to network policy
management and enforcement.

A. SYSTEM POLICY DISCOVERY

Apart from network logs, there are some other systems
such as KubeArmor [47], offering system-related logs (e.g.,
file access and system calls [45], [47]) by leveraging tech-
nologies like eBPF (extended Berkeley Packet Filter) and
LSM (Linux Security Module). These logs provide valu-
able insights into container activities and runtime security
enforcement. KUNERVA could enhance its capabilities by inte-
grating with such systems to acquire these system-related
logs. By leveraging these logs, our framework could extend
its policy discovery to include system policies, enabling
more comprehensive control over container behavior and
enhancing overall security measures within the containerized
environment.

B. MULTI-CLUSTER SUPPORT

With the growing demand for multi-cluster deployments in
containerized cloud environments, we recognize the need to
extend the capabilities of KUNERVA to support policy dis-
covery in such environments. While the current version of
our framework operates within a single cluster, we aim to
develop strategies to efficiently and effectively handle the
complexities that arise from managing numerous pods dis-
tributed across multiple clusters and the network logs they
generate. By addressing the challenges associated with multi-
cluster environments, we can provide organizations with the
means to effectively manage network policies and ensure
consistent security and isolation across their containerized
deployments.

VOLUME 11, 2023

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

IEEE Access

C. POLICY CONFLICT RESOLUTION

Primarily, we operate under the assumption that no net-
work traffic is permitted between pods without network
policies in Kubernetes environments. In practice, this can
be achieved using blank selector labels within the network
policy. Additionally, KUNERVA identifies network policies
that have only allow actions, thereby minimizing policy
conflicts. However, conflicts can still occur under a variety
of conditions, such as when policies possess overlapping
or contradictory rules. To resolve these conflicts, a variety
of solutions can be deployed. For instance, certain poli-
cies may hold more importance than others based on the
network’s security needs and the functionalities of the appli-
cations involved. Our future work will involve identifying
policy conflicts and prioritizing policies based on these
considerations.

IX. CONCLUSION

In this work, we have introduced an innovative automated net-
work policy discovery framework, called KUNERVA, designed
for containerized cloud environments. KUNERVA effectively
addresses the challenges posed by manual network policy
management, significant contributions in container-aware
policy discovery, efficient consolidation of policy rules,
and seamless integration with policy enforcement systems.
Importantly, KUNERVA significantly reduces the risks of mis-
configurations, thereby enhancing the overall security pos-
ture of a containerized cluster. We have demonstrated the
capability of KUNERVA to discover and validate network
policies successfully within the context of a real-world web-
based e-commerce microservices application on Kubernetes.
We have also illustrated the effectiveness of our policy dis-
covery algorithm through its application to various use cases
involving real-world microservices.

APPENDIX

NETWORK POLICY SPECIFICATION

KUNERVA offers an expressive network policy model that
specifies how containers should communicate with various
network entities. Listing 1 illustrates a full definition of
KUNERVA’s network policy.

The KUNERVA network policy begins with fundamental
information such as apiVersion, kind, metadata, outdated, and
generatedTime. The apiVersion and kind are constants across
all network policies. The metadata section includes the dis-
covered policy name (typically a random string) and the name
of the namespace to which it applies. Furthermore, we specify
the policy type, either egress or ingress, along with its rule.
The toPorts rule can interact with other rules. The status field
indicates whether the policy is latest or outdated. When a
policy is marked as outdated, the outdated field references
the name of the overlapping policy, and the generatedTime
field reflects the time the policy was created, based on unix
seconds. The selector part is relatively straightforward, and
the target pods can be specified based on labels.

VOLUME 11, 2023

apiVersion: vl
kind:KunervaNetworkPolicy

metadata:

name: [policy name]

namespace: [namespace name]

type: [egress|ingress]

rule: [matchLabels|toPorts|toCIDRs
| fromCIDRs |toEntities
| fromEntities|toServices
| toFQDNs | toHTTPs]

status: [outdated]|latest]

outdated: [overlapped policy name]
generatedTime: [unix time second]

spec:
selector:
matchLabels:
[keyl]:
[keyN]:

[valuel]
[valueN]

egress:
- matchLabels:
[keyl]: [valuel]
[keyN]: [valueN]
toPorts:
— port: [port number]
protocol: [protocol]
toCIDRs:
- cidrs:
- [ip addr]/[cidr bits]
toEntities:
- [entity]
toServices:
- serviceName: [service name]
namespace: [namespace]
toFQDNs:
- matchNames:
— [domain name]
toHTTPs:
— method: [http method]
path: [http path]
aggregated: [true/false]

ingress:

- matchLabels:
[keyl]: [valuel]
[keyN]: [valueN]

toPorts:

- port: [port number]
protocol: [protocol]

toHTTPs:

- method: [http method]
path: [http path]
aggregated: [true/false]

fromCIDRs:

- cidrs:

- [ip addr]/[cidr bits]
fromEntities:

- [entity]

Listing 1. Kunerva network policy specification.

In the egress rule, we differentiate between seven types.
Firstly, matchLabels is analogous to the selector, thus
allowing specification of destination pods based on labels,

95629

IEEE Access

S. Lee, J. Nam:

Kunerva: Automated Network Policy Discovery Framework for Containers

which should also encompass the namespace. ToPorts
is a list of port filters, where port and protocol denote
the port number and its corresponding protocol, respec-
tively. TCP, UDP, and SCTP protocols are supported.
Additionally, ToPorts should be combined with other
rules, for example, matchLabels+toPorts, toCIDRs+toPorts,
toFQDNs-+toPorts, and matchLabels+toPorts+toHTTPs.
ToCIDR rules define policies limiting external access to a
specific IP range, and when combined with ToPorts rules,
can refine external IP address restrictions.

ToEntities rules describe entities accessible by the selec-
tor, although they are exclusive to Cilium-based CNIs. The
applicable entities include host (the local host), remote-node
(other hosts in the cluster), and world (equivalent to CIDR
0.0.0.0/0). ToServices rules limit access to services operating
within the cluster, although these services should not use
selectors. In other words, it supports selector-less services
exclusively. Consequently, to use ToServices rules, the ser-
vice and its endpoints should be designated. TOFQDNs rules
define policies incorporating DNS queryable domain names,
with multiple distinct names currently supported in separate
matchName entries. Lastly, TOHTTPs rules consist of the
method and path of the HTTP protocol. If the method is
omitted or left blank, all methods are permitted. Typically,
ToHTTPs rules are used in combination with matchLabels
and ToPorts rules. If paths are aggregated, the aggregate
boolean value is set to true.

In the ingress rule, we differentiate between four types:
matchLabels, toPorts, fromCIDRs, and fromEntities. These
function similarly to their counterparts in the egress rule.
Specifically, ToPorts rules within the ingress context repre-
sent the destination port information exposed by the selector.

REFERENCES

[1] Portworx and Aqua Security. (2019). 2019 Container Adoption
Survey. [Online]. Available: https://portworx.com/wp-content/uploads
/2019/05/2019-container-adoption-survey.pdf

[2] Markets and Makers. (2018). Application Container Market. [Online].

Available: https://www.marketsandmarkets.com/Market-Reports/applicat

ion-container-market-182079587.html

Docker. Accelerated Container Application Development. Accessed:

Aug. 31, 2023. [Online]. Available: https://www.docker.com

[4] StackRox. (2022). The State of Container and Kubernetes Secu-
rity. [Online]. Available: https://thechief.io/c/editorial/state-of-kubernetes-
security-report

[5] Kubernetes. Production-Grade Container Orchestration.
Aug. 31, 2023. [Online]. Available: https://kubernetes.io

[6] M. U.Haque, M. M. Kholoosi, and M. A. Babar, “KGSecConfig: A knowl-
edge graph based approach for secured container orchestrator configu-
ration,” in Proc. IEEE Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Mar. 2022, pp. 420-431.

[7]1 Twain Taylor. 5 Kubernetes Security Incidents and What We Can Learn
From Them. [Online]. Available: https://techgenix.com/5-kubernetes-
security-incidents/

[8] E.SocchiandJ.Luu, “A deep dive into Docker Hub’s security landscape—
A story of inheritance?”” M.S. thesis, Dept. Inform., Univ. Oslo, Oslo,
Norway, 2019.

[9]1 A.YiWong, E. G. Chekole, M. Ochoa, and J. Zhou, ““Threat modeling and
security analysis of containers: A survey,” 2021, arXiv:2111.11475.

[10] (2021). CVE-2020-8554: Man in the Middle in Kubernetes. [Online].

Available: https://blog.champtar.fr/K8S_MITM_LoadBalancer_
ExternallPs/

3

Accessed:

95630

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]
[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

ThreatPost. (2021). ‘Azurescape’ Kubernetes Attack Allows Cross-
Container Cloud Compromise. [Online]. Available: https://threatpost.com/
azurescape-kubernetes-attack-container-cloud-compromise/169319/
GateKeeper. Policy Controller for Kubernetes. Accessed: Aug. 31, 2023.
[Online]. Available: https://github.com/open-policy-agent/gatekeeper

O. Sefraoui, M. Aissaoui, and M. Eleuldj, “OpenStack: Toward an open-
source solution for cloud computing,” Int. J. Comput. Appl., vol. 55, no. 3,
pp. 38-42, Oct. 2012.

S. S. Yau, A. B. Buduru, and V. Nagaraja, “Protecting critical cloud
infrastructures with predictive capability,” in Proc. IEEE 8th Int. Conf.
Cloud Comput., Jun. 2015, pp. 1119-1124.

C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, ‘“Cloud container technolo-
gies: A state-of-the-art review,” IEEE Trans. Cloud Comput., vol. 7, no. 3,
pp. 677-692, Jul. 2019.

R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen, “Challenges and
solutions when adopting DevSecOps: A systematic review,” Inf. Softw.
Technol., vol. 141, Jan. 2022, Art. no. 106700.

S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues, chal-
lenges, and the road ahead,” IEEE Access, vol. 7, pp. 52976-52996, 2019.
H. Kang, M. Le, and S. Tao, “Container and microservice driven design for
cloud infrastructure DevOps,” in Proc. IEEE Int. Conf. Cloud Eng. (IC2E),
Apr. 2016, pp. 202-211.

Report on the Enhancements of the NFV Architecture Towards
‘Cloud-Native’ and ‘PaaS’, document ETSI GR NFV-IFA 029, ETSI,
Sophia Antipolis, France, 2019.

Podman. Pod Manager Tool (Podman). Accessed: Aug. 31,2023. [Online].
Available: https://www.podman.io

T. Watts, R. G. Benton, W. B. Glisson, and J. Shropshire, “Insight from
a Docker container introspection,” in Proc. 52nd Hawaii Int. Conf. Syst.
Sci., Aug. 2019, pp. 7194-7203.

J. Nam, S. Lee, H. Seo, P. Porras, V. Yegneswaran, and S. Shin, “BAS-
TION: A security enforcement network stack for container networks,” in
Proc. USENIX Annu. Tech. Conf., 2020, pp. 81-95.

Tigera. Project Calico. Accessed: Aug. 31, 2023. [Online]. Available:
https://www.projectcalico.org

Cilium. API-Aware Networking and Security. Accessed: Aug. 31, 2023.
[Online]. Available: https://cilium.io

Weaveworks. Weave Net. Accessed: Aug. 31, 2023. [Online]. Available:
https://www.weave.works/oss/net

G. Budigiri, C. Baumann, J. T. Miihlberg, E. Truyen, and W. Joosen,
“Network policies in Kubernetes: Performance evaluation and security
analysis,” in Proc. Joint Eur. Conf. Netw. Commun. 6G Summit (EuC-
NC/6G Summit), Jun. 2021, pp. 407-412.

H. Kang and S. Shin, ““Verikube: Automatic and efficient verification for
container network policies,” IEICE Trans. Inf. Syst., vol. 105, no. 12,
pp. 2131-2134, 2022.

Netfilter and IPtables. Accessed: Aug. 31, 2023. [Online]. Available:
https://www.netfilter.org

10 Visor Project. Extended Berkeley Packet Filter. Accessed: Aug. 31,
2023. [Online]. Available: https://www.iovisor.org/technology/ebpf

A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
OpenFlow: A survey,” IEEE Commun. Surveys Tuts., vol. 16, no. 1,
pp. 493-512, 1st Quart., 2014.

J. Gummaraju, T. Desikan, and Y. Turner, “Over 30% of official images in
Docker Hub contain high priority security vulnerabilities,” Banyan Secur.,
San Francisco, CA, USA, Tech. Rep. 5, 2015.

O. Henriksson and M. Falk, “Static vulnerability analysis of Docker
images,” Blekinge Inst. Technol., Karlskrona, Sweden, Tech. Rep. 39,
2017.

R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on Docker
hub,” in Proc. 7th ACM Conf. Data Appl. Secur. Privacy, Mar. 2017,
pp. 269-280.

W. S. Shameem Ahamed, P. Zavarsky, and B. Swar, “Security audit
of Docker container images in cloud architecture,” in Proc. 2nd
Int. Conf. Secure Cyber Comput. Commun. (ICSCCC), May 2021,
pp. 202-207.

M. De Benedictis and A. Lioy, “Integrity verification of Docker containers
for a lightweight cloud environment,” Future Gener. Comput. Syst., vol. 97,
pp. 236-246, Aug. 2019.

W. Luo, Q. Shen, Y. Xia, and Z. Wu, “Container-IMA: A privacy-
preserving integrity measurement architecture for containers,” in Proc. Int.
Symp. Res. Attacks, Intrusions Defences, 2019, pp. 487-500.

VOLUME 11, 2023

S. Lee, J. Nam: Kunerva: Automated Network Policy Discovery Framework for Containers

IEEE Access

[37]

[38]

[39]
[40]

[41]

[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy,
and T. Anderson, “Slim: OS kernel support for a low-overhead
container overlay network,” in Proc. Symp. Networked Syst.
Design Implement. Boston, MA, USA: USENIX Association, 2019,
pp. 331-344.

W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. K. Ramakrishnan, and T. Wood, “OpenNetVM: A platform for high
performance network service chains,” in Proc. Workshop Hot Topics Mid-
dleboxes Netw. Function Virtualization, Aug. 2016, pp. 26-31.

T. Bui, “Analysis of Docker security,” 2015, arXiv:1501.02967.

T. Combe, A. Martin, and R. Di Pietro, “To Docker or not to Docker:
A security perspective,” IEEE Cloud Comput., vol. 3, no. 5, pp. 54-62,
Sep. 2016.

J. Chelladhurai, P. R. Chelliah, and S. A. Kumar, ‘“Securing Docker
containers from denial of service (DoS) attacks,” in Proc. IEEE Int. Conf.
Services Comput. (SCC), Jun. 2016, pp. 856-859.

Google. Everything at Google Runs in Containers. Accessed: Aug. 31,
2023. [Online]. Available: https://cloud.google.com/containers

Cloud Native Computing Foundation. Accessed: Aug. 31, 2023. [Online].
Available: https://www.cncf.io/

Falco. Cloud-Native Security Tool Designed for Linux Systems. Accessed:
Aug. 31, 2023. [Online]. Available: https://falco.org/

Sysdig. Security Tools for Containers, Kubernetes, and Cloud. Accessed:
Aug. 31, 2023. [Online]. Available: https://sysdig.com

C.-W. Tien, T.-Y. Huang, C.-W. Tien, T.-C. Huang, and S.-Y. Kuo,
“KubAnomaly: Anomaly detection for the Docker orchestration platform
with neural network approaches,” Eng. Rep., vol. 1, no. 5, Dec. 2019,
Art. no. e12080.

KubeArmor. Cloud-Native Runtime Security Enforcement System.
Accessed: Aug. 31, 2023. [Online]. Available: https://kubearmor.io/
Open Policy Agent. Policy-Based Control for Cloud Native
Environments. Accessed: Aug. 31, 2023. [Online]. Available:
https://www.openpolicyagent.org/

S. Bleikertz, C. Vogel, T. Gro8, and S. Modersheim, ‘‘Proactive security
analysis of changes in virtualized infrastructures,” in Proc. 31st Annu.
Comput. Secur. Appl. Conf., Dec. 2015, pp. 51-60.

S. Majumdar, Y. Jarraya, T. Madi, A. Alimohammadifar, M. Pourzandi,
L. Wang, and M. Debbabi, ‘“Proactive verification of security compli-
ance for clouds through pre-computation: Application to OpenStack,” in
Proc. 21st Eur. Symp. Res. Comput. Secur. Comput. Secur. (ESORICS).
Heraklion, Greece: Springer, Sep. 2016, pp. 47-66.

S. Majumdar, Y. Jarraya, M. Oqaily, A. Alimohammadifar, M. Pourzandi,
L. Wang, and M. Debbabi, “LeaPS: Learning-based proactive security
auditing for clouds,” in Proc. Eur. Symp. Res. Comput. Secur. Cham,
Switzerland: Springer, 2017, pp. 265-285.

S. Majumdar, A. Tabiban, M. Mohammady, A. Oqaily, Y. Jarraya,
M. Pourzandi, L. Wang, and M. Debbabi, “Proactivizer: Transforming
existing verification tools into efficient solutions for runtime security
enforcement,” in Proc. Eur. Symp. Res. Comput. Secur. Cham, Switzerland:
Springer, 2019, pp. 239-262.

VOLUME 11, 2023

(53]

[54]

[55]

[56]

[57]

H. Kermabon-Bobinnec, M. Gholipourchoubeh, S. Bagheri, S. Majumdar,
Y. Jarraya, M. Pourzandi, and L. Wang, “ProSPEC: Proactive security
policy enforcement for containers,” in Proc. 12th ACM Conf. Data Appl.
Secur. Privacy, Apr. 2022, pp. 155-166.

Cilium Hubble. Network, Service & Security Observability for Kuber-
netes. Accessed: Aug. 31, 2023. [Online]. Available: https://github.com/
cilium/hubble

P. DuBois and M. Widenius, MySQL. Indianapolis, IN, USA: New Riders,
2000.

K. Banker, D. Garrett, P. Bakkum, and S. Verch, MongoDB in Action:
Covers MongoDB Version 3.0. New York, NY, USA: Simon and Schuster,
2016.

Google Cloud Provider.
2023. [Online]. Available:
microservices-demo

Online Boutique. Accessed: Aug. 31,
https://github.com/GoogleCloudPlatform/

SEUNGSOO LEE received the B.S. degree in
computer science from Soongsil University, the
M.S. degree in information security from KAIST,

| £ and the Ph.D. degree in information security from

KAIST, in 2020. He is an Assistant Professor with
the Department of Computer Science and Engi-
neering, Incheon National University. His research
interests include developing secure and robust
cloud/network systems against potential threats.

JAEHYUN NAM received the B.S. degree in
computer science and engineering from Sogang
University, South Korea, and the M.S. and Ph.D.
degrees from the School of Computing (Informa-
] tion Security), KAIST. He is an Assistant Profes-
sor with the Department of Computer Engineering,
Dankook University, South Korea. His research
interests focus on networked systems and secu-
rity. He is especially interested in performance
and security issues in cloud and edge computing
systems.

95631

