IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 14 August 2024, accepted 22 October 2024, date of publication 28 October 2024, date of current version 8 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3486772

== RESEARCH ARTICLE

KuseRosy: A Dynamic System Call Filtering
Framework for Containers

JIN HER', CHI HYEON JO!, TAEJUNE PARK"“2, AND SEUNGSOO LEE"

!Incheon National University, Incheon 22012, Republic of Korea
2Chonnam National University, Gwangju 61186, Republic of Korea

Corresponding authors: Taejune Park (tacjune.park @jnu.ac.kr) and Seungsoo Lee (seungsoo@inu.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) under
Grant 2022R1C1C1006093.

ABSTRACT With the rapid adoption of cloud environments, container technology has become crucial for
the efficient operation of large-scale applications. Although container technology offers high efficiency
and scalability through low-level isolation via shared host operating systems, it also introduces security
vulnerabilities, such as container escape and privilege escalation attacks through system call exploitation.
Seccomp-BPF, one of the most widely used system call filtering mechanisms, supports container
environments but cannot update system call policies while containers are running. To address these
limitations, we propose KueeRosy, a system call filtering framework that allows dynamic modification of
system call policies without downtime, even during container runtime. KuseRosy leverages eBPF and LSM
hooks to support fine-grained system call policies while ensuring compatibility with existing Seccomp-
BPF environments. This approach enables the application of customized, granular system call policies
tailored to container environments, thereby reducing the attack surface. Our evaluation shows that KuseRosy
incurs an additional overhead of only 722 ns compared to traditional Seccomp-BPF, which is negligible.
Furthermore, KuseRosy allows for dynamic policy modification without container downtime and provides

precise argument-based filtering, demonstrating its practicality and efficiency.

INDEX TERMS System call filtering, container runtime security, ebpf security.

I. INTRODUCTION

The adoption of cloud environments for the efficient oper-
ation of large-scale applications has rapidly accelerated in
recent years. According to a report published by CSA, 98%
of the financial services industry is utilizing some form of
cloud computing [1]. This surge has been significantly driven
by the advantages offered by containerization technologies,
particularly Docker [2]. Containers provide a lightweight
and portable runtime environment, ensuring consistency
across different computing environments. They facilitate
easy scaling, deployment, and management of applications,
enabling organizations to efficiently utilize resources and
achieve fast startup times. Orchestration platforms like
Kubernetes [3] are essential for managing and automating the

The associate editor coordinating the review of this manuscript and
approving it for publication was Parul Garg.

deployment, scaling, and operation of containers in a cloud-
native environment.

However, from a security perspective, the lower level
of isolation provided by containerization, which shares the
host operating system, poses risks such as container escape
and privilege escalation attacks. These vulnerabilities can
be exploited through the malicious use of system calls by
compromised containers [4]. System calls serve as a critical
interface between user space applications and the kernel,
enabling essential operations such as file access, process
management, and network communication, which require
access to the host’s hardware resources. As of Linux kernel
version 5.15, approximately 400 system calls are supported;
however, most applications utilize only a subset of these calls.
If a program permits system calls beyond those it necessarily
uses, along with their associated arguments, malicious users
could exploit these additional system calls to compromise the
system.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

159889

https://orcid.org/0000-0003-1421-5996
https://orcid.org/0000-0002-6883-1869

IEEE Access

J. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

A notable example of a vulnerability caused by the
exploitation of system calls in containers is the leaky vessels
vulnerability (CVE-2024-21626) [5], [6], [7]. It has a CVSS
score of 8.6 and arises from file descriptor leakage and
improper working directory settings in the runc container
runtime. This vulnerability allows an attacker to gain access
to the host file system through a malicious container image,
thereby not only compromising the container’s isolation
mechanisms but also potentially escalating privileges on the
host system. To defend against such attacks, it is essential
to prevent file descriptor leakage and filter the chdir system
call to block the setting of improper working directory paths.
This highlights the critical importance of system call security
in protecting the host kernel from untrusted containers in a
containerized environment.

Several previous studies have aimed to enhance security
in container environments through system call filtering.
Notably, system call policy generation [8], [9], [10], [11],
[12], [13], [14] involves analyzing container images, binaries,
and other components to generate a whitelist of allowed
system calls. Containers are then restricted from invoking
system calls that are not on this list, thereby preventing mali-
cious behavior. However, these studies commonly rely on
secure computing (seccomp) profile for policy enforcement.
Seccomp has limitations, such as the inability to modify
the seccomp profile while the container is running and the
restriction to only inspect basic data types of system call
arguments. On the other hand, various container runtime
security frameworks [15], [16], [17], [18], [19], [20] focus on
enforcing container security policies. However, they also face
limitations in achieving comprehensive security for system
call execution itself.

In this paper, we propose KuseRosy, a framework designed
to allow dynamic updates to system call security policies
even while containers are running, and to provide more
granular, argument-based system call security policies.
KueeRosy leverages the extended berkeley packet filter
(eBPF) [21] and linux security module (LSM) hooks [22] to
apply policies. Additionally, when applying basic seccomp
profiles to containers, our system automatically converts
and applies them as KuseRosy policies that we devise,
ensuring compatibility with environments that use seccomp-
BPF. Moreover, it supports fine-grained system call security
policies, ultimately enabling the deployment of a deny-all
policy for system calls while allowing only the specific
system calls and argument values required by the application,
thus enforcing the principle of least privilege. Our evaluation
demonstrates that KuseRosy enables dynamic system call pol-
icy updates without any service downtime of containers and
the conversion of existing seccomp profiles in containerized
environments, all while incurring negligible performance
overhead, even in scenarios involving detailed argument-
based filtering.

In summary, our main contributions are as follows:

o Dynamic updates of system call policy. By leveraging

eBPF and LSM hooks, we enable dynamic updates

159890

VM VM VM
| faRE | | A | | Anp3 | Container Container Container
| Bins/Libs || Bins/Libs || Bins/Libs | | Appl || App2 || App3 |
| Guest OS | | Guest OS | | Guest OS | | Bins/Libs | | Bins/Libs | | Bins/Libs |

Hypervisor		Container Runtime
Host 0S		Host 0S
Hardware		Hardware

(A) Virtualization (B) Containerization

FIGURE 1. Comparison between virtualization and containerization.

to system call security policies during container runtime,
eliminating the need for container redeployment and the
associated service downtime typically required to update
these policies.

o Support for fine-grained system call policies. We pro-
vide argument-based system call filtering functionality,
allowing the creation of policies that block specific
system calls while permitting them for certain required
argument values. This approach reduces the attack
surface of containers in a more refined and precise
manner.

o Compatibility with seccomp profiles. We provide com-
patibility with existing seccomp profiles by automati-
cally converting and deploying them as KuseRosy Policy
that we devise for containers with seccomp profiles
applied.

The rest of this paper is organized as follows: in Section II,
we introduce the relevant background knowledge and moti-
vating example. Section III reviews related work and existing
frameworks, highlighting their limitations. In Section IV,
we explain the system design and overall workflow of
KueeRosy. Next, seccomp profile conversion, dynamic policy
enforcement, and fine-grained system call filtering, are
discussed in detail in Section V. Section VII covers the
performance evaluation and functionality correctness of
KueeRosy. Finally, Section VIII addresses the limitations and
future works of KuseRosy, and Section IX concludes the
paper by summarizing the research findings.

Il. BACKGROUND AND MOTIVATION

A. CONTAINERIZATION

As illustrated in Figure 1, virtualization [23] (A) operates
by running a hypervisor on the physical hardware, which
provides each virtual machine (VM) with an independent
operating system and kernel. VMs operate in fully iso-
lated environments, offering high security. However, each
VM includes its own OS, consuming significant system
resources and requiring the guest OS to boot every time a
VM is started. In contrast, containerization [24], [25] (B)
employs OS-level virtualization, allowing multiple contain-
ers to share the kernel from the host operating system.
Containers are implemented using Linux kernel technolo-
gies such as namespaces and control groups (cgroups).

VOLUME 12, 2024

J. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

IEEE Access

eBPF Program
(byte code)

A
=z bpf() 5% v

ace

User Program Process

syscall

v eBPF Maps

Verifier @ 4

eBPF VM

| JIT Compiler }——Pl eBPF Prog. |<—

System resources
(process, file,
network..)

FIGURE 2. The workflow of an eBPF program with key components.

Namespaces virtualize system resources, such as process
IDs, network interfaces, and filesystem mounts, providing
each container with an independent execution environment.
Cgroups manage and isolate resource usage, such as CPU,
memory, and network bandwidth, ensuring that one container
does not excessively consume resources to the detriment of
others. Containers package applications and their dependen-
cies into a single unit, enabling consistent execution across
various environments. The lightweight and portable nature of
containers has significantly simplified the development and
deployment of applications.

Howeyver, due to the shared host OS kernel, containers offer
a lower level of isolation than VMs. Consequently, a security
vulnerability in one container can potentially threaten other
containers or the host system. In addition, this has also
highlighted the need for efficient management of numerous
containers, maintaining their isolation, and ensuring overall
system stability. To address these complexities, container
orchestration has become essential. A prominent platform,
Kubernetes [3], automates the deployment, scaling, and
management of container-based applications. Kubernetes
groups multiple containers into a single deployment unit
called a Pod and efficiently distributes these across the entire
cluster. This approach optimizes system resources, maintains
high availability of services, and facilitates continuous
updates and scaling of applications.

B. EXTENDED BERKELEY PACKET FILTER

The extended berkeley packet filter (eBPF) [21] is a
technology designed to safely and efficiently extend kernel
functionality without modifying the Linux kernel source
code itself or loading kernel modules. Figure 2 illustrates
the key components and working principles of eBPF. eBPF
programs are loaded into the kernel as bytecode via the
bpf () [26] system call. During this process, the verifier
ensures the program’s safety by enforcing rules such as
guaranteeing program termination and restricting arbitrary
memory access, allowing safe execution in kernel mode.
The verified programs are then optimized for execution
performance by being converted into native machine code
by the just-in-time (JIT) compiler according to the CPU
architecture. Once compiled, these programs are attached

VOLUME 12, 2024

to various kernel hook points, such as sockets and tracepoints,
and are executed when these hook points are invoked.

The eBPF map serves as an in-kernel data structure
accessible by both eBPF programs and user space programs,
acting as a communication layer between them. The helper
functions form an application programming interface (API)
and application binary interface (ABI) between eBPF pro-
grams and the kernel, enabling a range of operations from
additional information retrieval (e.g., process information
gathering) to packet redirection. A key advantage of eBPF
is its ability to extend user intent into the kernel space.
For example, performing packet filtering directly at the
kernel level significantly reduces the overhead associated
with frequent context switching between user space and
kernel space. This leads to improved network performance
and increased efficiency in system resource utilization.

Seccomp-BPF: Secure computing (secommp) [27] is
a sandboxing mechanism provided by the Linux kernel
that offers two modes. First, in SECCOMP_SET_MODE _
STRICT, it restricts a process to executing only the read(),
write(), sigreturn(), and exit() system calls,! blocking all
others. In contrast, the SECCOMP_SET_MODE_FILTER
mode uses seccomp-BPF [28], allowing more granular
restrictions on a wider range of system calls specified in
the profile [29]. Seccomp-BPF, an extension of seccomp is
a Linux kernel feature designed to define rules for system
calls that an application can perform, thereby blocking
unnecessary or dangerous system calls. Initially introduced
as a simple process isolation tool in kernel version 2.6.12,
it has since evolved to include BPF filtering capabilities
(classic BPF, not eBPF) classicbpf-vs-ebpf. This allows
seccomp-BPF to use the BPF language to define system call
filters that allow, log, or deny calls by examining specific
system call numbers and non-pointer argument values

LSM-BPF: Linux security module (LSM) [22] is a
lightweight framework designed to integrate various security
mechanisms, providing a standardized interface for imple-
menting security policies within the kernel. The key of
the LSM is LSM hooks, which are strategically placed
at critical points in the kernel operations, such as file
system actions and network socket manipulations. As of
Linux kernel version 5.15, there are about 190 LSM
hooks [30]. The LSM itself does not directly perform
security enhancement functions. Instead, it facilitates the
implementation of security policies through specific modules
such as Apprmor [31], SELinux [32], and LSM-BPF [33].
LSM-BPF incorporates eBPF technology into the LSM
framework, enabling privileged users to dynamically manipu-
late LSM hooks at runtime and flexibly implement mandatory
access control (MAC) [34] and auditing policies across
the system. Furthermore, LSM-BPF maintains compatibility
with existing LSM-based security solutions while enabling
more granular and dynamic security policy application.

n this paper, the terms ‘system call’ and ‘syscalls’ are used
interchangeably.

159891

IEEE Access

J. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

"syscalls": [{ seccomp_updated.json
"names": [
"socket”,

“connect”

"syscalls": [{

seccomp_initial.json
"names": [

"socket"

7]
"action": "SCMP_ACT_BLOCK" @ update

R 1
Server . ICMP echo request Client)
10.0.2.199 10.0.2.89 \\
ICMP echo reply

20:45:02.930953 IP 10.0.2.89 > 10.0.2.199: ICMP echo request, id 508, seq 40, length 64
20:45:02.931018 IP 10.0.2.199 > 10.0.2.89: ICMP echo reply, id 508, seq 40, length 64 /
20:45:03.954902 IP 10.0.2.89 > 10.0.2.199: ICMP echo request, id 508, seq 41, length 64 o
20:45:04.978927 IP 10.0.2.89 > 10.0.2.199: ICMP echo request, id 508, seq 42, length 64
20:45:06.002954 IP 10.0.2.89 > 10.0.2.199: ICMP echo request, id 508, seq 43, length 64

1
"action": "SCMP_ACT_BLOCK"

@ Disconnection

FIGURE 3. This figure illustrates how updating a seccomp profile leads to
session disconnection due to the inherent limitation of the seccomp
enforcement mechanism, which cannot be updated at runtime.

C. MOTIVATING EXAMPLE

Figure 3 illustrates a scenario where a container with an
initial seccomp profile (seccomp_initial.json) attempts to
modify it to an updated profile (seccomp_updated.json) at
runtime. In this example, it is assumed that the server
and client applications are deployed as pods within the
Kubernetes environment, with the client performing simple
ping communications with the server. During this normal
ping communication, an administrator identifies a change in
security requirements (adding the connect () system call
to the seccomp profile) for the server pod and attempts to
modify the seccomp profile. When the administrator modifies
the server’s seccomp profile, the server undergoes a rolling
update, deleting the existing pod and deploying a new pod
with the updated seccomp profile (1). However, during this
update, the session between the client and the server is
interrupted as the existing server is deleted (2).

The problem is that it is not possible to modify or
delete the seccomp profile of a running container at runtime.
The only way to apply an updated seccomp profile is to
terminate the container and restart it with the new profile.
Although Kubernetes provides a rolling update mechanism
to automate this process, it still results in unavoidable
downtime, potentially introducing additional attack surfaces.

lll. RELATED WORK

A. SYSTEM CALL POLICY GENERATION

System call policy generation is a critical research area
focused on reducing the attack surface between containers
and the kernel, which has spurred various studies [8],
[9], [10], [12], [13], [14]. Ghavamnia et al. [§] proposed
Confine, a system that automatically generates restrictive
system call policies for Docker containers through static
code analysis. On the other hand, liguni et al. [9] introduced
Sprofiler, which combines static analysis of application
executables with dynamic analysis of system calls issued by
containers to generate filtering rules suitable for container
workloads. Yang et al. [10] proposed Optimus, a tool that
continuously monitors and dynamically restricts system calls.

159892

This emphasizes identifying and applying the set of system
calls required by the container at runtime, rather than relying
on a fixed set of system calls. Sysverify [12] presented a
methodology that combines static and dynamic analysis to
generate seccomp profiles through binary and source code
analysis. Li et al. [13] proposed AUTOARMOR, which inte-
grates a static analysis-based request extraction mechanism
with a graph-based policy management mechanism in cloud
environments. Kim et al. [14] introduced Prof-gen, a tool that
generates system call whitelists by combining dynamic and
static analysis based solely on container images and execution
commands.

However, those studies commonly focus on generating
seccomp profiles for system call filtering. As demonstrated
in Section II-C, seccomp profiles are applied when a con-
tainer is executed and cannot be modified or deleted without
redeploying that container. Additionally, they have limita-
tions in fine-grained control over system calls using non-
pointer argument-based filtering. In contrast, our research
addresses these limitations by utilizing eBPF and LSM to
dynamically modify eBPF maps and apply syscall policies
while the container is running, with the added capability
of performing fine-grained filtering using argument values
obtained from LSM hooks.

B. CONTAINER RUNTIME SECURITY FRAMEWORK
In cloud-native environments, various tools and frame-
works have been proposed to restrict container behavior
in real-time [15], [16], [17], [18], [19], [20]. Falco [15],
introduced by Sysdig, is an open-source project that monitors
container activity and alerts on any abnormal behavior
that violates predefined rules. Similarly, KubeArmor [16]
and Tetragon [17] offer runtime security enforcement and
observability based on user-defined policies. These tools
specifically leverage eBPF to monitor or restrict container
activities, including process execution, network, and file
access (I/O operations). KRSIE [18] is a BPF-LSM-
based security policy enforcement system that provides
fine-grained control and dynamic application of security
policies using eBPF. Whenever users deploy BPF-LSM
policies in a Kubernetes environment, KRSIE analyzes them
to generate corresponding BPF-LSM programs, which are
then executed in the kernel. SPEAKER [19] proposes a
mechanism that profiles system calls required during the boot
and execution phases of a container, dynamically changing
the allowed system calls as the container transitions for such
life cycle. bpfbox [20] enhances system security by using
eBPF programs and LSM probes to allow, audit, or block
specific operations based on defined policies as well.
However, while KubeArmor and Falco do not support
system call-level blocking policies, Tetragon does support
such policies but implements blocking by sending a signal
to terminate the process executing the system call, rather
than blocking the execution flow of the system call itself.
This reactive model can potentially allow attacks, such
as ransomware, to proceed before mitigation actions can

VOLUME 12, 2024

J. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

IEEE Access

be taken, resulting in encrypted assets or deleted data. In con-
trast, our research offers the advantage of blocking system
calls during their execution flow, thereby preventing attacks
like ransomware before they can cause harm. Additionally,
KRSIE incurs overhead due to the parsing of policies,
generating BPF programs, and loading them into the kernel.
In comparison, KuseRosy updates policies by modifying
the eBPF map after parsing, resulting in lower overhead
during policy enforcement. Moreover, SPEAKER requires
the insertion of a kernel module, which could introduce
additional attack surfaces, and since it uses Seccomp-BPF
for system call filtering, it has the limitation that it can only
inspect arguments of basic data types.

IV. KuseRosy OVERVIEW

This section outlines the design considerations that underpin
KueeRosy, along with a comprehensive description of its
system architecture. Succinctly, our system is designed to
mitigate malicious activities within containers by enabling
real-time enforcement and updates of system call policies,
while ensuring the continuity of container operations without
disruption.

A. DESIGN CONSIDERATIONS

The motivating example (from Section II-C) demonstrated
how runtime seccomp profile updates impact the workload of
the container being performed. In addition, simply restricting
system calls themselves without fine-grained arguments
is not enough to prevent sophisticated malicious activity.
Hence, we propose a framework for dynamically and
elaborately identifying and blocking system calls in cloud-
native environments based on the following three design
considerations.

R1: Container-Tailored Syscall Filtering. It should accu-
rately identify the containers to which the system call
policy will be applied and ensure compatibility with existing
seccomp profiles. To track the lifecycle of rapidly changing
containers in a cloud-native environment in real-time, the sys-
tem monitors creation and deletion events by communicating
with the container runtime API server. It also leverages the
namespace mechanism [35] provided by Linux to identify
processes within the same container enforced by a syscall
policy. Furthermore, it includes an automated methodology
for converting existing seccomp profiles into the dynamic
syscall policies we propose. These approaches enable us to
provide a container-specialized syscall filtering system.

R2: Dynamic Updates Without Downtime. It should
be capable of dynamically modifying the syscall policy
without causing downtime for containers and services they
provide. Additionally, the overhead imposed on the container
during filtering should be minimized. To achieve this, eBPF
(Extended Berkeley Packet Filter) and LSM (Linux Security
Modules) hooks are employed to filter system calls within
the kernel. This approach enables dynamic filtering while
minimizing the context switching overhead on the container.
Thus, our approach seeks to update the system call policy

VOLUME 12, 2024

as needed with minimal overhead and without requiring the
redeployment of containers, thereby enhancing its flexibility.

R3: Fine-Grained Filtering by Arguments. It should
support not only basic system calls filtering but also more
fine-grained filtering based on the argument values for each
system call. For this, we devise a concrete policy scheme
specifying the arguments and propose a methodology for
efficiently managing eBPF maps for argument filtering in
the kernel by specifying the argument values associated with
each system call. This approach allows us to minimize the
attack surface of malicious containers by by ensuring that
only necessary system calls with specific arguments are
allowed.

B. SYSTEM ARCHITECTURE

This section presents the overall architecture of KueeRosy
and explains its components. As illustrated in Figure 4,
our framework comprises three main components: KubeRosy
policy, operator, and agent. Our system operates on a
Kubernetes cluster, the de facto standard for container
orchestration, with the operator running on the master node
and the agent on the worker nodes. The framework operates
in two distinct phases. The first phase, policy enforcement,
focuses on monitoring the lifecycle of containers and their
associated syscall policies, subsequently updating these
policies into the eBPF maps. The second phase, system call
filtering, applies the policy by preventing system calls from
running in the container unless they have specific parameters
that fall under an exception.

KubeRosy Policy: Figure 5 depicts the KubeRosy Policy
(KRP)? structure, which is designed to implement security
measures at the system call level within the container. The
KRP comprises three main parts: a selector that identifies
the target container to which the KRP is applied, a list of
security rules, and a status field containing information about
the container subjected to the policy. Notably, the status is not
user-defined; instead, it is updated in real-time by the operator
during the policy enforcement phase. Each rule consists of a
system call name and a corresponding list of argument values,
allowing the system to filter these system calls with fine-
grained precision.

KubeRosy Operator: The operator consists of two submod-
ules: the policy handler and the log collector. The policy
handler receives policy information from the Kubernetes API
server, which monitors the KRP. The policy information
includes a selector used to identify the container to which the
policy will be applied and to determine the node on which that
container is running. The handler then transmits the policy
information to the agent deployed on the corresponding node.
It can also detect when the default seccomp profile is applied
to the container, convert it to a KRP, and deploy it. The log
collector gathers logs related to system call policies from the
agents deployed on each node, enabling users to understand
when, where, and why a system call was blocked.

2In this paper, the KubeRosy Policy is abbreviated as ‘KRP’.

159893

IEEE Access

J. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

— : Policy Enforcement Phase -------- > : System Call Filtering Phase

KubeRosy Kubernetes API Server ‘ ‘
Policy

Container Runtime API Server (e.g., Docker, containerD)

' Malicious _
Container

Kernel Space

l
@ KubeRosy Operator KubeRosy Agent I ¢ —1:_

v v H

B 1 N |

Policy Handler 'l Policy Enforcer I ’ Container Monitor ’ eBPF Handler I ’ Logger I E

Log Collector 0) [e — E

User Space '
i

1

i
L
ook’s _|_raw_tracepoint’s | | _ | |!

[& k func callback func

'

LSM H

allbacl
7

Host Assets (e.g., network devices, files, processes) ‘

FIGURE 4. Overall architecture of KUBEROSY with three key components: (i) KUBEROSY policy, (ii) operator, and (iii) agent. The workflow is divided

into two phases: policy enforcement and system call filtering.

‘ selector

>| ‘ matchLabels ‘ |

,
—

arg 3
o N oo |
except_args

rule N

status

it

FIGURE 5. Overview of KUBEROSY policy (KRP) structure. The KRP
primarily operates in a blacklist manner, with exceptions for specific
arguments.

KubeRosy Agent: The KubeRosy agent has four sub
modules: the container monitor, policy enforcer, eBPF
handler, and logger. The container monitor detects both
pre-existing containers in the cluster and those deployed in
real time, storing identifiable information in the eBPF map.
Since multiple processes can run within a single container,
applying policies to each process individually is inefficient.
To address this, our system uses the mount namespace 1D
(mntns) and PID namespace ID (pidns), obtained from the
PID of the init process of the container, to apply policies
collectively to processes within the same container. Upon the
container deployment, the container monitor interacts with
the container runtime API server [2], [36] and updates the
eBPF map with the init process PID and container ID per each
container, enabling simultaneous identification of multiple
processes in a container for the filtering phase later.

The policy enforcer receives the KRP policy information
from the policy handler in the operator and converts it
into a format suitable for storage in the eBPF map. Then,
it queries the Kubernetes API server with the KRP selector
to obtain the container ID and then retrieves the init process
PID of the container managed by the container monitor.
Using this PID, it determines the mntns and pidns of the
container, and they are mapped with the policy rules and
passed to the eBPF handler for storage in the eBPF map.

159894

The eBPF handler is basically responsible for loading
the eBPF map, LSM hook’s callback functions, and
raw_tracepoint’s callback function into the kernel space of
the host when the agent is deployed. The raw_tracepoint’s
callback function is triggered when a system call is executed
in the container, recording information about the system call
in the eBPF map. Next, the triggered LSM hook’s callback
function uses this system call information, along with the
policy information, to determine in real time whether to block
the system call. If a system call is blocked, the LSM hook’s
callback function uses ring buffers to send log information to
the logger and the logger running inside each node forwards
it to the log collector in the operator.

V. KuseRosy SYSTEM DETAILS

This section details the features of KuseRosy that meet the
design requirements (§ IV-A), organized as follows: seccomp
profile conversion (§ V-A), dynamic policy enforcement
(§ V-B), and fine-grained system call filtering (§ V-C).

A. SECCOMP PROFILE CONVERSION
KueeRosy automatically converts existing static seccomp
profiles into dynamically manageable the KRPs by utilizing
an admission control mechanism provided by Kubernetes.
This mechanism ensures that resources (e.g., pods, ser-
vices, etc.) are created safely and correctly by authenticating,
authorizing, and verifying or modifying requests through
various admission controllers when a request of the resource
creation is made to the Kubernetes API server. There are
two types of admission controllers: mutating and validating.
Our system employs a mutating admission controller [37]
(i.e., webhook) to intercept pod creation requests and, if a
seccomp profile is set, converts it into a KRP policy. This
process provides seamless compatibility for environments
using existing seccomp profiles, eliminating the need to
manually create KRPs.

Figure 6 shows a flowchart of the process for converting
a seccomp profile into a KRP. When a pod creation is
requested, the mutating webhook defined within the policy

VOLUME 12, 2024

J. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

IEEE Access

kind: Pod ,"‘ "defaultAction": "SCMP_ACT_ALLOW",
API reque.st metadata: "syscalls": [
(pod creation) labels: H { . "
. names™:
i aplp‘ nginx nsocket"
spec: o / I
authn/ securityContext "action": "SCMP_ACT_BLOCK"
seccompProfile: }
authz localhostProfile: socket.json || |] socket.json
3 4
~ 1
mutating > | mutating)
e o bhool Policy Handler
T
v
SElISIE) kind: Pod kind: KubeRosyPolicy
validation @
metadata: spec:
v labels: selector:
app: nginx matchLabels:
validating spec: app: nginx
admission 9 rule:
T action: Block
syscall:
- name: socket

e —

FIGURE 6. The example scenario of automatic seccomp profile
conversion by the policy handler.

User space

KRP Block fchmodat
|<— Except for */flag. txt®

Kuberosy Operator Kuberosy Agent N B}
Container Monitor F-F-
'
‘ Policy Handler Policy Enforcer }——P{ eBPF Handler '——l—®

Kubernetes API

x
Kernel space [

1
eBPF Maps '

containerid container a container b containerc <[~

<map_containerid>

pid 1001 1002 1003
" mountns, pidns (m1, p1) ‘l(mZ, p2) (m3, p3)
<map_policy>
rdlle blocked system call u64[9] |u64 9] u64[9]

mountns, pidns, syscall | (m1, p1, s1) |(m2, p2, 278)| (m3, p3, s3)

<map_chmod_args>
policy array u8[18] |usras) |1 usize)

FIGURE 7. The steps of enforcing the KRP (block the fchmodat syscall,
except for /f1ag. txt) through the eBPF map updates.

handler is triggered to check if the seccomp profile is speci-
fied in the ‘securityContext’ in the pod specification. If the
profile exists, the handler extracts the profile information
from the received pod specification, analyzes it, and maps
the listed allowed or blocked system calls to the rules in
the KRP. In this example, the pod labeled ‘app: nginx’
specifies a seccomp profile that blocks the socket system
call (1). Upon detecting this, the handler converts it into a
corresponding KRP (2). Once the conversion is complete, the
seccomp-related settings are removed from the original pod
specification, and the newly created KRP is deployed (3).
If any issues arise during the conversion process, the mutating
admission controller returns the original request unchanged.
This process replaces the static seccomp settings with a
dynamically manageable KRP, ensuring that the container is
deployed with equivalent functionality.

B. DYNAMIC POLICY ENFORCEMENT

The dynamic policy enforcement process begins with the
eBPF handler in the agent deployed on each node, which
loads the necessary eBPF programs, and four eBPF maps into
the kernel. The key, value, and purpose of each eBPF map

VOLUME 12, 2024

268 +64=4--12

63 62 61 2 1 10 9 8 7 6 5 4 3 2 10

Before
[o]o]o]~[o]1]o]o1]oJoJo]1]o]o]o]o]Biocked_system_call4]

IR [o]ofo]~[1]oJo]oJo]o]oo]oJo]o]o]0] 1«12

0[{0[0|~|1]{1]0[0[1]0[0[0|1|0|0]|0]O0 |Blocked_system_call[4]
[oToTo]-[1T1Tolo[* o o oo o o o]éke

FIGURE 8. The value update of map_policy for KRP enforcement using
bitmap operations.

are summarized in Table 1. After loading the programs and
maps, the container monitor in the agent runs as a separate
thread, monitoring container creation and deletion events on
the node via the container runtime API, as illustrated by the
dotted line arrow line in Fig 7. Upon receiving a container
creation event from the API, the monitor stores the container
ID and the PID of its init process as key-value pairs in
the map_containerid eBPF map. These procedures fulfill the
minimum requirements for enforcing the KRP.

The solid line arrows in Fig 7 indicate the sequence in
which eBPF maps are updated during the KRP enforcement.
The KRP blocks the fchmodat system call, but allows an
exception if the path argument of the syscall is /flag. txt.
When the KRP is deployed to the cluster via the Kubernetes
API, the policy handler, which monitors for such events,
is first triggered, and extracts the policy information (1).
It then analyzes the selector in the policy to identify the node
hosting the target pod and transmits the policy information to
the policy enforcer in the agent on that node (2). The policy
enforcer, upon receiving the policy information, obtains the
container ID matching the selector from the Kubernetes
API (3). It then uses this container ID (container b)to
find the init process ID (1002) via map_containerid and
searches the /proc/1002/ns path to acquire the mount
namespace ID (mntns) and PID namespace ID (pidns). This
is done to apply a single system call policy to all processes
within the same container, as they share the same mntns
and pidns values. When the policy information, including
mntns (m2) and pidns (p2), is passed to the eBPF handler,
the handler updates map_policy (4).

Each record in the map_policy, which determines whether
to block a system call, uses mntns and pidns as the key.
The value associated with each key is a u64[9] array
(i.e., blocked_system_call), totaling 576 bits. Each bit posi-
tion represents a specific system call number, allowing the
policy to control up to 576 system calls. As of Linux kernel
version 6.10, there are 410 system calls, though the system
call numbers are not sequential, with the highest being 547.
The 576-bit array is provided to efficiently cover this range.
This implementation uses a single bit to indicate whether
to block or allow a system call, and bitwise operators are
used to quickly check these policies, enhancing performance.
In this scenario, the fchmodat system call (number 268) is
blocked for the containers with the mntns and pidns values of
m?2 and p2, respectively. The value (2320) is updated at the
4th index in the blocked_system_call array, which is retrieved

159895

IEEE Access

J. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

TABLE 1. The summary of eBPF maps used for KRP enforcement, including keys, values, and descriptions.

Name Key Value Description
map_containerid containerid pid Identification of whether the process is within the same container
map_lsm_syscall mountns, pidns LSM hook array Identification of the system call triggering the LSM hook
map_policy mountns, pidns policy array KRP enforcement for blocking system calls on a per-container basis
map_LSM_hook_args mountns, pidns, system call arguments Fine-grained syscall filtering on arguments per each LSM hook

execute fchmodat to /flag.txt Allow

Policy Enforced Container

raw_tracepoint’s callback func LSM Hook’s callback func

eBPF Maps
- I > mountns, pidns (m1, p1) I(mZ, p2) I (m3, p3)
map_lsm_sysca
syscall array u32[64] u32[64] I u32[64]

- s ‘ mountns, pidns ‘ (m1, p1) “(mZ, p2) ” (m3, p3) ‘
maj ol1C

el ‘ blocked system call ‘ u64[9] ‘IuGA 9 ” u64[9] ‘

- mountns, pidns, syscall | (m1, p1, s1) |(m2, p2, 27?)' (m3, p3, s3)

<map_chmod_args>

o e policy array ug[18] |us|1s| | u8[18]

FIGURE 9. The steps for allowing the fchmodat syscall with the /flag.txt
argument. The final decision conducted at the LSM hook’s callback
function.

by searching for the m2 and p2 in the map_policy as shown
in Figure 8. Notably, since the policy blocks the fchmodat
system call but permits it for the specified path (/flag.txt), the
path value is updated in the map_chmod_args map to filter the
argument value of the system call. This map stores the path
(16 bytes) and mode (2 bytes), totaling 144 bits, as values for
the arguments of the fchmodat system call.

C. FINE-GRAINED SYSTEM CALL FILTERING

Figure 9 illustrates the runtime blocking process when the
system call (fchmodat) is invoked from the container after the
policy enforcement described above. When the fchmodat is
invoked, the raw_tracepoint’s callback function installed by
the eBPF handler in the agent is triggered, and the our system
specifies whether this process in the container is monitored
by the KRP, following the steps outlined in Algorithm 1.
First, a helper function retrieves the mntns and pidns of the
process that executed the system call (lines 1-4). These values
are then used as the key (ns) to look up the map_policy to
verify whether the process is subject to the policy (line 5).
If so, the arg[1] of ctx is accessed to obtain the number of
the system call, and the Ism_map, which we defined, is used
to find the LSM hook number associated with that system
call (lines 7-8). Next, map_lsm_syscall is searched using ns
as the key to obtain the syscall_arr value; if not found, it is
initialized (lines 9-11). The LSM hook number retrieved in
arr is then updated. In this example, the fchmodat triggers the
security_path_chmod LSM hook, corresponding to the hook
number 4, so arr[4] is updated to 278 in map_lsm_syscall,
and O is returned (lines 12-14). This procedure ensures that
although a LSM hook intercepts syscalls, a specific system
call is accurately identified, as multiple system calls may
trigger the same LSM hook.

159896

Algorithm 1 System Call Monitoring per Container

Input: raw_tracepoint_args ctx
Output: 0
1 T <« get_current_task()
task;
2 m < get_mount_namespace_id(T);
3 p < get_pid_namespace_id(T);
4 ns < struct(m, p);
5 is_container_process <—
map_lookup(map_policy, ns);
6 if is_container_process 7 NULL then

// Get current

7 syscall_id <« ctx.arg[1];

8 Ism_id < lsm_map([syscall_id];

9 arr < map_lookup_elem(map_lsm_syscall, ns);
10 if arr = NULL then

1 L arr < initialized array;

12 arr[lsm_id] < syscall_id,

13 map_update_elem(map_lsm_syscall, ns, arr);

14 | return 0

15 return -1

After identifying the system call in the triggered
raw_tracepoint’s callback function, the callback function of
the corresponding LSM hook’s callback function is triggered
to determine whether the call should be blocked or allowed,
as outlined in Algorithm 2. First, the mntns and pidns
are obtained from the LSM hook’s callback function, and
map_policy is referred using these values to verify whether
the process that invoked the system call is associated with
the container to which the policy applies (lines 5-6). If so,
map_Ism_syscall is queried with ns to identify the specific
system call that activated the LSM hook, by obtaining the
system call array and using the LSM hook number as an
index (lines 7-8). The array and ns are then used to check
whether the system call is blocked by the policy; if it is
allowed, the function returns O here (lines 9-11). Otherwise,
the policy with the arguments for the system call is checked
again (line 12). If the policy exists, it is evaluated to determine
if the system call should be permitted, and if so, the function
returns 0 (lines 12-16). In this scenario, while the fchmodat
system call is generally blocked, it is allowed if the path
argument is ‘/flag.txt’, resulting in a return value of 0. If not,
a ring buffer is created, storing information such as the PID
of the process that executed the system call and the specific
system call details, then -1 is returned (lines 17-21).

VOLUME 12, 2024

J. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

IEEE Access

Algorithm 2 Final Decision in LSM Hook
Input: LSM_Hook’s_args ctx
Output: 0 or -1

1 T <« get_current_task()

task;

2 m <« get_mount_namespace_id(7);

3 p < get_pid_namespace_id(T);

4 ns < struct(m, p);

5 policy_array <— map_lookup(map_policy, ns);

6 if policy_array # NULL then

// Get current

7 syscall_array <

map_lookup(map_lsm_syscall, ns);
8 syscall_id < syscall_array[lsm_id];
9 is_blocked <

lookup_policy(ns, syscall_id, policy_array);
10 if is_blocked = NULL then

1 L return 0;
12 arr <«
13 map_lookup_elem(policy_argu_map, ns, syscall_id);

14 if arr # NULL then

15 L is_allowed < check_argu(ctx, arr);
16 if is_allowed then

17 L return 0;

18 pid < get_current_pid();

19 event < ringbuf_reserve();

20 event .pid < pid,

21 ringbuf_submit(event);

22 return -1

23 return O

VI. IMPLEMENTATION

To demonstrate the feasibility of KuseRosy, we have imple-
mented a prototype using Go and C languages comprising
three key components totaling approximately 3K lines of
code. This system was basically designed as a framework
for filtering system calls executed within containers in
a Kubernetes cluster. Technically, the prototype runs on
the Linux 5.15 kernel, alongside Kubernetes v1.28.2 and
Docker v24.0.7, or containerd v1.6.31. The operator, imple-
mented using Kubebuilder [38], deploys a mutating admis-
sion webhook for modifying seccomp profiles. When a
pod containing a seccomp profile is created, the webhook
server, implemented with the admission and HTTP libraries,
redirects the creation event. The eBPF features responsible
for system call filtering within the kernel were written
in C and compiled into object files using Clang [39]. These
eBPF features were then loaded into the kernel using the
Go-eBPF [40] library. Additionally, communication between
the operator’s policy handler and the agent’s policy enforcer,
as well as between the agent’s logger and the operator’s log
collector modules, was implemented using gRPC [41].

VOLUME 12, 2024

Worker Node 1 Worker Node 2

{’""{ KubeRosy Agent -1--»| KubeRosy Agent
| .
I ! 1
Master Node ! '

i 1 lighttpd
KubeRosy Operator ! memca

! ched
T .
I |

Kubernetes API /
Container Runtime API

FIGURE 10. Test environment consisting of one master node and two
worker nodes.

VII. EVALUATION

In this section, we conduct a real-world evaluation of
KuseRosy to showcase its (i) performance and (ii) function-
ality correctness in practical environments.

A. EVALUATION ENVIRONMENTS

We evaluated KuseRosy using a high-performance server
equipped with a Xeon Gold 6342 CPU, 768 GB of RAM,
8 TB SSD, and 28 TB HDD. As shown in Fig. 10, the
Kubernetes cluster was configured with one master node
and two worker nodes, all hosted on Ubuntu 22.04 virtual
machines. Containerd was used as the container runtime
for Kubernetes, and Cilium was employed as the Container
Network Interface (CNI) for communication between the
containers. In the cluster, the KuseRosy operator works on
the master node, while the KuseRosy agent was deployed
on all worker nodes using a DaemonSet. Subsequently,
Nginx, httpd, lighttpd, and memcached pods were distributed
across the two worker nodes to measure the application
performance, microbenchmarking, and use case testing.

B. PERFORMANCE EVALUATION

1) MICROBENCHMARK

The microbenchmark evaluation measures the overhead
incurred by enforcing system call policies within the Nginx
pod. Specifically, the overhead of system call enforcement
was assessed by executing the socket () system call
5 million times and calculating the average execution
time, as shown in Figure 11. For the allow policy, the
comparison was made between the overhead of having no
policy applied (default), seccomp’s SCMP_ACT_ALLOW,
and Tetragon’s [17] policy. The results indicate that KuseRosy
introduced an overhead of 1068ns and 722ns compared
to no policy and seccomp, respectively, which is minimal.
In contrast, Tetragon exhibited a higher overhead.

On the other hand, for the block policy, we compared the
average execution times of the socket() system call blocked
by seccomp and our system. Although Tetragon also supports
system call blocking policies, it was excluded from this exper-
iment because its blocking mechanism terminates the entire
process rather than just blocking the system call. The results
show a significant difference compared to the allow policy,
which is due to the timing differences in how seccomp and
LSM hooks operate. Specifically, when a user-space process

159897

IEEE Access

J. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

=7 Default Seccomp Tetragon KubeRosy
6000 —m™ ™M@ F———————————

5000 b
4000 b

[} w
(=3 (=3
S 2
S O
T
1

Elapsed time(ns)

1000 -

Tetragon KubeRosy

[L L L

Default Seccomp

Allow Policy

1250

—_
(=3
(=3
S

750
500

Elapsed time(ns)

250

KubeRosy

Seccomp
Block Policy

FIGURE 11. The results of the microbenchmark measuring socket()
system call execution.

initiates a system call, tasks such as context switching from
user space to kernel space and configuring the pt_regs struc-
ture are performed before the system call is executed through
the do_syscall_64 or do_syscall_32 kernel functions. The
do_syscall_64 function (Listing 1) applies seccomp filters
via the syscall_enter_from_user_mode() function before exe-
cuting the system call. If syscall_enter_from_user_mode()
returns —1 due to a seccomp block policy, the condition in
the do_syscall_x64() function is not met, and the system call
is blocked before it can be executed.

In contrast, with the LSM hook used by our sys-
tem, the system call is executed after passing through
the syscall_enter_from_user_mode() function and the
do_syscall_x64() function before reaching the LSM hook
point, which results in a difference in timing. However,
our system has the advantages of allowing dynamic policy
changes and providing control over arguments.

2) APPLICATION PERFORMANCE

As shown in Table 2, performance was measured for
three web servers (i.e, nginx, httpd, and lighttpd) and the
memcached in-memory cache application. The results are
presented in Figure 12. Specifically, the performance of the
web server applications was measured using the Apache
HTTP server benchmarking tool [42], with concurrency set
to 100, while the performance of the in-memory cache
application was measured using memtier_benchmark [43],
with threads set to 10. Figure 12 shows the normalized
throughput and latency values for each application, using

159898

void do_syscall_ 64 (struct pt_regs xregs, int nr)
{

add_random_kstack_offset () ;

nr = syscall_enter_from_user_mode (regs, nr);

instrumentation_begin () ;

if (!do_syscall_x64(regs, nr) && !do_syscall_x32(

regs, nr) && nr != -1) {

/* Invalid system call, but still a system call.
*/

regs—->ax = __x64_sys_ni_syscall (regs);

}

instrumentation_end() ;
syscall_exit_to_user_mode (regs);

}

LISTING 1. /arch/x86/entry/common.c.

TABLE 2. The summary of applications used for evaluating application
performance degradation.

Application Description Benchmark
nginx Web server ab(100 clients) [42]
httpd Web server ab(100 clients) [42]
lighttpd Web server ab(100 clients) [42]
memcached In-memory cache memtier(10 threads) [43]
= Default Seccomp Tetragon] KubeRosy ‘
77—
2.1.005F]
& r]
= [i
! r]
o + 4
= 1 7
g ¥ 1
2 0.995; *
0.99 ——]
1.0l]
- f]
2'1.005F .
L []
=S t]
s]
E’ L 4
g [i
ZO 0.995:]
0.99 L——]

lighttpd memcached

nginx httpd

FIGURE 12. The results of throughput and latency normalization across
the applications.

the default configuration (with no policies applied) as the
baseline. These values were compared with the overhead
introduced by the allow policies of seccomp, KuseRosy, and
Tetragon. The results indicate that our system exhibits a
minimal performance difference of approximately 0.3% in
both throughput and latency compared to the default config-
uration. When normalized against seccomp, the performance
difference between seccomp and KuseRosy is around 0.01%.

VOLUME 12, 2024

—

. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

IEEE Access

Pod deploy
with seccomp profile

Mutating
admission

[
APl Request

Kuberosy Operator

Kind: licy
spec:
selector:
matchLabels:
app: nginx
rule:
action: Block
syscall:
- name: socket

(C) KubeRosy policy

kind: Pod "defaultAction”: "SCMP_ACT_ALLOW",
spec:) “syscalls": [
securityContext: {
seccompProfile:
type: Localhost

\ocalhost?rofile

containers:

“"names": [
"socket"

1
“action": "SCMP_ACT_BLOCK"

- name: nginx
image: nginx:latest

(A) Pod's yaml

2024-08-09T13:37:44Z INFO {“pod": { “metadata”: {“name”: “nginx”, “namespace”: “default”, “labels”:
{“app”: “nginx"}), “securityContext”: {"seccompProfile”: {“localhostProfile”: “socket.json"}}}, “seccompProfile”: {“defaultAction’”
“SCMP_ACT_ALLOW”, “syscalls”: {“names": {“socket"}, “action”: “SCMP_ACT_BLOCK"}}}

2024-08-09T13:37:44Z INFO {"controller": "kuberosypolicy", "controllerGroup":
"security.kuberosy.com", "KubeRGsyPolicy ™ ["name™™" nginx-seccomp-converted "}, "namespace": “default”, "name": “nginx-

seccomp-converted", “reconcilelD": "a5b28cbe-8400-494c-904¢-23bf2629282f", "Syscall": {“socket}, “Exception”: “”}

(B) seccomp profile

(D) KubeRosy operator

FIGURE 13. The results of the seccomp profile conversion to KRP.

This demonstrates that the performance degradation due to
the KRP enforcement is negligible.

C. FUNCTIONALITY CORRECTNESS

1) SECCOMP PROFILE CONVERSION

Figure 13 demonstrates the automatic conversion of a sec-
comp profile to a KRP. For this use case, the Nginx pod with
the socket.json seccomp profile was first deployed. Upon
receiving the deployment request, the mutating webhook is
triggered (A) and checks if a Seccomp profile is applied (B).
If the seccomp profile is detected, as in this example, the
profile information is extracted to obtain the defaultAction,
system call names, and actions. The system then verifies
whether the system calls are supported by our system. Since
the socket() is supported by our system, the seccomp profile
is converted to a KRP and deployed using the Kubernetes
API (C). The logs of the KuseRosy operator show entries
for detecting the seccomp profile, extracting information, and
converting it to a KRP before deployment (D). The results of
this experiment demonstrate that our system can seamlessly
convert a default seccomp profile into a KRP.

2) FINE-GRAINED SYSCALL FILTERING

This experiment demonstrates that our system goes beyond
simple system call filtering by enabling fine-grained fil-
tering based on system call arguments. To showcase this,
we deployed the nginx-block policy in the cluster alongside
an nginx pod, as shown in Listing 2. This nginx-block policy
blocks the fchmodat system call by default for pods labeled
with app: nginx, but it makes an exception when the
path argument is /benign.txt and the mode argument
is 755 (rwxr-xr-x). After deploying the policy, we accessed
the nginx pod and attempted to modify file permissions using
the chmod command, which invokes the fchmodat system
call. Before the system call accesses system resources, it is
filtered by our system, which either allows or blocks the
call based on the policy. As shown in Fig. 14, only the
chmod 755 benign.txt command, which matches the policy
exception, is allowed, while all other attempts are blocked.

VOLUME 12, 2024

apiVersion: security.kuberosy.com/v1l
kind: KubeRosyPolicy
metadata:
name:
namespace:
spec:
selector:
matchLabels:
app: nginx

nginx-block
default

rule:
action:
syscall:
— name: fchmodat
execption:
- path:
- mode:

Block

"/benign.txt"
"755"

LISTING 2. nginx-block-chmod.yaml.

maliciouscontainer$ chmod 777 benign.txt

chmod: changing permissions of 'benign.txt': Operation not permitted
maliciouscontainer$ chmod 777 critical.txt

chmod: changing permissions of 'critical.txt': Operation not permitted

maliciouscontainer$ chmod 755 critical.txt

chmod: changing permissions of 'critical.txt': Operation not permitted
maliciouscontainer$ chmod 755 benign.txt

maliciouscontainer$

FIGURE 14. The results of blocking the fchmodat system call except for
/benign.txt and mode 755.

VIIl. DISCUSSION

The coverage of system calls supported by KRP. Our
system operates by detecting the execution of system calls
through raw_tracepoint’s callback function, storing execution
information in the eBPF map, and subsequently enforcing
policies at the triggered LSM hook’s callback function. This
process relies on the mapping between system calls and
the corresponding LSM hooks, which requires significant
time to implement. Currently, KuseRosy supports approx-
imately 50% of system calls, including high-risk system
calls identified in previous research [44] (based on kernel
version 5.15). Due to this limited coverage, the system is not
yet fully capable of implementing a complete whitelist-based
system call filtering framework to enforce the principle of
least privilege. To address this limitation, we plan to increase
coverage to fully support a whitelist approach.

The integration of syscall policy generation. Currently,
our system relies on user-defined KRP to enforce system
call security policies. However, in real-world environments,
manually creating a minimal list of system calls and their
arguments required by an application is labor-intensive.
To achieve our ultimate goal of enforcing the principle of
least privilege through a system call filtering framework,
it is essential to develop a generation component that
automatically identifies the system calls and argument values
used by containerized applications. To address this challenge,
we plan to incorporate a generation component into KuseRosy
by drawing on insights from previous research [8], [9], [10],
[12], [13], [14]. This will allow us to provide automated and
more granular system call security policies, better suited to
the needs of KueRosy.

159899

IEEE Access

J. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

IX. CONCLUSION

In this work, we have proposed KuseRosy, a dynamic system
call filtering framework specifically designed for cloud-
native environments. KuseRosy addresses the limitations
of traditional static system call filtering mechanisms in
containerized environments by leveraging eBPF and LSM
hooks. This allows for dynamic modification of system
call security policies even while containers are running
and enables the enforcement of more granular, argument-
based system call security policies. As a result, our system
plays a crucial role in preventing malicious exploitation of
system calls by containers, thereby enhancing security. In the
experiments, we demonstrated that our system is feasible in
real-world environments, delivering strong performance with
minimal overhead from policy enforcement. This research
contributes to the development of more secure cloud-native
environments by providing elaborated system call security
policy enforcement.

APPENDIX

SYSTEM CALL POLICY SPECIFICATION

KueeRosy is a framework designed to support fine-grained
system call security policies for containers in a cluster,
satisfying system-level security requirements. Listing. 3
shows the complete schema of KRP.

apiVersion: security.kuberosypolicy.com/v1l
kind: KubeRosyPolicy

metadata:
name: [policy name]
namespace: [namespace name]
spec:
selector:
matchLabels:
[key]l: [value]
- rule:
action: [Allow|Block]
syscall:
name: [syscall name]
except_args:
- arg:
key: [arg key]
value: [arg value]
status:
status: [policy status]
lastUpdated: [last update time]
- rule:
action: [Allow|Block]
syscall:
name: [syscall name]
except_args:
- args:
key: [arg key]
value: [arg value]

LISTING 3. Schema of KRP.

The beginning of a KRP defines basic information such as
apiVersion, kind, and metadata. The apiVersion
and kind are always the same, and met adata contains the
name and namespace of the KRP. Next, the spec consists
of a selector, which specifies the Pods to apply the policy
to, and a rule, which is the policy to apply to those Pods.
The selector specifies Pods based on Labels via

159900

matchLables, which allows for more flexible and efficient
policy enforcement in container environments. And a rule
consists of an action (Allow, Block), which is the action
the policy should take, and a syscall, which is the system
call to take the action. The syscall consists of the name of
the system call and except_args to specify exceptions to
the policy. The except_args consists of a list of arguments
containing the key and value to be excluded. This allows user
to configure a policy to block a system call and then configure
a policy to allow it only for certain argument values.

Lastly, status contains information about the status and
recent updates to the policy. This allows you to determine if
a system call should eventually be blocked or if it should
be allowed based on argument values, even if multiple
policies are deployed and modified. The status part is not
user-defined, but updated by the KuseRosy operator. The
KuseRosy operator is aware of the status information of the
currently deployed KRPs and updates it during the policy
enforcement phase.

REFERENCES

[1] (2023). State of Financial Services in Cloud. [Online]. Available:
https://cloudsecurityalliance.org/artifacts/state-of-financial-services-in-
cloud

[2] (2017). Docker. [Online]. Available: https://github.com/docker/go-docker

[3] (2024). Kubernetes—Open Source System for Automating Deployment,
Scaling, and Management of Containerized Applications. [Online].
Available: https://kubernetes.io/

C. Jelesnianski, M. Ismail, Y. Jang, D. Williams, and C. Min, ‘““Protect the

system call, protect (most of) the world with BASTION,” in Proc. 28th

ACM Int. Conf. Architectural Support Program. Lang. Operating Syst.,

vol. 27, Mar. 2023, pp. 528-541.

(2024). Leaky Vessels. [Online]. Available: https://nvd.nist.gov/

vuln/detail/CVE-2024-21626

(2024). Docker Patches Multiple Vulnerabilities Impacting Runc,

Buildkit, and Moby (Leaky Vessels). [Online]. Available: https:/

threatprotect.qualys.com/2024/02/02/docker-patches-multiple-

vulnerabilities-impacting-runc-buildkit-and-moby-leaky-vessels/

(2024). Container Escape: New Vulnerabilities Affecting Docker and Runc.

[Online]. Available: https://www.paloaltonetworks.com/blog/prisma-

cloud/leaky-vessels-vulnerabilities-container-escape/

S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, ‘‘Confine:

Automated system call policy generation for container attack surface

reduction,” in Proc. 23rd Int. Symp. Res. Attacks, Intrusions Defenses

(RAID), 2020, pp. 443-458.

T. Tiguni, H. Kamei, and K. Saisho, “Sprofiler: Automatic generating

system of container-native system call filtering rules for attack surface

reduction,” in Proc. Int. Conf. Comput. Sci. Comput. Intell. (CSCI),

Dec. 2021, pp. 704-709.

[10] S. Yang, B. B. Kang, and J. Nam, “Optimus: Association-based dynamic
system call filtering for container attack surface reduction,” J. Cloud
Comput., vol. 13, no. 1, p. 71, Mar. 2024.

[11] S. Song, A. Kundu, and B. Tak, “POSTER: Seccomp profiling with
dynamic analysis via ChatGPT-assisted test code generation,” in Proc.
19th ACM Asia Conf. Comput. Commun. Secur. New York, NY, USA:
Association for Computing Machinery, Jul. 2024, pp. 1928-1930, doi:
10.1145/3634737.3659426.

[12] D. Zhan, Z. Yu, X. Yu, H. Zhang, and L. Ye, “Shrinking the kernel
attack surface through static and dynamic syscall limitation,” IEEE Trans.
Services Comput., vol. 16, no. 2, pp. 1431-1443, Mar. 2023.

[13] X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen, “Automatic policy
generation for inter-service access control of microservices,” in Proc.
30th USENIX Secur. Symp. (USENIX Secur.), Aug. 2021, pp. 3971-3988.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity21/
presentation/li-xing

—

[4

=

[5

—

[6

—

[7

—

[8

9

—

VOLUME 12, 2024

http://dx.doi.org/10.1145/3634737.3659426

J. Her et al.: KUBEROSY: A Dynamic System Call Filtering Framework for Containers

IEEE Access

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]
[27]

[28]

[29]
[30]

[31]
[32]

[33]
[34]

[35]

[36]
[37]

[38]
[39]

[40]
[41]

[42]

[43]

[44]

S. Kim, B. J. Kim, and D. H. Lee, “Prof-GEN: Practical study on system
call whitelist generation for container attack surface reduction,” in Proc.
IEEE 14th Int. Conf. Cloud Comput. (CLOUD), Sep. 2021, pp. 278-287.
(2024). Falco—Cloud-Native Security Tool Designed for Linux Systems.
[Online]. Available: https:/falco.org/

(2024). Kubearomr—Runtime Kubernetes Security Engine. [Online].
Available: https://kubearmor.io/

(2024). Tetragon—EBPF Based Security Observability and Runtime
Enforcement. [Online]. Available: https://tetragon.io/

S. Gwak, T.-P. Doan, and S. Jung, “Container instrumentation and
enforcement system for runtime security of kubernetes platform with
eBPE,” Intell. Autom. Soft Comput., vol. 37, no. 2, pp. 1773-1786, 2023.
L. Lei, J. Sun, K. Sun, C. Shenefiel, R. Ma, Y. Wang, and Q. Li,
“Speaker: Split-phase execution of application containers,” in /4th Int.
Conf. Detection Intrusions Malware, Vulnerability Assessment (DIMVA),
Bonn, Germany. Cham, Switzerland: Springer, Jul. 2017, pp. 230-251.
W. Findlay, A. Somayaji, and D. Barrera, “BPFBox: Simple precise
process confinement with eBPE” in Proc. ACM SIGSAC Conf. Cloud
Comput. Secur. Workshop, Nov. 2020, pp. 91-103.

(2024). EBPF—Dynamically Program the Kernel for Efficient Networking,
Observability, Tracing, and Security. [Online]. Available: https://ebpf.io/

(2024). Linux Security Module. [Online]. Available: https:/
www.kernel.org/doc/html/v5.15/admin-guide/LSM/index.html#
(2024). Virtualization—What is Virtualization? [Online]. Available:

https://www.ibm.com/topics/virtualization

(2023). Containerization—What is Containerization? [Online]. Available:
https://www.ibm.com/topics/containerization

(2024). container vs VM—Containers Versus Virtual Machines (VMS):
What’s the Difference? [Online]. Available: https://www.ibm.com/
think/topics/containers-vs-vms

EBPF Syscall. Accessed: Oct. 29, 2024. [Online]. Available: https://
docs.kernel.org/userspace-api/ebpf/syscall.html

(2015). A Seccomp Overview. [Online]. Available: https://lwn.net/
Articles/656307/

Seccomp BPF (Secure Computing With Filters). Accessed: Oct. 29, 2024.
[Online]. Available: https://docs.kernel.org/userspace-api/seccomp_filter.
html

(2023). Seccomp Profile—Restrict a Container’s Syscalls With Seccomp.
[Online]. Available: https://kubernetes.io/docs/tutorials/security/seccomp/
LSM Hook Define. Accessed: Oct. 29, 2024. [Online]. Available:
https://elixir.bootlin.com/linux/v5.15/source/security/security.c

(2024). Apparmor. [Online]. Available: https://apparmor.net/

(2024). Selinux. [Online]. Available: https://selinuxproject.org/page/Main_

Page

(2024). ISM BPF—Kernel Runtime Security Instrumentation. [Online].
Available: https://lwn.net/Articles/798157/

(2024). MAC—Mandatory Access Control. [Online].
https://csrc.nist.gov/glossary/term/mandatory_access_control
Y. Sun, D. Safford, M. Zohar, D. Pendarakis, Z. Gu, and T. Jaeger,
“Security namespace: Making Linux security frameworks available to
containers,” in Proc. 27th USENIX Secur. Symp., 2018, pp. 1423-1439.
(2024). Containerd. [Online]. Available: https://github.com/containerd/
containerd/tree/main

(2024). Mutating-Webhook. [Online]. Available: https://kubernetes.
io/docs/reference/access-authn-authz/extensible-admission-controllers/
(2024). Kubebuilder. [Online]. Available: https://book kubebuilder.io/
Clang: A C Language Family Frontend for LLVM. Accessed: Oct. 29, 2024.
[Online]. Available: https://clang.llvm.org/

(2024). GO-EBPF. [Online]. Available: https://github.com/cilium/ebpf
(2024). GRPC—A High Performance, Open Source Universal RPC
Framework. [Online]. Available: https://grpc.io/

(2024). AB—Apache HTTP Server Benchmarking Tool. [Online]. Avail-
able: https://httpd.apache.org/docs/2.4/programs/ab.html

(2024). Memtier_Benchmark: A High Throughput Benchmarking Tool for
Redis and Memcached. [Online]. Available: https://github.com/RedisLabs/
memtier_benchmark

S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, ‘““Temporal
system call specialization for attack surface reduction,” in Proc. 29th
USENIX Secur. Symp., 2020, pp. 1749-1766.

Available:

VOLUME 12, 2024

-
/!

NG

¢\

'ﬁ.‘
<

N —1

@

JIN HER is currently pursuing the B.S. degree
with the Department of Computer Science and
Engineering, Incheon National University. His
research focuses on automated system call security
for advanced cloud-native environments.

CHI HYEON JO is currently pursuing the
B.S. degree with the Department of Computer
Science and Engineering, Incheon National Uni-
versity. His research focuses on confidential
computing and container security.

TAEJUNE PARK received the B.S. degree in
computer engineering from Korea Maritime and
Ocean University, South Korea, and the M.S.
and Ph.D. degrees in information security from
KAIST, South Korea. He is an Assistant Pro-
fessor with the Department of Artificial Intelli-
gence Convergence, Chonnam National Univer-
sity, South Korea. His research interests include
network and IoT security and reliable/low-latency
communications.

SEUNGSOO LEE received the B.S. degree in
computer science from Soongsil University, the
M.S. degree in information security from KAIST,
and the Ph.D. degree in information security from
KAIST, in 2020. He is an Assistant Professor
with the Department of Computer Science and
Engineering, Incheon National University. His
research interest includes developing secure and
robust cloud/network systems against potential
threats.

159901

