
Received 10 October 2024, accepted 27 October 2024, date of publication 30 October 2024, date of current version 11 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3487990

KUBEAEGIS: A Unified Security Policy
Management Framework for Containerized
Environments
BOM KIM AND SEUNGSOO LEE
Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea

Corresponding author: Seungsoo Lee (seungsoo@inu.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by Korean Government
(MSIT) under Grant 2022R1C1C1006093.

ABSTRACT Recently, containers have become the standard for cloud-native service delivery, ensuring
scalability and reliability. However, they are also prime targets for various security attacks that exploit
vulnerabilities. In particular, deploying security policies in dynamic cloud-native environments presents
significant challenges, such asmisconfigurations arising from the heterogeneity of different security policies.
Despite numerous attempts to address these challenges, existing solutions often lack a unified framework
for consistently managing and enforcing heterogeneous security policies across network, system, and
cluster layers. Current approaches typically focus on isolated aspects of security rather than providing a
comprehensive policy management solution. This fragmentation leads to inconsistencies, inefficiencies, and
potential security gaps. To address these challenges, in this paper, we propose KUBEAEGIS, an advanced and
unified policy management framework designed to manage the integration, verification, and enforcement
of heterogeneous security policies at the network, system, and cluster levels. Our framework enables
centralized management of security policies, simplifying the integration of new security tools through
an adapter-based approach and API recommendation mechanisms. We also incorporate a pre-validation
process to detect potential misconfigurations before policy enforcement and to enable real-time tracking of
policies applied to containers. Our evaluation demonstrates the effectiveness of KUBEAEGIS in integrating
and managing network, system, and cluster security policies in real cloud-native environments, providing
extensive coverage and achieving a minimal translation delay of approximately 17ms.

INDEX TERMS Container security, network security policy, policy management.

I. INTRODUCTION
With cloud adoption rates reaching approximately 94%
among enterprises today, the significance of cloud-native
technologies is growing [1], [2], [3]. Notably, containers have
become the standard for delivering cloud-native services due
to their scalability, reliability, and observability. However,
the rising popularity of containerized applications has made
them attractive targets for security attacks that exploit
misconfigurations and vulnerabilities. According to Check
Point’s Cloud Security Report, 61% of organizations reported
breaches in 2023, a significant increase from 24% in 2022 [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Kashif Bashir .

The data breach at Capital One [5] was a major incident that
resulted from an attack that exploited a server-side request
forgery (SSRF) [6] vulnerability in Amazon Web Services
(AWS) Cloud [7]. This vulnerability allowed attackers to
access sensitive data by sending requests to server resources
using untrusted input from a web application. Another
case, Tesla Cryptojacking [8], involved a misconfiguration
in a cloud, enabling attackers to infiltrate the system and
mine cryptocurrency. The attackers accessed Tesla’s cloud
infrastructure, used resources without authorization, and
significantly increased resource costs. In a separate incident
involvingMicrosoft’s Azure [9], an attack exploited the Super
FabriXss vulnerability [10], allowing access to sensitive data
by bypassing the cloud authentication system. This attack

160636

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0009-0006-5983-0844
https://orcid.org/0000-0002-6883-1869
https://orcid.org/0000-0003-2601-9327

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

leveraged a Cross Site Scripting (XSS) [11] vulnerability
to bypass Azure’s authentication procedures and escalate
privileges.

To prevent such malicious behaviour, container orches-
trators (e.g., Kubernetes [12]) are playing a central role
in management of security policies for large numbers of
containerized applications. In a cloud-native environment,
robust security policies are essential for network, system,
and cluster management security to protect applications
and data. These policies help suppress malicious container
behavior and prevent data leakage and unauthorized access.
However, in dynamic cloud-native environments where
containers are created and destroyed within seconds and
dependencies between microservices are continuously evolv-
ing, deploying these policies poses significant challenges to
administrators [13].

Two major challenges in security policy management are
automation and misconfiguration. First, cloud-native envi-
ronments are dynamically changing and consist of numerous
container-based microservices, significantly increasing the
complexity of managing security policies. In particular, fre-
quent cluster configuration changes and complex interactions
between services make it nearly impossible to manually
manage hundreds of security policies. For example, in a large-
scale microservice architecture, setting detailed network
policies for each service requires excessive time and effort
if done manually. Second, such manual management can
easily lead to misconfiguration of security policies. Important
security policies may be omitted due tominor user errors such
as typos or missing settings. These errors can compromise
the security of the entire system and provide opportunities
for attackers to exploit and infiltrate the system. Additionally,
misconfigurations make it difficult to maintain consistency
in security policies. New containers are frequently created
or deleted, necessitating immediate adjustments to security
policies. However, detecting and correcting these changes
manually is challenging.

To address these challenges, several work [14], [15], [16],
[17], [18] that focus on automatically generating network
and system security policies have been proposed. However,
these systems still operate dependently on specific security
tools, which are not integrated. Even with automatic policy
generation, these systems use different policy languages and
configuration methods, requiring significant time to learn
and manage the security policy configurations for each
tool. Additionally, there may be inconsistencies between the
user’s security requirements and the automatically generated
policies. The generated policies may not accurately reflect the
security requirements or may not fully understand the current
cluster situation, resulting in unnecessary restrictions that
could hinder cloud operations. Conversely, a configuration
error that grants excessive authority could allow malicious
access, leading to a security incident. Lastly, the automated
systems typically regard the generated policies as individual
instances and do not track and manage the information about
which containers each policy is applied to. Consequently,

users are not notified when a container to which a security
policy was applied is changed or deleted, rendering the policy
invalid.

A. OUR APPROACH
In this paper, we propose KUBEAEGIS, a unified policy
management framework designed to manage the entire
process of integration, verification, and enforcement of
heterogeneous security policies at the network, system,
and cluster levels. This allows administrators to apply the
security policies centrally without having to manage each
tool separately. Additionally, we design an adapter-based
approach to facilitate the easy integration of new security
tools into our system. To this end, we provide an API pool
that can convert our security policies into actual security
tools. Furthermore, we recommend appropriate conversion
APIs based on a SRoBERTa model [19], [20] during the new
adapter generation stage, simplifying the expansion of new
security policy enforcement tools. This minimizes the need
to modify the integrated management system itself, allowing
for flexible accommodation of various security requirements.
Before enforcing the security policies, we detect potential
misconfigurations through a pre-validation process, prevent-
ing the deployment of incorrect policies into the cloud
environment. Lastly, during the enforcement of the integrated
security policies, we track in real time which containers each
policy is applied to and immediately detect when containers
are changed or deleted, ensuring the consistency of the
security requirements.

Our evaluation demonstrates how our system effectively
integrates three types of security policies (i.e., network,
system, and cluster) in real cloud-native environments. It also
shows that our system incurs a minimal translation delay of
approximately 17ms in security policy translation.

B. CONTRIBUTION
Our paper contributions are as follows:
• We introduce a novel unified policy management frame-
work, KUBEAEGIS, for containerized environments that
manages network, system, and cluster-level security
policies through a single, centralized interface.

• We devise a flexible plug-in adapter design with high
accuracy API recommendation mechanisms leveraging
the SRoBERTa model. This design simplifies the
adapter generation process, thereby facilitating the
expansion of new security policy enforcement tools.

• We propose a fine-grained policy validation methodol-
ogy that checks the validity of policies before they are
applied to detect potential misconfigurations in advance
and preemptively block incorrect policy configurations.

• We evaluate our system within the context of a
real-world microservices application. This evaluation
effectively demonstrates its capability to successfully
integrate various security tools and validate security
policies with minimal overhead.

VOLUME 12, 2024 160637

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

FIGURE 1. Comparison between monolithic and microservice
architectures.

The remainder of this paper is organized as follows:
Section II-A provides background on cloud-native envi-
ronments and security policy management challenges.
Section III reviews related work and its limitations.
Section IV outlines the design and key requirements of
KUBEAEGIS. Section V delves into KUBEAEGIS’s core
features and operational principles. Section VI presents the
implementation and performance evaluation of KUBEAEGIS.
Section VII discusses system limitations and future work.
Finally, Section VIII concludes the paper with a summary of
key findings and implications.

II. BACKGROUND AND CHALLENGES
A. BACKGROUND
1) CLOUD-NATIVE APPLICATION
Cloud-native applications are designed to maximize the
agility and scalability that are the hallmark features of the
cloud computing model. These applications are primarily
based on containers, which provide numerous benefits
for practitioners in software development and deployment,
including agility, portability, reproducibility, modularity, and
flexibility [21], [22], [23], [24]. By incorporating containers,
these applications enhance the operational efficacy of large-
scale systems, particularly in a distributed microservice
architecture (MSA). Additionally, cloud-native applications
are built to effectively utilize the elasticity and distributed
processing capabilities of the cloud during the creation,
deployment, and operation stages, which fundamentally
distinguishes them from traditional monolithic architectures.

As shown in Figure 1(A), in the traditional monolithic
architecture, the user interface, business logic, and data
access layers are tightly coupled within a single applica-
tion, primarily built on physical infrastructure or virtual
machines. While this structure simplifies initial development
and deployment, it reveals maintenance difficulties and
scalability limitations as the application complexity and
scale increase. In particular, the inefficiency of redeploying
the entire application for a single feature update becomes
problematic. On the other hand, as depicted in Figure 1(B),
the microservice architecture (MSA) emerged to overcome
these limitations [25]. The MSA divides an application
into small, independently deployable services, allowing each
service to be developed, deployed, and scaled independently.
Each microservice is responsible for a specific business
function, can have its own database, and runs in an isolated

FIGURE 2. Kubernetes operator workflow: Aligning current state with
desired state.

containerized environment. This architecture reduces the
coupling between services, improves system elasticity, and
enables automated deployment and management through
orchestration tools such as Kubernetes [12].

2) KUBERNETES OPERATOR
Kubernetes [12] includes a controller [26], one of its
core components that enables automated management and
operation. The controller continuously monitors the status
of specific resources in the cluster, ensuring that the desired
state matches the current state. Although the controller
automatically reacts to changes in the cluster’s status,
additional logic is required to manage custom applications
or services in detail. To address this need, an operator [27]
from the Kubernetes, also known as a custom controller,
was proposed, as illustrated in Figure 2. The operator
allows custom applications to be managed in the cluster
as if they were native Kubernetes resources. It provides
the necessary custom resources and controllers to automate
complex management tasks and apply application-specific
logic. Leveraging the extensibility of the Kubernetes API
and the concept of custom resources, the operator can
automatically handle the installation, upgrade, backup, and
recovery of applications.

The operation of the operator involves several steps, from
user intervention to the adjustment of the state through the
Kubernetes API, as shown in Figure 2. First, the user modifies
a custom resource (CR) [28] that represents the desired state
of the application. Then, the operator continuously observes
state changes in the cluster by observing these changes or
events through the ‘Watch’ function and initiates actions in
response. When an event occurs, such as the creation, update,
or deletion of a CR, the operator investigates the current state
based on the API information through the ‘Reconcile’ loop
and executes tasks to achieve the desired state. Thus, the
operator is essential for managing the cluster and maintaining
a stable MSA by automating these actions. This automation
reduces the burden on administrators by eliminating the need
for direct management of all tasks and significantly improves
operational efficiency.

3) SECURITY POLICY
Security policies can elaborately control the operation of
container-based services in the Kubernetes cluster and

160638 VOLUME 12, 2024

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

TABLE 1. Examples of security policy enforcement systems for networks,
systems, and clusters.

block malicious behavior, as shown in Figure 3. These
policies can be divided into three categories based on their
characteristics: network, system, and cluster management.
Table 1 shows representative security tools that provide
security policy enforcement for each category. First, network
policies define communication rules between pods (i.e.,
groups of containers) or network endpoints within the cluster
to efficiently manage traffic and enhance isolation and
security between services. For example, a network policy
(net-pol in Figure 3) allows the frontend pod to send
packets to port 5959 in the backend pod.While the network
policies provided byKubernetes [12] offer basic IP-based and
label-based traffic management, Cilium [36] and Calico [37]
leverage extended Berkeley Packet Filters (eBPF [38]) to
manage traffic between services in more detail (e.g., HTTP,
DNS) and with high performance.

For system policies, containers set security rules to block
unauthorized access to system resources (e.g., specific files
and system calls). For instance, a system policy (sys-pol
in Figure 3) can prevent any processes in the backend pod
from accessing the /etc/passwd file. Among various
system policies in Kubernetes, KubeArmor Policy [39] can
block malicious activities at runtime by preventing access
to critical files by malicious processes using eBPF and
linux security module (LSM [40]) or by setting rules that
block certain critical system calls, thereby strengthening the
overall security posture. Similarly, Tetragon [33] and Falco’s
Policy [32] support security policies that monitor the system
calls of specific containers to detect suspicious activities.
These systems can capture abnormal behaviors on the system
in real time and generate alerts, enabling early detection and
response to security incidents.

Lastly, cluster policies are used to define and enforce
security rules for containers within a cluster. A cluster policy
can mandate that a specific label (type=online) must be
attached when a pod is created as shown in cluster-pol
in Figure 3. If a pod is created without this label, the
policy automatically detects the discrepancy and either
adds the appropriate label or blocks the resource creation.
Kyverno Policy [41], which provides such functionality,
can automatically verify policy compliance by applying
various rules to the lifecycle events of Kubernetes resources,
modifying or blocking noncompliant resources. For example,
a Kyverno policy can restrict the use of container images
to specific image registries. The allowed registries are set
through namespace annotations, and for the entire cluster,
they are set through ConfigMap. A rule can then be

FIGURE 3. Examples of three different types of policy enforcement
scenarios.

established to block the use of images from unauthorized
registries when creating a pod. This approach enables detailed
registry control in a multi-tenant environment.

B. CHALLENGES
Establishing thorough security policies is essential for a
secure cloud-native environment. Nevertheless, as the variety
of security services expands, numerous challenges arise
in policy enforcement. This section investigates four key
challenges involved in managing these security policies.

1) C1: COMPLEXITY IN HETEROGENEOUS POLICY
MANAGEMENT
In the contemporary cloud-native environment, security
systems, whether operating independently or collaboratively,
exhibit diverse and complex security requirements. Each sys-
tem demands its own security measures, posing challenges in
the centralized configuration and maintenance of appropriate
security policies across all services. Different security tools
utilize distinct policy schemas, requiring administrators to
learn each policy structure, which makes it difficult to uphold
a consistent overall security status due to the disparity among
policy languages.

2) C2: SCALABILITY ISSUES IN ADOPTING NEW SYSTEMS
As shown in Table 1, there are various types of systems
that can enforce security policies for each category. In the
case of network security policies, besides Kubernetes’ own
security policies, service-specific network security policies
can be enforced by various CNIs such as Cilium and
Calico. Therefore, when providing a centralized security
policy system as suggested in C1, the modification of the
management system is inevitable whenever a new security
system is introduced. However, it is not realistic to manually
modify and distribute the main code each time, such as
analyzing the security policy scheme of the newly introduced
security system and creating a corresponding security policy.
Furthermore, this can act as a major obstacle to the rapid

VOLUME 12, 2024 160639

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

application of security policies when the service is rapidly
expanded, significantly reducing operational efficiency.

3) C3: RISKS OF MISCONFIGURATION
Basically, security systems in the cloud operate inde-
pendently and have different configuration requirements.
If not managed consistently, policy enforcement errors or
misconfigurations can occur. Specifically, incorrect security
policies may be set for resources that the service, to which
the actual security policy applies, does not have. Moreover,
the rapid pace of change in the cloud environment introduces
additional difficulties in detecting and correcting incorrectly
configured and applied policies. Additionally, conflicts with
the status of the cluster can arise when updating existing
policies or enforcing new ones. Security vulnerabilities
caused by such mistakes or human errors can be exploited
by attackers, potentially leading to serious security incidents
such as data leaks.

4) C4: DIFFICULTIES IN POLICY STATUS TRACKING
In a cloud-native environment where numerous containers
are created and destroyed rapidly, the lifecycle of a security
policy is closely linked to the lifecycle of a service. As the
status of a service continuously changes, the corresponding
security policy must also be updated swiftly if needed.
However, manually updating the security policies to accu-
rately reflect the dynamically changing service status is a
cumbersome task. Additionally, due to the interconnected
nature of multiple services and containers in a cloud-native
environment, predicting how an updated policy applied to
one service will affect another is challenging. The lack of
such connection information between the security policies
and the resources could incur unintended operations in the
cloud-native environments.

III. RELATED WORK
A. CLOUD-NATIVE SECURITY
In recent years, various studies have been conducted to
strengthen security in cloud-native environments, focusing
on resource optimization [42], [43], [44], network secu-
rity [45], [46], [47], and system protection [17], [48], [49].
Wang et al. [42] proposed RMiner, a hybrid subsystem
that systematically manages invisible shadow resources
in environments with corrupted shared states to improve
resource utilization. Additionally, Wang et al. [43] intro-
duced DeepScaling, which enhances resource management
by predicting CPU utilization and supporting automatic scal-
ing in large-capacity processing microservices. For serverless
functions, Li et al. [50] proposed a scheduling technique to
maintain performance while reducing resource costs. While
these studies contribute significantly to specific aspects of
cloud-native security, they often operate in isolation, focusing
on individual layers such as resource management or network
traffic monitoring. This siloed approach fails to address the
need for a comprehensive, multi-layered security strategy.

Furthermore, these solutions frequently require integration
with specific security tools, leading to compatibility issues
and policy fragmentation across different security domains.
In the realm of network security, You et al. [45] developed
Helios, a hardware-based network security solution using
SmartNICs, and Le et al. [46] proposed a mechanism to
prevent malicious user attacks by minimizing unneces-
sary system call exposure in Kubernetes environments.
Lim et al. [47] suggested a method to effectively capture
container logs by providing a security audit function at the
container level. These systems undoubtedly enhance network
and system-level security. However, they do not address
the critical issue of policy consistency across different
security domains. This limitation creates gaps in cross-layer
security management, potentially leaving vulnerabilities at
the intersections of various security layers. Lastly, in the case
of the system security, Song et al. [48] proposed NIMOS,
a framework that strengthens container security by analyzing
system call sequences to prevent various risks in container
environments. Van’t Hof and Nieh [49] introduced a security
system that protects container data by securing an inde-
pendent memory space. Ghavamnia et al. [17] introduced
Confine, a method that prevents attacks by automatically
generating system calls in Docker containers.

Unlike these existing solutions, KUBEAEGIS, addresses
the critical need for a unified framework capable of
managing heterogeneous security policies across network,
system, and cluster levels. It offers a centralized policy
management approach that simplifies the enforcement of
security policies across all layers, ensuring consistency across
different security tools. KUBEAEGIS not only integrates
existing security mechanisms but also provides a flexible,
adapter-based architecture that can easily incorporate new
security tools and policies. This comprehensive approach fills
a significant gap in current cloud-native security solutions,
offering a more holistic and adaptable security posture for
modern, dynamic cloud environments.

B. SECURITY POLICY IN CONTAINERIZED
ENVIRONMENTS
Recently, numerous studies have proposed methods for auto-
matic security policy generation [14], [16], [51]. Lumi [51] is
a system that translates network policies entered by network
operators in natural language into low-level configuration
commands and distributes them across the network. This
system improves the accuracy of policy translation by
utilizing machine learning algorithms and operator feedback.
Log2Policy [14] presents a new approach to automatically
configure access control between microservices, generating
fine-tuned access control rules through a graph generation
algorithm based on access logs and request attribute extrac-
tion using machine learning. AutoArmor [16] automatically
generates necessary access control policies by analyzing
the interactions between microservices, using a request
extraction mechanism based on static analysis.

160640 VOLUME 12, 2024

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

FIGURE 4. Overall architecture and workflow of KubeAegis with three key components: (i) KubeAegis Policy (KAP), (ii) KubeAegis Operator, and
(iii) KubeAegis Adapter. Additionally, Our System Includes Two Operational Phases: Adapter Generation and Policy Enforcement.

In addition, various open-source tools have been proposed
to effectively manage security policies in cloud-native envi-
ronments. For example, Otterize [52] allows users to declara-
tively define their intended access policies and automatically
converts them into network policies and Kafka policies [53].
Open Policy Agent (OPA) [54] enables policy-based access
control and verification in various environments, including
cloud-native environments, and is actively used to express
and execute security policies in microservice architectures.
Leveraging OPA, GateKeeper [55] verifies requests in a
Kubernetes cluster, disallowing unauthorized requests. In the
academic field, Verikube [56] has been proposed for the
automatic verification of container network policies. It is
compatible with Cilium only and features a novel graph
structure tominimizememory usage and improve verification
speed. Kano [57], [58] proposes an incremental verification
with an intent-based verification language and a bit matrix
model, presenting a method to automatically identify policy
violations and generate a correction plan.

While these tools provide valuable solutions for specific
aspects of policy management, they often require users
to manually adapt policies for different security tools.
Additionally, Moreover, many are specialized for a single
type of policy (e.g., network policies), leading to fragmented
management. KUBEAEGIS addresses these limitations by
offering a unified policy management solution that supports
heterogeneous security tools and provides an integrated API
recommendation mechanism, streamlining the process of
policy adaptation across various tools.

IV. KUBEAEGIS OVERVIEWS
This section outlines the design requirements to address
the challenges mentioned in Section II-B, which motivate
KUBEAEGIS. It also provides a detailed description of the
system architecture.

A. DESIGN REQUIREMENTS
This research stems from the hypothesis that unified man-
agement of heterogeneous security policies in cloud-native
environments is more effective than separate management
approaches. We anticipate that an integrated management
approach will enhance policy consistency, prevent conflicts,

and enable rapid responses to dynamic environmental
changes. During implementation, we face challenges inherent
to dynamic cloud environments, as detailed in Section II-B.
To address these challenges and validate our hypothesis,
we present four key design requirements: unified pol-
icy management (§IV-A1), flexible plug-in adapter design
(§IV-A2), policy validation (§IV-A3), and ownership tracking
for policies (§IV-A4). These requirements are designed to
overcome the identified challenges and realize the potential
benefits of integrated security policy management in cloud-
native environments.

1) R1: UNIFIED POLICY MANAGEMENT
The framework should provide a unified policy management
system to centrally meet the requirements of multiple
security tools and policies. Specifically, it should allow
security policies at the system, network, and cluster levels
to be managed through a single, unified interface, ensuring
consistent policy application and management. Additionally,
the unified policy system should support efficient processing
of tasks such as creating, modifying, and deleting security
policies.

2) R2: FLEXIBLE PLUG-IN ADAPTER DESIGN
The framework should have a flexible plug-in adapter design
that can integrate with various security tools, allowing users
to easily incorporate new security policy engines or existing
security tools into the system as needed. In other words,
it should convert the uniform security policies into a form
that specific security systems can understand and then apply
the policies through those systems. The adapter-based design
enhances scalability, facilitating seamless integration of new
security tools as the system evolves. Additionally, a policy-
converting API pool should be provided and automatically
recommended to facilitate the easy development of plug-in
adapters when a new security system is introduced, thereby
maximizing the system’s flexibility and extensibility.

3) R3: POLICY VALIDATION
The framework should include a mechanism to verify the
validity of security policies to ensure they are applied
effectively and are suitable for the actual environment.

VOLUME 12, 2024 160641

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

Specifically, it should monitor in real-time for misconfigu-
rations or conflicts, it can respond promptly to any problems,
thus preventing policy conflicts in advance, enhancing system
reliability, and minimizing the risk of security incidents
caused by incorrect policy enforcement.

4) R4: OWNERSHIP TRACKING FOR POLICY
The framework should systematically track and manage
the ownership and lifecycle of resources associated with
security policies. Since security policies are closely related to
dynamically changing resources in the cluster, understanding
how associated resources are affected when policies are
deleted or changed is crucial. Therefore, the framework
should notify administrators of such changes and prevent
potential security vulnerabilities caused by the resource
changes associated with the security policies. This ownership
tracking mechanism enhances visibility into policy enforce-
ment and resource management across the cluster, enabling
administrators to maintain a clear overview of the security
posture at all times.

B. SYSTEM ARCHITECTURE AND WORKFLOW
This section presents the overall architecture of KUBEAEGIS

and explains its components. As illustrated in Figure 4, our
framework consists of three main components: KubeAegis
Policy (KAP), Operator, and Adapter. Our framework
supports two distinct phases. First, the adapter generation
phase aims to create new adapters by analyzing the custom
resource definition (CRD) and recommending relevant APIs.
Second, the policy enforcement phase automates the policy
validation and enforcement processes from end to end.

1) KubeAegis POLICY (KAP1)
It is a unified security policy designed to support consistent
security measures within the cluster, addressing security
requirements at the system, network, and cluster levels.
As depicted in Figure 5, the entire scheme comprises a
component for selecting the target resource to which KAP is
applied, an actual request rule, and a status that indicates the
associated resource and adapter policy (AP). The request rule
includes an action and a resource property for each category,
and its detailed definition can be found in Appendix.

2) KubeAegis OPERATOR
The operator consists of six key modules: adapter generator,
KAP monitor, validator, exporter, status manager, and
reporter. The adapter generator aims to facilitate the auto-
matic generation of adapter templates by analyzing the CRD
of a new security system (i.e., the adapter generation phase in
Figure 4) and it comprises three submodules: CRD analyzer,
template generator, and API recommender. The analyzer
extracts the necessary information from the given CRD,while
the template generator creates the adapter templates based

1In this paper, KubeAegis Policy will be referred to as ‘KAP’ for short,
and due to space limitations, its detailed structure will be appended later.

FIGURE 5. Partial views of KAP structure: The request rule involves
network, system, and cluster properties.

on this information. The API recommender calculates the
similarity between field descriptions and API methods using
a Sentence Robustly Optimized BERT [59]2 Pretraining
Approach (SRoBERTa [19], [20]). This model is based on
the ideas of Sentence Bidirectional Encoder Representations
from Transformers (SBERT [19]) but use the Robustly
Optimized BERT Pretraining Approach (RoBERTa [20])
instead of BERT to improve embedding performance. It then
uses cosine similarity [60] to suggest appropriate API
methods. Subsequently, it communicates with the generated
adapter to monitor its latest status.

All other modules, except for the adapter generator, are
involved in the policy enforcement phase. First, the KAP
monitor continuously tracks the creation, deletion, and update
events of the KAP. It promptly detects each event and
forwards it to the validator to ensure that subsequent tasks
can be executed. The validator literally verifies the validity of
the KAP. It consists of two submodules: the resource validator
and the property validator. The resource validator checks the
existence and status of the resource referenced by the KAP,
while the property validator ensures that the request rules
defined by the KAP are valid and that its preconditions are
met. This process reviews the network rules, system rules,
and cluster rules. If an error is detected, it is recorded, and
the cause of the error is conveyed to the administrator.

The exporter is responsible for transferring the verified
KAP to the appropriate adapter by referencing the adapter
ConfigMap. It also notifies the adapter when the KAP is
deleted, ensuring that the related adapter policy is removed.
The status manager updates and manages the status of
the KAP. It records the status at each stage of policy
creation, verification, and enforcement to maintain current
status information. Additionally, it tracks the ownership of
resources related to the KAP to minimize the impact on these
resources when they are changed or deleted. The reporter
communicates the policy enforcement results to the user in a
JSON format. It also notifies the user when there is a change

2It stands for Bidirectional Encoder Representations from Transformers.

160642 VOLUME 12, 2024

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

FIGURE 6. Sequence diagram for handling a KAP creation event.

in the resource to which the KAP is applied or when a change
in ownership occurs.

C. KubeAegis ADAPTER
The adapter consists of four submodules: adapter manager,
KAP receiver, policy converter, and policy enforcer. The
adapter manager oversees the lifecycle of the adapter,
ensuring it is ready to receive KAPs and updating its status
accordingly. Additionally, it periodically informs the adapter
generator in the operator about the online and offline status.
The KAP receiver receives the verified KAP from the
exporter and sends it to the converter. The policy converter
then transforms the received KAP into adapter policies (APs)
compatible with each security system (e.g., Cilium [29],
KubeArmor [31], Kyverno [34]). The policy enforcer applies
the policies to the cluster and notifies the status manager of
the enforcement results to keep the policy status current.

V. KubeAegis DESIGN DETAILS
This section details the features of KUBEAEGIS to satisfy
the core design requirements (§IV-A) in the following
order: unified policy handling (§V-A), flexible scalability
via plug-in adapters (§V-B), fine-grained policy validation
(§V-C), and persistent ownership tracking (§V-D).

A. UNIFIED POLICY HANDLING
The KUBEAEGIS operator monitors and immediately handles
KAP resource events to centrally manage heterogeneous
security policies. The following describes the processing
workflow for create, delete, and update events for the KAP,
excluding the read operation. Here, we assume the presence
of a specific KUBEAEGIS adapter.

1) CREATE EVENT PROCESSING
As shown in Figure 6, the create event begins with the
monitor in the operator detecting the creation of a KAP.

The created KAP first undergoes a validation process, during
which it carefully checks the current status of the cluster
and the conditions required by the KAP. For example,
it examines whether the resources referenced in the policy
exist and whether the attributes required by the policy
are met, thereby determining if the policy is suitable for
the cluster environment. If the validation fails, an error is
returned to indicate a problem with the policy configuration,
and the process terminates. Conversely, if the validation
is successfully completed, the operator sends the policy to
the appropriate adapter via gRPC communication [61]. The
adapter receives the policy information, converts it into their
own policy, applies it, and notifies the operator that the
policy has been successfully implemented. Based on this
information, the operator updates the status of the KAP (i.e.,
ownership tracking) to complete the policy creation process.
On the other hand, if the adapter is offline, the operator
periodically attempts to send the policy until the adapter
comes online.

2) UPDATE EVENT PROCESSING
In the case of the update event, the process involves modify-
ing the existing policy to reflect the changed requirements.
The operator retrieves the information of the updated KAP
and compares it with the existing policy to identify the
changes. Following this, the same policy verification process
as in the create event proecssing is performed on the
updated KAP. If the verification is successfully completed,
the modified policy is delivered to the appropriate adapter,
and the subsequent process mirrors that of the create event
handling. Notably, multiple security policies can be defined
in one KAP. Thus, if a KAP defining three system policies
is applied and an update is performed to remove one system
policy, the adapter will delete exactly the relevant adapter
policy through the update event handling.

3) DELETE EVENT PROCESSING
For the delete event, it involves removing KAPs that are
no longer needed in the cluster. The operator immediately
detects the deletion event of the KAP and notifies the relevant
adapter. The adapter then searches for the adapter policy
associated with the deleted KAP through ownership tracking
and requests the actual deletion of the policies via the
Kubernetes API. The associated policies are then removed
from the cluster. After confirming that the policy deletion has
been completed successfully, the adapter notifies the operator
of the result. Lastly, the operator then performs a final check
to ensure that all deletion tasks have been executed correctly,
completing the deletion procedure.

B. FLEXIBLE SCALABILITY VIA PLUG-IN ADAPTERS
KUBEAEGIS is designed to effectively manage security
policies provided by heterogeneous security systems through
a plug-in adapter design. This design enables each adapter to
receive and convert these policies into a compatible format

VOLUME 12, 2024 160643

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

FIGURE 7. Example of the API recommendation process for generating a new adapter.

for their respective systems. However, the extension method
for adapters necessitates the development and distribution
of a new adapter for each newly introduced security
policy enforcement platform, which is inefficient when done
manually. Thus, KUBEAEGIS automates the generation of
basic adapter code and recommends suitable APIs based on
the policy scheme of the adapter systems. As illustrated in
Figure 7, the adapter maker module automatically creates
the foundational code of the adapter in a template format.
The module reads the Custom Resource Definition (CRD)
file to extract details such as group, type, version, and
field descriptions. It then replicates the predefined adapter
template directory, replacing placeholders in the template
with actual values derived from the CRD, thereby completing
the adapter code. During this process, the necessary packages
are automatically imported, and the configuration file,
including their network settings, is updated.

After generating the adapter template, KUBEAEGIS pro-
vides the API recommendation mechanism to efficiently
produce the final adapter code by utilizing the Sentence-
RoBERTa(SRoBERTa) model based on each adapter CRD,
as shown in Figure 7. The detailed API recommendation
steps are described in Algorithm 1. The API recommendation
process begins by initializing the SRoBERTa model, a pre-
trained language model for natural language processing
tasks (line 1), including setting up the hardware. Next, the
algorithm calculates embeddings (lines 2-4), where it extracts
field descriptions from the adapter CRD and predefined
API descriptions. These descriptions are transformed into
numerical embedding vectors using the SRoBERTa model,
enabling computational analysis. The algorithm then com-
putes the cosine similarity between the encoded descriptions
(lines 5-6), generating a similarity matrix S that quantifies
semantic relatedness between fields and APIs. The Cosine
Similarity ranges from −1 to 1, calculated by measuring
the angle between two vectors in a multidimensional space,
as shown in line 6. This results in a similarity score S[i, j]
for each pair of field and API descriptions, where higher
values indicate greater semantic similarity. Additionally,

a dictionary R is initialized to store the API recommendations
for each field (line 7).

The core API recommendation process is encapsulated
in a loop that iterates over each field di in the set of
field descriptions D. For each iteration, the algorithm
performs several steps: It optionally applies a weighted
similarity calculation (lines 10-11). This step allows for
the incorporation of field importance if required, using a
weighting factor αi. The weighted similarity is calculated
as W [i, j] = S[i, j] × αi for each API description. If no
weighting is necessary, the original similarity scores S[i, j]
are used directly as W [i, j]. The algorithm then identifies
the API with the highest similarity score for the current
field (lines 12-13). If this best match score exceeds a
predefined threshold τ (set to 0.75 in this case), the field
description is associated with the corresponding API in the
recommendation dictionary R (lines 14-17). To provide more
comprehensive recommendations, the algorithm also stores
additional high-scoring matches that exceed the threshold τ ,
excluding the best match(lines 18-22). This process ensures
that each field is carefully analyzed and matched with
the most relevant APIs, while also considering potential
secondary matches that may be useful. After processing all
fields, duplicates are removed from the recommended APIs
for each field(lines 23-26). This step ensures that the final
recommendations are refined and ordered by their similarity
scores. The process then concludes by returning the refined
dictionary R of API recommendations (line 27), providing
a comprehensive set of suggested APIs for each field in the
adapter CRD. This enhanced algorithm leverages the power
of pre-trained language models and similarity metrics, while
also incorporating optional weighting for field importance.
The result is a context-aware API recommendation system
that can potentially improve the efficiency and accuracy of
adapter code generation, adapting to the specific needs and
priorities of different fields within the CRD.

The threshold τ is set to 0.75 as empirically, values
greater than this have demonstrated strong similarity between
the field description and API description vectors in our

160644 VOLUME 12, 2024

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

Algorithm 1 API Recommendation Using SRoBERTa
With Weighted Similarity
Input: Field descriptions D = {d1, d2, . . . , dm}, API method

descriptions A = {a1, a2, . . . , an}, threshold τ = 0.75
Output: Recommended APIs for each field R

1 1. Initialize SRoBERTa model and device
2 a. Embedding Calculation
3 - Encode field descriptions:

ED ← SRoBERTa.encode(D)

4 - Encode API descriptions:

EA ← SRoBERTa.encode(A)

5 b. Cosine Similarity Calculation
6 - Compute cosine similarity between encoded descriptions:

S[i, j] =
ED[i] · EA[j]
∥ED[i]∥∥EA[j]∥

7 2. Initialize Recommendation Dictionary

R← {}

8 3. API Recommendation Process
9 for each field di in D do
10 a. Weighted Similarity Calculation (Optional)
11 - If a weighting factor is required based on field

importance, apply the weighting:

W [i, j] = S[i, j]× αi

- If no weighting is applied, use S[i, j] directly (i.e.,
W [i, j] = S[i, j]).

12 b. Find Best Matching API
13 - Identify the index of the maximum similarity score:

best_match_idx← argmax(W [i, :])

14 - If the best match score exceeds the threshold τ :
15 if W [i, best_match_idx] ≥ τ then
16 api_name← A[best_match_idx]
17 R[api_name].append(di)

18 c. Handle Additional Matches
19 - Store additional matches that meet the threshold τ ,

excluding the best match:
20 for each wij in W [i, :] do
21 if wij ≥ τ and j ̸= best_match_idx then
22 sub_field_matches.append((wij,A[j]));

23 4. Remove Duplicates
24 - Remove duplicates from the recommended APIs:
25 for each api_name in R do
26

R[api_name]← list(set(R[api_name]))

27 return R

experimentation. This threshold reduces noise and avoids
low-relevance matches. If the threshold is too low, inaccurate
recommendations increase, while if it is too high, relevant
recommendations may be missed. Thus, 0.75 is chosen as a
balance point to provide reliable matching while including
sufficiently relevant recommendations. Through this process,

FIGURE 8. Example of property validation for KAP.

API recommendations are made based on the similarity
between field and API description.

C. FINE-GRAINED POLICY VALIDATION
The KAP policy validation consists of two main parts: the
resource validation, which checks the existence and basic
context of the resource to be applied by the KAP, and the
property validation, which checks the detailed properties of
the resource specified in the KAP. If either validation fails, the
operator does not send the KAP policy to its relevant adapter
and the validator immediately reports any errors found to the
administrator.

1) RESOURCE VALIDATION
The resource validator in KUBEAEGIS operator, which
is responsible for resource validation, verifies the actual
resources used in the cluster. In other words, it checks
whether the resources to which the KAP will be applied
actually exist in the cluster. For example, as shown in
Figure 8, the expression labels[“db”]==“mongodb”
in the Benign.yaml file reflects the intention that
a pod with the db label of mongodb should exist.
Thus, the validator searches for the pod with the cor-
responding labels to confirm whether this intention is
met. If the pod with the db=mongodb label exists, the
policy passes validation and is deemed suitable. Con-
versely, in Incorrect-config.yaml, if no pod with
the db=mongodb label exists, the validation fails, which
indicates that the policy does not match the actual cluster
environment, and the administrator is notified with the
errors.

2) PROPERTY VALIDATION
In addition to the resource validation, the property validation
checks the detailed properties of the target resource to which
the KAP will be applied. First, for the network policies, since
a KAPwith incorrect network properties may lead to network
vulnerabilities, it should verify whether the port defined by

VOLUME 12, 2024 160645

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

the KAP is listening on the target resource and whether the
CIDR block points to a valid address range. Additionally,
it performs protocol verification procedures such as TCP or
UDP. For the system policies, it verifies the executable status
of scripts, commands, and system calls within the cluster,
as well as the existence and read-only status of target files.
Finally, in the cluster policy, it checkswhether the annotations
and labels of the pods satisfy the requirements and verifies the
existence of the image.

For example, as shown in Figure 8, the property validator
process verifies the status of the /etc/resolv.conf
file that must exist in the pods within the actual cluster.
In Benign.yaml, the policy is approved by confirming that
the /etc/resolv.conf file exists and is readable. On the
other hand, in Incorrect-config.yaml, the policy is
rejected because the relevant file, such as /etc/resolv,
does not exist or has an incorrect file path. In this manner, the
property validator checks whether all properties of the KAP
are satisfied within the cluster and notifies the administrator
of any errors that occur during the validation process through
logging.

D. PERSISTENT OWNERSHIP TRACKING
As the unified security policy, the KAP has an ownership
of the adapter policy (AP) that is actually enforced into
the cluster. In the same way, the AP has an ownership of
specific resources (e.g., pods, deployments) to which it is
applied. Consequently, one KAP instance can be managed
through direct or indirect associations with the APs and the
resources. This ownership and lifecycle are systematically
controlled leveraging the owners reference mechanism from
Kubernetes [62], where ownerReferences is specified in the
metadata field of the resource to register the corresponding
owner. It enables continuous tracking of the status changes
in the owned resource, such as deletions or modifications,
and notifies the owning KAP. Upon creation, a KAP is
automatically linked to related resources, including the AP
and the ownership relationships are adjusted to reflect the
latest status whenever it is updated. If a KAP is deleted, all
associated relationships with the resources and the APs are
also removed.

Conversely, if a resource associated with the KAP is
deleted or modified, the AP detects the change, revalidates
the current state of the resource, updates the ownership
status, and notifies the operator along with the relevant KAP
information. For instance, as illustrated in Figure 9, initially,
the KAP owns the AP, which in turn owns Pod 1 and Pod 2,
both labeled with app=webapp. If Pod 1’s label changes to
svc=storage, the AP releases its ownership of Pod 1 and
informs the operator, including the KAP details. The resource
whose ownership has changed is no longer managed by the
AP. Through this mechanism, KAP dynamically manages
the ownership relationships between resources and policies
within the cluster, ensuring accurate tracking of which KAPs
are involved with specific APs and resources.

FIGURE 9. Example of ownership release through ownership tracking:
Pod-A Owned by the AP (1) Has its label modified (2), Resulting in the
release of ownership of Pod-A (3).

FIGURE 10. Overview of test environments: KubeAegis and three
different adapters deployed on the master node.

VI. EVALUATION
This section demonstrates the effectiveness of our system
in managing unified security policies within a real-world
environment, with a focus on functionality, coverage, and
performance.

A. IMPLEMENTATION
We have implemented our system using a combination of
Go and Python to verify its feasibility and effectiveness.
KUBEAEGIS currently includes policy adapters for four
well-known open-source security systems: Cilium [29], Cal-
ico [30], KubeArmor [31], and Kyverno [34]. These adapters
enable KUBEAEGIS to manage the actual security policies
of these systems. Additionally, to support new adapters,
we implemented an API recommendation mechanism using
the SRoBERTa model [19]. This model embeds CRD field
descriptions and API descriptions that we provided, then
calculates cosine similarity to recommend appropriate APIs
for converting KAP into AP. In summary, to support the
design features described in Section IV-A, we implemented
the operator and four types of adapters, comprising about
10.9K lines of code.

B. TEST ENVIRONMENTS
This experimental environment was built on a server
equipped with an Intel Xeon Silver 4210R CPU, 256GB
RAM, and a 2TBHDD. AKubernetes cluster was established
using three Ubuntu 22.04 virtual machines (VMs). Figure 10
illustrates the container configuration within the cluster for
this experiment. One VM operates as the master node,
while the other two function as worker nodes. Especially,

160646 VOLUME 12, 2024

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

FIGURE 11. Results of KAP conversion and enforcement.

containerd [63] is used as the container runtime, and
communication between the containers is facilitated by the
Cilium overlay network. For testing, the Online Boutique [64]
microservice was used as the test cloud native application.
This e-commerce demo application provides functionalities
for users to browse products, add items to the shopping
cart, and complete purchases. The application comprises
11 independently deployed and managed services (i.e., pods).
Among the services, the load generator continuously sends
requests to simulate actual user shopping behavior, enabling
system load testing and performance evaluation. KUBEAEGIS

runs on the master node, with Cilium or Calico, KubeArmor,
and Kyverno systems, while the applications are distributed
across the two worker nodes.

C. FUNCTIONAL CORRECTNESS
1) BASIC POLICY CONVERSION
The most fundamental function of our system is to accurately
translate the KAP security policy to the target AP. To evaluate
this, a system security policy designed to prevent DNS
manipulation attacks is created as a KAP and then enforced,
as illustrated in Figure 11. This security policy disallows
access to the /etc/resolv.conf file for all processes
within the container. As shown in Figure 11(A), the policy is
enforced that restricts access to the /etc/resolv.conf
file of the app=cartservice pod. This policy is imme-
diately converted to the KubeArmor policy, as shown in
Figure 11(B), and enforced in the cluster. Before applying
this policy, the DNS configuration file could be freely
viewed using the cat /etc/resolv.conf command
in the cartservice pod, as depicted in Figure 11(C).
However, after the policy is applied, attempting to access
the file results in the ‘Permission denied’ message, as shown
in Figure 11(D). This demonstrates that the KAP was
successfully converted to the AP and enforced, confirming
that the policy effectively restricted access as intended.

FIGURE 12. Results of KAP validation scenarios: Valid (A) and
Misconfigured (B).

2) RESOURCE AND PROPERTY VALIDATION
In this evaluation, we assess the policy validation function
for resource and property targeting network security policies.
As shown in Figure 12, the app=checkoutservice pod
provides a service through port 5050/TCP, and two network
KAPs are prepared for testing based on this setup. One is
configured with the correct label, port, and protocol accord-
ing to the current environment, as shown in Figure 12(A),
while the other, shown in Figure 12(B), is configured with
a non-existent pod and incorrect properties.

The first case is for the resource validation that the KAP
will be applied to, so we tried to enforce a KAP policy on
a resource with a label that does not exist in the current
cluster due to a simple typo (i.e., not checkoutservice,
but checkoutservicer). However, since the corresponding
resource does not exist, the policy creation process is halted,
and the error information is promptly reported through the
log, as shown in Figure 12(C). Second, we verify that the
properties written in each policy are correctly configured
for the property validation. In this case, it checks whether
the port specified in the network policy is actually the
service port used by the pod. As shown in Figure 12(D),
our system accurately detected the misconfiguration (i.e.,
Incorrect-config.yaml) by identifying a port num-
ber that the resource is not servicing and provided the
correct feedback. As a result, we confirmed that KUBEAEGIS

accurately judges the validity of the policy resource, identifies
incorrect settings, and provides appropriate feedback.

3) OWNERSHIP TRACKING
Figure 13 illustrates how our system effectively operates with
centralized ownership tracking. First, we create a KAP called
kap-dns-manipulate (A) and track and manage the
KubeArmorPolicy (i.e., adapter policy, AP), which is derived
from the KAP (B). By setting the name and UID information
of the KAP in the metadata.ownerReferences field

VOLUME 12, 2024 160647

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

FIGURE 13. Results of ownership tracking linked by KAP.

of the AP, we confirm that the dependency on the KAP has
been properly established. Similarly, we can verify that the
resource to which the AP is applied has a dependency on the
AP, and that ownership is derived from theKAP.Additionally,
as shown in kap-dns-manipulate (A), when the user
queries the KAP using the provided command, all the APs
and their resources that have ownership in the cluster are
displayed at a glance. This ensures that when a KAP is
deleted or modified, the dependent APs are properly updated
or removed.

D. COVERAGE
1) POLICY RULE COVERAGE
Table 2 shows that the KAP provided by our system covers
a wide range of rules from a security perspective for each
network, system, and cluster. First, in terms of the network
policy, the KAP supports traffic control rules based on labels,
CIDR, port, protocol, HTTP, and FQDN in L3, L4, and L7
respectively. Therefore, considering Cilium, which supports
L3, L4, and L7 rules, and Calico, which supports rules except
for FQDN, KAP can control both network policy engines
as the adapters. Second, for the system security, the KAP
can cover KubeArmor and Tetragon, which are representative
system security engines in the cloud-native environments,
because it supports the detailed rules that block or trace
file access, process execution, network and system calls.
Lastly, the KAP provides essential security rules for the
cluster, addressing functions such as resource modification
and image verification, supported by Kyverno. Specifically,
the KAP fully supports functionality for mutation, validation,
and image verification. However, it only partially supports
generate and cleanup functions, as these involve numerous
features that are not directly relevant to security. In summary,
the KAP has the ability to manage and apply various security
rules in an integrated manner across networks, systems,
and clusters. This enables more efficient and consistent

FIGURE 14. Comparison of delay times between direct enforcement and
KubeAegis.

security management by integrating the functions provided
by existing individual policy engines.

E. PERFORMANCE
1) POLICY CONVERSION DELAY
Since our system includes an additional layer to manage
various security enforcement systems, there is an inevitable
delay in converting the KAP compared to directly enforcing
policies for each adapter. To evaluate the extent of this delay,
we compared the delay time between directly applying APs
and using our system. We measured the time in milliseconds
taken to input and apply files where each security policy was
defined. This process was repeated 100 times using a shell
script, and the average delay time was derived by analyzing
the collected delay time data. The experimental results are
shown in Figure 14. For the network policies (Cilium), the
average delay time was 175.47 milliseconds when applied
directly and 188.44 milliseconds when enforced through our
system, representing an additional delay of approximately
7.4%. Using the same evaluation method, the system policies
(KubeArmor) showed an average delay time increase of
approximately 10%, while the cluster policies (Kyverno)
indicated an increase of approximately 3.5%.

Overall, an increase of 7% to 10% in delay time was
observed when using KUBEAEGIS, but the impact on the user
experience was minimal. These results suggest that policy
enforcement through our system incurs a slight increase in
delay time compared to direct application methods, but it
is within an acceptable range considering the advantages of
ease of management, consistency of policy application, and
reduction of errors.

2) API RECOMMENDATION PERFORMANCE
Our system provides a conversion API pool that translates
KAPs to each AP to support the new security policy
enforcement system. As shown in Table 3, a total of 67 APIs
are available for networks, systems, and clusters. The table
displays the number of APIs used and the lines of code
added to create each adapter. The basic adapter code
that communicates with the the operator is automatically
generated (328 lines) using the kubeaegis-sample template.
Consequently, the user only needs to modify the converter
that translates KAPs to the corresponding APs. For instance,

160648 VOLUME 12, 2024

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

TABLE 2. Summary of security policy coverage in three categories (Network, System and Cluster) by KubeAegis KAP. ⃝ means fully supported,
and △ means partially supported.

TABLE 3. Summary of adapter generation overheads and API
Recommendation Metrics: Accuracy, Precision, Recall, and F1 Score.

in the case of the Cilium adapter, 23 APIs were recommended
from the API pool based on the Cilium CRD analysis results,
and 50 lines of code were added to the basic template,
resulting in a total of 393 lines of code, which means the
adapter was created with minimal effort. In conclusion, users
only need to add the necessary conversion code to the basic
adapter template, thereby saving time and effort required for
writing rule codes.

In addition, Table 3 presents the results of evaluating the
API recommendation performance of our system based on the
accuracy, precision, recall, and F1 score indices. This evalu-
ation determines whether the API with the highest similarity
for each rule is used as the actual conversion API. For Cilium,
the system demonstrates a high precision of approximately
95% and a relatively high recall, indicating that a significant
portion of the actual APIs match the recommended APIs.
For the Calico and KubeArmor adapters, the results showed
relatively lower values compared to Cilium, but they are still
at a reasonable level. Similarly, for Tetragon, while most
of the actual APIs were recommended, the precision was
slightly lower due to some incorrectly recommended values.
Finally, the Kyverno adapter exhibited high performance
indices, showing that most of the recommended APIs were
accurate and included all actual APIs. As a result, we can
confirm that the system can recommend APIs with mostly
high accuracy for various CRDs.

VII. LIMITATION AND DISCUSSION
Like other research works, our system has some limitations
and requires improvements to implement more intelligent
and comprehensive security policy management. In this
section, we describe the limitations of the current design
and propose enhancements to improve the capabilities of
KUBEAEGIS in various aspects of security policymanagement
and enforcement.

A. AUTOMATIC POLICY GENERATION WITH LLM
KUBEAEGIS currently requires users to create a KAP (unified
security policy) following a specific format. Although the
KAP structure is intuitive and simple in YAML format,
users still need to overcome a learning curve to create such
security policy. Therefore, there is room for improvement
in automatically reflecting the intentions of the users
in a more natural manner. To this end, we can utilize
the Large Language Model (LLM) [65], which has been
actively studied recently. Specifically, we plan to introduce
a mechanism that analyzes the user’s security intentions
described in unstructured natural language and automatically
converts them into an actual policy for our system. This
approach will enable users to manage complex security
policies by expressing their intentions in natural language
without needing to learn a new policy language. Furthermore,
we can consider a methodology that automatically infers
and generates security policies by analyzing the resource
configuration files deployed in the target cluster, eliminating
the need for users to explicitly write their intentions.

B. SUPPORTING MULTI-CLUSTER/CLOUD
ENVIRONMENTS
Our system currently operates in a single cluster. However,
due to reasons such as availability and security, the adoption
of multi-cluster setups, the integration of heterogeneous
cloud platforms (i.e., multi-cloud), and hybrid clouds is
increasing. Consequently, the complexity of security policy
management is significantly rising, leading to numerous
misconfiguration incidents. Therefore, a methodology that
understands the challenges of security policy management in
such complex environments and automatically maintains and
manages policy consistency is needed. To address this, our
system plans to evolve into a more comprehensive centralized
policy management system. This will involve deploying
lightweight agents in each distributed heterogeneous cluster
and cloud platform to collect the context of the security
policies.

C. SEMANTIC CONFLICT RESOLUTION
Although our system provides the resource and property
validation mechanisms to minimize the conflicts with the
current state of the cluster to which the security policy is
applied, it has limitations in handling the semantic conflicts

VOLUME 12, 2024 160649

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

between the policies. For example, a network security policy
may allow communication between the specific services,
while a system security policy may block the protocol and
port number used by such service at the system call level.
In such situations where different security policies conflict,
one policy may nullify the intent of another, resulting in a
security vulnerability. To address this issue, several advanced
analysis algorithms can be employed. For instance, in the case
of our system, we plan to propose a methodology that detects
conflicts by constructing a graph with each service point or
network information as a node and analyzing the reachability
between the nodes. Additionally, we intend to introduce a
feature that automatically assigns priorities and enforces the
most critical policies first in the event of a conflict as a post-
response mechanism.

VIII. CONCLUSION
In this paper, we propose KUBEAEGIS, a novel security
policy framework tailored for cloud-native environments.
Our system reduces the complexity of heterogeneous policy
management by unifying configuration methods and pol-
icy languages across various security tools. Concurrently,
it offers flexible scalability for new security systems
through API recommendation mechanisms. Notably, the
proposed policy pre-verification and automatic resource
tracking functions prevent failures caused by incorrect policy
enforcement. This paper is the first to highlight the necessity
of integrated policy management and verification, issues
that have not been thoroughly studied before. KUBEAEGIS

offers a valuable reference implementation applicable to
newer security systems, and we anticipate it will enhance
both the convenience and security of container environment
management.

APPENDIX
KUBEAEGIS POLICY (KAP) SPECIFICATION
KUBEAEGIS is a unified security policy designed to support
consistent security measures within a cluster, satisfying
system, network, and cluster-level security requirements.
Listing introduces the complete schema of the KubeAegis
Policy(KAP):

apiVersion: security.kubeaegis.com/v1
kind: KubeAegisPolicy
metadata:

name: [policy name]
namespace: [namespace name]

spec:
enableReport: [true|false]
requestRule:

- type: [network|system|cluster]
selector:

kind: [pod|namespace
|service|deployment]

namespace: [namespace name]
matchLabels:
[key1]: [value1]
cel:
- [cel expression]

rule:
action: [Allow|Block|Log|

|Trace|Enforce|Audit]
from:
- kind: [endpoint|entities|namespace|

|serviceAccounts|cidr|port
|protocol|fqdns]

labels:
- [key1]: [value1]

args: [<arg1>, <arg2>, \ldots]
port: [port number]
protocol: [TCP|UDP|ICMP]

to:
- kind: [endpoint|namespace|

|serviceAccounts|entities
|cidr|port|protocol|fqdns]

labels:
- [key1]: [value1]

args: [<arg1>, <arg2>, \ldots]
port: [port number]
protocol: [TCP|UDP|ICMP]

actionPoint:
- subType: [http|file|process|network|

|syscalls|capabilities|
|generate|mutate|validate|
|verifyImage|cleanup]

resource:
path: [resource path]
pattern: [pattern]
kind: [resource kind]
filter:

- condition: [any|all]
key: [filter key]
operator: [Equals|In

|NotIn|Exists]
value: [filter value]

details:
- [key1]: [value1]
- [key2]: [value2]

status:
status: [policy enforcement status]
lastUpdated: [last update time]
numberOfAPs: [number]
listOfAPs: [<name1>, <name2>, \ldots]
numberOfTargets: [number]
listOfTargets: [<name1>, <name2>, \ldots]

The start of a KAP defines basic information such
as apiVersion, kind, and metadata. apiVersion
and kind are the same in all cases, and metadata
contains the name of the policy and namespace. Next, the
enableReport in the spec specifies whether the policy
should generate reports.

Then, requestRule consists of selector that spec-
ifies the targets to which the policy applies, the type of
policy (network, system, cluster), and the rule to request.
requestRule is designed to define in detail which policy
is being requested and is able to specify multiple request
rules simultaneously. selector specifies the targets to
which the policy will be applied based on a label via
selector.matchLable, and if necessary, you can use
Common Expression Language (CEL) in selector.cel
to define more complex selection criteria. In addition,
selector.kind enables specifying resource types (e.g.
Pod, Namespace, Service, Deployment, etc.) to select targets.
If you only set resource.kind and do not specify a label,
the policy applies to all objects of that resource type.
rule consists of an action (Allow, Block, Log,

Trace, Enforce, Audit), traffic direction (from, to), and

160650 VOLUME 12, 2024

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

actionPoint that defines the specific action the policy
will take. actionPoint defines what the policy will do
and can be broken down into various subtypes at the network,
system, and cluster levels. Each subtype’s details are
simply defined in actionPoint.resource. Network-
level KAPs use to and from to define the direction of
communication between network entities. You can specify
resources here such as endpoint, entity, FQDN, etc. and
include labels or additional arguments for the resource as
needed. Additionally, you can specify a port number (port)
and protocol, and by specifying http in subType,
you can specify methods in resource.details subset:
[GET, POST] to define a detailed request. At system level,
subtype such as File, Process, Network, Capabilities,
and Syscalls control interactions with system resources. For
example, in File, you can make a request by defining a
file path(resource.path) and writing something like
‘readOnly: true’ in resource.details. Finally, at the
cluster level, subtype like generate, mutate, validate,
verifyImage, and cleanup enable you to manage cluster-wide
resources and policies. For instance, if you select mutate,
you can make a request by specifying the resource you want
to modify in resource.kind and writing something like
label: app = nginx in resource.details.
Lastly, status contains the status and last update

information for the policy. This enables tracking of the
policy’s enforcement status and change history, which is
useful for determining if the policy is current, enforced,
or needs to be updated. The numberOfAPs shows the
number of adapter policies (APs) associated with the KAP,
and the listOfAPs shows a list of the names of the
adapter policies (APs). In addition, numberOfTargets
and listOfTargets indicate the number and list of target
resources to which the policy is currently applied.

REFERENCES
[1] CloudZero. (2024). The Cloud Cost Playbook—101 Shocking

Cloud Computing Statistics (Updated 2024). [Online]. Available:
https://www.cloudzero.com/blog/cloud-computing-statistics/

[2] TechPriceCrunch. (2024). 26 Relevant Cloud Adoption Statistics in 2024.
[Online]. Available: https://techpricecrunch.com/blog/cloud-adoption-
statistics/

[3] R. Hat. (2024). Kubernetes Adoption, Security, and Market Trends
Report 2024. [Online]. Available: https://www.redhat.com/en/
resources/kubernetes-adoption-security-market-trends-overview

[4] C. Software. (2024). 2024 Cloud Security Report. [Online]. Available:
https://engage.checkpoint.com/2024-cloud-security-report

[5] S. Khan, I. Kabanov, Y. Hua, and S. Madnick, ‘‘A systematic analysis of
the capital one data breach: Critical lessons learned,’’ ACM Trans. Privacy
Secur., vol. 26, no. 1, pp. 1–29, Feb. 2023.

[6] B. Jabiyev, O. Mirzaei, A. Kharraz, and E. Kirda, ‘‘Preventing server-side
request forgery attacks,’’ in Proc. 36th Annu. ACM Symp. Appl. Comput.,
Mar. 2021, pp. 1626–1635.

[7] (2024). Amazon Web Services. [Online]. Available: https://aws.
amazon.com/?nc1=h_ls

[8] K. Jayasinghe and G. Poravi, ‘‘A survey of attack instances of cryptojack-
ing targeting cloud infrastructure,’’ in Proc. 2nd Asia–Pacific Inf. Technol.
Conf., Jan. 2020, pp. 100–107.

[9] Microsoft. (2024). Microsoft Azure: Cloud Computing Services. [Online].
Available: https://azure.microsoft.com/en-us

[10] MITRE. (2023). CVE-2023-23383. [Online]. Available: https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-23383

[11] G. E. Rodríguez, J. G. Torres, P. Flores, and D. E. Benavides, ‘‘Cross-
site scripting (XSS) attacks and mitigation: A survey,’’ Comput. Netw.,
vol. 166, Jan. 2020, Art. no. 106960.

[12] Kubernetes. (2024).Kubernetes. [Online]. Available: https://kubernetes.io/
[13] J. Devanesan. (2022). Automation Key to Keeping Applications

Secure in the Cloud-Native Era. [Online]. Available: https:
//techhq.com/2022/04/automation-key-to-keeping-applications-secure-in-
the-cloud-native-era/

[14] S. Xu, Q. Zhou, H.Huang, X. Jia, H. Du, Y. Chen, andY.Xie, ‘‘Log2Policy:
An approach to generate fine-grained access control rules formicroservices
from scratch,’’ in Proc. Annu. Comput. Secur. Appl. Conf., Dec. 2023,
pp. 229–240.

[15] S. Zhang, S. Li, P. Chen, S. Wang, and C. Zhao, ‘‘Generating network
security defense strategy based on cyber threat intelligence knowledge
graph,’’ in Proc. Int. Conf. Emerg. Netw. Archit. Technol. Cham,
Switzerland: Springer, 2022, pp. 507–519.

[16] X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen, ‘‘Automatic policy
generation for inter-service access control of microservices,’’ in Proc. 30th
USENIX Secur. Symp. (USENIX Secur.), 2021, pp. 3971–3988.

[17] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, ‘‘Confine:
Automated system call policy generation for container attack surface
reduction,’’ in Proc. 23rd Int. Symp. Res. Attacks, Intrusions Defenses
(RAID), 2020, pp. 443–458.

[18] Y. Li, C. Huang, L. Yuan, Y. Ding, and H. Cheng, ‘‘ASPGen: An automatic
security policy generating framework for AppArmor,’’ in Proc. IEEE Int.
Conf Parallel Distrib. Process. Appl., Big Data Cloud Comput., Sustain.
Comput. Commun., Social Comput. Netw. (ISPA/BDCloud/SocialCom/-
SustainCom), Dec. 2020, pp. 392–400.

[19] H. Choi, J. Kim, S. Joe, and Y. Gwon, ‘‘Evaluation of BERT and Albert
sentence embedding performance on downstream NLP tasks,’’ in Proc.
25th Int. Conf. Pattern Recognit. (ICPR), Jan. 2021, pp. 5482–5487.

[20] S.Minaee, T.Mikolov, N. Nikzad,M. Chenaghlu, R. Socher, X. Amatriain,
and J. Gao, ‘‘Large language models: A survey,’’ 2024, arXiv:2402.06196.

[21] S.-Y. Huang, C.-Y. Chen, J.-Y. Chen, and H.-C. Chao, ‘‘A survey on
resource management for cloud native mobile computing: Opportunities
and challenges,’’ Symmetry, vol. 15, no. 2, p. 538, Feb. 2023.

[22] M. Chauhan and S. Shiaeles, ‘‘An analysis of cloud security frameworks,
problems and proposed solutions,’’ Network, vol. 3, no. 3, pp. 422–450,
Sep. 2023.

[23] T. Theodoropoulos, L. Rosa, C. Benzaid, P. Gray, E. Marin, A. Makris,
L. Cordeiro, F. Diego, P. Sorokin, M. D. Girolamo, P. Barone, T. Taleb, and
K. Tserpes, ‘‘Security in cloud-native services: A survey,’’ J. Cybersecurity
Privacy, vol. 3, no. 4, pp. 758–793, Oct. 2023.

[24] A. Y. Wong, E. G. Chekole, M. Ochoa, and J. Zhou, ‘‘Threat modeling and
security analysis of containers: A survey,’’ 2021, arXiv:2111.11475.

[25] Y.Abgaz, A.McCarren, P. Elger, D. Solan, N. Lapuz,M. Bivol, G. Jackson,
M. Yilmaz, J. Buckley, and P. Clarke, ‘‘Decomposition of monolith
applications into microservices architectures: A systematic review,’’ IEEE
Trans. Softw. Eng., vol. 49, no. 8, pp. 4213–4242, Aug. 2023.

[26] Kubernetes. (2023). Controller Pattern. [Online]. Available: https:
//kubernetes.io/docs/concepts/architecture/controller/

[27] Kubernetes. (2024). Kubernets—Operator Pattern. [Online]. Available:
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

[28] Kubernetes. (2024). Kubernetes—Custom Resources. [Online].
Available: https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/

[29] Cilium. (2024). Cilium—EBPF-Based Networking, Observability, Secu-
rity. [Online]. Available: https://cilium.io/

[30] Tigera. (2024). Project Calico. [Online]. Available: https://www.
tigera.io/project-calico/

[31] KubeArmor. (2024). Kubearmor—Runtime Security Enforcement.
[Online]. Available: https://kubearmor.io/

[32] T. F. Project. (2024). Falco. [Online]. Available: https://falco.org/
[33] C. Tetragon. (2024). Tetragon—EBPF-Based Security Observability and

Runtime Enforcement. [Online]. Available: https://tetragon.io/
[34] Kyverno. (2024). Kyverno. [Online]. Available: https://kyverno.io/
[35] Kubewarden. (2024). Kubewarden—Kubernetes Dynamic Admission at

Your Fingertips. [Online]. Available: https://www.kubewarden.io/
[36] Cilium. (2024). Cilium—Overview of Network Policy. [Online]. Available:

https://docs.cilium.io/en/latest/security/policy
[37] Calico. (2024). Calico Policy. [Online]. Available: https://docs.tigera.

io/calico/latest/network-policy/get-started/calico-policy/

VOLUME 12, 2024 160651

B. Kim, S. Lee: KUBEAEGIS: A Unified Security Policy Management Framework

[38] EBPF. (2024). EBPF—Dynamically Programs the Kernel for Efficient
Networking, Observability, Tracing, and Security. [Online]. Available:
https://ebpf.io/

[39] KubeArmor. (2024). Kubearmor-Policy SPEC for Containers. [Online].
Available: https://docs.kubearmor.io/kubearmor/documentation/security_
policy_specification

[40] T. L. K. Archives. (2024). Linux Security Module Usage. [Online].
Available: https://www.kernel.org/doc/html/v4.19/admin-guide/
LSM/index.html

[41] Kyverno. (2024). Policies | Kyverno. [Online]. Available: https://
kyverno.io/policies/

[42] X. Wang, H. He, Y. Li, C. Li, X. Hou, J. Wang, Q. Chen, J. Leng, M. Guo,
and L.Wang, ‘‘Not all resources are visible: Exploiting fragmented shadow
resources in shared-state scheduler architecture,’’ in Proc. ACM Symp.
Cloud Comput., Oct. 2023, pp. 109–124.

[43] Z. Wang, S. Zhu, J. Li, W. Jiang, K. K. Ramakrishnan, Y. Zheng, M. Yan,
X. Zhang, and A. X. Liu, ‘‘DeepScaling: Microservices autoscaling for
stable CPU utilization in large scale cloud systems,’’ in Proc. 13th Symp.
Cloud Comput., Nov. 2022, pp. 16–30.

[44] Y. Wu, H. Wu, D. Luo, Y. Xu, Y. Hu, W. Zhang, and H. Zhong, ‘‘Serving
unseen deep learning models with near-optimal configurations: A fast
adaptive search approach,’’ in Proc. 13th Symp. Cloud Comput., vol. 1,
Nov. 2022, pp. 461–476.

[45] M. You, J. Nam, M. Seo, and S. Shin, ‘‘HELIOS: Hardware-assisted
high-performance security extension for cloud networking,’’ in Proc. ACM
Symp. Cloud Comput., Oct. 2023, pp. 486–501.

[46] M. V. Le, S. Ahmed, D. Williams, and H. Jamjoom, ‘‘Securing container-
based clouds with syscall-aware scheduling,’’ in Proc. ACM Asia Conf.
Comput. Commun. Secur., vol. 9, Jul. 2023, pp. 812–826.

[47] S. Y. Lim, B. Stelea, X. Han, and T. Pasquier, ‘‘Secure namespaced
kernel audit for containers,’’ in Proc. ACM Symp. Cloud Comput., vol. 13,
Nov. 2021, pp. 518–532.

[48] S. Song, S. Suneja, M. V. Le, and B. Tak, ‘‘On the value of sequence-based
system call filtering for container security,’’ in Proc. IEEE 16th Int. Conf.
Cloud Comput. (CLOUD), Jul. 2023, pp. 296–307.

[49] A. Van’t Hof and J. Nieh, ‘‘BlackBox: A container security monitor
for protecting containers on untrusted operating systems,’’ in Proc.
16th USENIX Symp. Operating Syst. Design Implement. (OSDI), 2022,
pp. 683–700.

[50] S. Li, W. Wang, J. Yang, G. Chen, and D. Lu, ‘‘Golgi: Performance-aware,
resource-efficient function scheduling for serverless computing,’’ in Proc.
ACM Symp. Cloud Comput., Oct. 2023, pp. 32–47.

[51] A. S. Jacobs, R. J. Pfitscher, R. H. Ribeiro, R. A. Ferreira, L. Z. Granville,
W.Willinger, and S. G. Rao, ‘‘Hey, lumi! using natural language for intent-
based network management,’’ in Proc. Annu. Tech. Conf. (USENIX ATC),
2021, pp. 625–639.

[52] Otterize. (2024). Otterize—Automate Workload IAM. [Online]. Available:
https://otterize.com/

[53] Kafka. (2024). Apache Kafka. [Online]. Available: https://
kafka.apache.org/

[54] (2024). Open Policy Agent. [Online]. Available: https://www.
openpolicyagent.org/

[55] (2024). Gatekeeper—Policy Controller for Kubernetes. [Online]. Avail-
able: https://github.com/open-policy-agent/gatekeeper

[56] H. Kang and S. Shin, ‘‘Verikube: Automatic and efficient verification for
container network policies,’’ IEICE Trans. Inf. Syst., vol. E105.D, no. 12,
pp. 2131–2134, 2022.

[57] Y. Li, X. Hu, C. Jia, K. Wang, and J. Li, ‘‘Kano: Efficient cloud native
network policy verification,’’ IEEE Trans. Netw. Service Manage., vol. 20,
no. 3, pp. 3747–3764, Sep. 2022.

[58] Y. Li, C. Jia, X. Hu, and J. Li, ‘‘Kano: Efficient container network
policy verification,’’ inProc. IEEE Symp. High-Performance Interconnects
(HOTI), Aug. 2020, pp. 63–70.

[59] A. Rogers, O. Kovaleva, and A. Rumshisky, ‘‘A primer in BERTology:
What we know about how BERT works,’’ Trans. Assoc. Comput.
Linguistics, vol. 8, pp. 842–866, Dec. 2020.

[60] Wikipedia. (2024). Wikipedia, Cosine Similarity. [Online]. Available:
https://en.wikipedia.org/wiki/Cosine_similarity

[61] gRPC. (2024). gRPC. [Online]. Available: https://grpc.io/
[62] (2022). K8sowners. [Online]. Available: https://kubernetes.

io/docs/concepts/overview/working-with-objects/owners-dependents/
[63] Containerd. (2024). Containerd—An Open and Reliable Container Run-

time. [Online]. Available: https://github.com/containerd/containerd
[64] OnlineBoutique. (2024). Online Boutique. [Online]. Available:

https://github.com/GoogleCloudPlatform/microservices-demo
[65] M. U. Hadi, R. Qureshi, A. Shah, M. Irfan, A. Zafar, M. B. Shaikh,

N. Akhtar, J. Wu, and S. Mirjalili, ‘‘A survey on large language models:
Applications, challenges, limitations, and practical usage,’’ TechRxiv,
Jul. 2023, doi: 10.36227/techrxiv.23589741.v1.

BOM KIM is currently pursuing the M.S.
degree with the Department of Computer Science
and Engineering, Incheon National University.
Her research interests include the automation of
intent-driven security policy generation and vali-
dation for advanced cloud-native environments.

SEUNGSOO LEE received the B.S. degree in
computer science from Soongsil University and
theM.S. and Ph.D. degrees in information security
from KAIST, in 2020. He is currently an Assis-
tant Professor with the Department of Computer
Science and Engineering, Incheon National Uni-
versity. His research interests include developing
secure and robust cloud/network systems against
potential threats.

160652 VOLUME 12, 2024

http://dx.doi.org/10.36227/techrxiv.23589741.v1

