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Ambusher: Exploring the Security of Distributed
SDN Controllers Through Protocol State Fuzzing

Jinwoo Kim , Minjae Seo , Eduard Marin , Seungsoo Lee , Jaehyun Nam , and Seungwon Shin

Abstract— Distributed SDN (Software-Defined Networking)
controllers have rapidly become an integral element of Wide Area
Networks (WAN), particularly within SD-WAN, providing scala-
bility and fault-tolerance for expansive network infrastructures.
However, the architecture of these controllers introduces new
potential attack surfaces that have thus far received inadequate
attention. In response to these concerns, we introduce Ambusher,
a testing tool designed to discover vulnerabilities within protocols
used in distributed SDN controllers. Ambusher achieves this by
leveraging protocol state fuzzing, which systematically finds attack
scenarios based on an inferred state machine. Since learning
states from a cluster is complicated, Ambusher proposes a novel
methodology that extracts a single and relatively simple state
machine, achieving efficient state-based fuzzing. Our evaluation
of Ambusher, conducted on a real SD-WAN deployment spanning
two campus networks and one enterprise network, illustrates its
ability to uncover 6 potential vulnerabilities in the widely used
distributed controller platform.

Index Terms— Software-defined networking (SDN), software-
defined WAN (SD-WAN), protocol state fuzzing, distributed
systems.

I. INTRODUCTION

OVER the last few years, Software-Defined Networking
(SDN) has gained significant attention from academia

and industry, and it is currently being used in data center, telco,
and enterprise environments [1], [2], [3]. The SDN paradigm
advocates for decoupling the network’s intelligence (i.e., con-
trol plane) from the data forwarding functionality of network
devices (i.e., data plane), placing the network’s intelligence
into a centralized SDN controller whose functionalities can be
extended via SDN applications (i.e., application plane), and
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using a set of standard application programming interfaces
(APIs)—commonly known as Northbound and Southbound
interfaces—to facilitate communication between the planes.
With this architecture, SDN provides considerable benefits to
network operators including centralized network control and
management as well as greater network programmability.

In the early days of SDN, it was thought that the SDN
controller would be a single point of failure that could bring
serious issues in terms of reliability, security, latency or
scalability [4], [5], [6], [7]. However, besides the Northbound
and Southbound interfaces, SDN architecture also contains
East-West interfaces to support communication between
controller instances. Leveraging these interfaces, network
operators often rely on a cluster of SDN controllers (i.e.,
one main controller and various replicas of it) to develop
the control plane functionalities within the network. This
way, if the main SDN controller fails or crashes, any of
the replicas can immediately take over, leading to more
robust and reliable networks. Likewise, to reduce latency and
achieve better scalability, network operators typically divide
large networks into various sub-networks, each managed by a
different SDN controller. In such a case, the SDN controllers
can even be located far away from each other, forming
so-called Software-Defined Wide Area Networks (SD-WAN).
Two prominent examples of SD-WANs are Google’s B4 [1],
[2] and Microsoft’s SWAN [8], which are used to interconnect
their data centers distributed across the globe.

Despite its significant advantages, SDN brings new secu-
rity challenges and attack vectors. Several researchers have
demonstrated that adversaries can launch attacks against the
application [9], [10], [11], [12], control [6], [13], [14], [15],
[16] and data planes [17], [18]. From the attacks proposed so
far, those that target the controller are the most dangerous,
given that the controller can be seen as the network’s brain.
While there exists a wide range of attacks against SDN
controllers [6], [12], [19], [20], [21], the proposed attacks so
far only consider networks with a single controller and are
launched via the Northbound or Southbound interfaces.

Unfortunately, no work has yet investigated the security of
the protocols used in the East-West interfaces for a cluster of
SDN controllers to communicate. As East-West protocols are
used to perform critical functionalities within the controllers’
cluster, such as choosing the leader SDN controller, selecting
the controller that controls each networking device, or enforc-
ing the network’s policy, their security is crucial for the
correct functioning of the network. If adversaries discover and
exploit vulnerabilities in any East-West protocols, they could
gain control of the controllers’ cluster and execute attacks
to disrupt the network, obtain sensitive network information,
or poison the network’s state. To make matters worse, the
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consequences of such attacks can be more significant than
those executed against a single SDN controller. For example,
in the SD-WAN case, adversaries located in one sub-network
could perform remote attacks against other sub-networks far
away from them [22], [23], [24].

As such, the security threats and risks in SDN networks
with multiple controllers remain unexplored to date. In this
regard, thoroughly investigating security issues in East-West
interfaces is a timely and challenging problem that can help
network operators build a cluster resistant to security attacks.
While many tools [12], [21], [25], [26], [27], [28], [29], [30],
[31], [32], [33] have been proposed for detecting attacks
within SDN environments, they are not suited for distributed
SDN for various reasons. First, as modern distributed
controllers involve diverse East-West protocols, existing tools
require significant efforts to uncover vulnerabilities in such
complex scenarios. Second, unlike the SDN Southbound
interface (i.e., OpenFlow [34]), protocols used in East-West
interfaces involve complicated states as many nodes within
a cluster exchange multiple types of messages. However,
existing tools cannot generate adequate test cases as they
are not aware of such states of a cluster. While several
tools [21], [28], [31], [33] utilize a state machine for fuzzing,
it is manually constructed, which is challenging to apply in
distributed controllers.

Motivated by this problem, in this paper, we design and
implement Ambusher, which conducts protocol state fuzzing
for distributed SDN controllers. Protocol state fuzzing [35],
[36] is a method that infers a target system’s state machine and
leverages it to identify unknown vulnerabilities or abnormal
cases effectively. To apply this technique in a distributed
controller environment with complex states, we propose a
node-to-cluster model that simplifies the learning process by
treating a cluster as a single entity. Additionally, we introduce
a fuzzing algorithm that utilizes the inferred state machine
to generate acceptable message sequences and mutate them
to uncover potential attack scenarios. We verified the feasi-
bility of Ambusher by testing it on ONOS [37], a popular
distributed SDN controller. Our evaluation, conducted on an
SD-WAN testbed—which spans two campus networks and one
enterprise network with an ONOS cluster—revealed 6 real
vulnerabilities. We reported these disclosed vulnerabilities
to the corresponding vendor and obtained CVEs (Common
Vulnerability Exposures).

A. Contributions
Our contributions are summarized as follows:
• We propose a learning methodology to extract a single

and relatively simple protocol state machine from a
distributed SDN cluster whose state machine is unknown.

• We design and implement Ambusher that conducts
state-aware fuzzing by systematically producing message
sequences from an inferred state machine to discover
valid attacks.

• We evaluate Ambusher in an ONOS SDN cluster built
upon an SD-WAN testbed and disclose 6 potential vul-
nerabilities.

• To the best of our knowledge, we are the first to inves-
tigate the security of the protocols being used in the
East-West interfaces in distributed SDN controllers.

Fig. 1. Distributed SDN controllers deployed in geographically different
areas for building SD-WAN.

II. BACKGROUND

In this section, we provide the necessary context to under-
stand the architecture of an SDN cluster comprising multiple
controllers.

A. Distributed SDN Controllers
Distributed SDN controllers were initially introduced within

a single network to overcome limitations associated with a
single controller, which was prone to a single point of failure
and scalability challenges. The solution involves deploying
multiple controller replicas, referred to as nodes, which share
states to form a cluster. This cluster ensures the continuous
operation of the control plane even in the event of a failure.
Furthermore, distributing control-plane workloads across these
nodes enhances overall performance and scalability. Well-
established SDN controllers widely adopted in enterprise and
telecommunication networks, such as ONOS [38] and Open-
Daylight [39], adhere to this distributed architecture.

Meanwhile, a cluster can be employed across multiple
networks situated in geographically diverse areas, a concept
known as Software-Defined Wide Area Networks (SD-WAN),
widely embraced by major vendors such as Google and
Microsoft [1], [2], [8]. Unlike the single network scenario,
in SD-WAN, multiple nodes are strategically deployed to
different physical locations. Each controller manages its net-
work while synchronizing states to construct a logically
centralized view. This configuration facilitates the seamless
implementation of traffic engineering and optimization across
physically distant areas, addressing a well-recognized chal-
lenge in WAN [40]. Fig. 1 provides an illustrative example of
such a cluster deployment.

B. Cluster Internal Architecture
Fig. 2 illustrates a general architecture of an SDN cluster.

It consists of the following four main components, namely:
1 distributed storage for managing global network states,
2 leadership engine for electing the cluster’s leader, 3 mem-
bership engine for periodically checking the aliveness of
cluster nodes, and 4 mastership engine for determining which
controller manages the network devices (e.g., switches) within
a given network segment. In what follows, we elaborate on
how each of the previous building blocks within SDN clusters
works.

1) Distributed Storage: One of the key goals of any SDN
cluster is to maintain a consistent storage view among the
cluster nodes [1], [37], [41]. For this, nodes must synchronize
their storage with other nodes every time a new event (e.g.,
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Fig. 2. A general architecture of distributed SDN controllers.

a change in the topology) occurs within their network segment.
The way this is done is specified in consistency policies and
depends on the type of event. For example, suppose control-
plane events, such as those involving leadership/mastership
within the SDN cluster, are detected. In that case, nodes must
immediately notify the rest of the nodes, ensuring strong
consistency. On the contrary, other events, such as those
triggered by network devices within a network segment, can
be loosely synchronized, providing eventual consistency.

2) Leadership Engine: In any SDN cluster, there is always
a node that acts as a leader for a given time duration, while
the rest of the cluster nodes are known as followers. During
the leader election, all cluster nodes compete to be selected
as the leader; as this procedure occurs periodically, the role
of the leader can change over time. The leader node is
in charge of replicating all network events to the follower
nodes and keeping track of any changes produced in the
storage of any of the followers. Instead, follower nodes only
receive replicated states from the leader node, thus serving
a backup role. Raft [42] is one of the most widely used
algorithms for choosing a cluster leader. Its simplicity makes
popular distributed controllers employ Raft dominantly (e.g.,
ONOS [37], OpenDaylight [43]).

3) Membership Engine: Keeping nodes informed about the
other nodes’ status is crucial to avoid Byzantine failures in
distributed systems [44]. To that end, nodes periodically check
the aliveness of the other nodes by sending heartbeat messages
to them. To carry out this task without introducing a significant
overhead, one can employ an advanced probing solution like
the one used by the SWIM or heartbeat protocols [45]. The
primary objective driving these protocols is to enable each
node to periodically select a subset of other nodes within the
system, either randomly or based on a specified heuristic, for
monitoring purposes. For example, in Fig. 3, the source node
first directly sends a ProbeRequest message to the destination
node. If the source node does not receive a ProbeResponse
within a certain heartbeat threshold, then the source node asks
k number of nodes to probe the destination node indirectly.

4) Mastership Engine: The mastership engine designates
the node that controls network devices like switches. Through
a controller-specific mastership election mechanism, each net-
work device is assigned a unique master node. This designated
node holds write permissions, enabling it to modify the for-
warding rules of the switch using a Southbound protocol like
OpenFlow [34]. In contrast, the remaining nodes are confined
to read-only access. Should a master node encounter a failure,
the mastership is transferred to one of the slave nodes through

Fig. 3. A sequence diagram of SWIM protocol [46].

a re-election mechanism, dependent on the specific controller’s
protocol [47], [48].

III. PROBLEM STATEMENT

In this section, we first motivate the need to design a new
testing framework for a cluster of SDN controllers. Next,
we outline the main technical challenges and introduce our
approach to identify potential vulnerabilities in the protocols
being used in the East-West interfaces.

A. Motivation
So far, several testing tools have been proposed to sys-

tematically test SDN systems for attacks originating from
the Northbound and Southbound interfaces. For example,
Lee et al. introduced DELTA [28], a framework based on
black-box fuzzing for automatically discovering vulnerabilities
in the Northbound and Southbound interfaces (i.e., OpenFlow)
of SDN controllers under different SDN deployments and
threat models. DELTA randomizes sequences of APIs or Open-
Flow packets before sending them to the controller and then
analyzes the controller’s response to each packet sequence.
Following this work, Jero et al. presented BEADS [29],
a similar testing framework for automatically uncovering vul-
nerabilities in SDN controllers triggered by malicious switches
and hosts via the Southbound interface. Similarly to DELTA,
BEADS utilizes blackbox fuzzing to identify vulnerabilities in
SDN controllers; however, BEADS utilizes a more advanced
fuzzer aware of protocol message formats and semantics,
achieving higher test coverage. Another popular testing frame-
work for SDN is the solution proposed by Ujcich et al. [21].
They proposed ATTAIN, a general attack injection framework
that takes a testing specification (e.g., a set of attacks, the
attacker capabilities, and network topology) as inputs from a
network operator and reports how each of the defined attacks
manifest in a given SDN controller.

Unfortunately, none of the existing tools is suitable for
discovering potential weaknesses in the East-West protocols
used by a cluster of SDN controllers to communicate with
each other. This limitation is due to two main reasons: First,
previous works did not put sufficient effort into retrieving the
state machine of the analyzed protocol, a fundamental task
in identifying potential attacks. Their methods to discover
potential vulnerabilities are primarily based on a proxy that
either modifies packets or randomizes a sequence of packets
before sending them to the controller in an attempt to trigger
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corner cases, which can potentially lead to undesirable out-
comes. However, as previous works did not consider the state
the controller is in when receiving the packets, the identified
attack test cases can contain many false positives and false
negatives. Second and even more importantly, all previous
tools considered only a single SDN controller and focused
on one protocol only (e.g., OpenFlow). This limited scope
renders existing tools unsuitable for discovering potential
vulnerabilities in SDN clusters containing multiple controllers
and protocols.

B. Technical Challenges
Learning a state machine is known as an efficient way

to find vulnerabilities in protocol implementations [35], [36].
However, applying this method to an SDN cluster presents
several challenges, as detailed below. Note that C1-C3 are
associated with building a simple yet representative proto-
col state machine, while C4-C5 concern the identification
of potential attacks or abnormal behaviors derived from the
inferred state machine.

1) C1. Need to Infer the State Machine of a Cluster Col-
lectively: SDN clusters typically involve multiple protocols
to manage their internal components, which implies that any
protocol can also affect the state transitions of the others. For
example, whenever a ProbeResponse is sent from a previously
unknown node, the leader-election component leaves its cur-
rent state and starts interacting with the new node. Hence,
separately analyzing each protocol is insufficient to understand
the security of the entire cluster.

2) C2. Need to Infer a Simple State Machine: Each SDN
controller within the cluster generates their own set of mes-
sages (with a broad range of message headers) to communicate
with other nodes. In this context, learning protocol states with-
out effectively pruning the negligible state will produce many
states unnecessarily, commonly known as the state explosion.
This approach is undesirable since having a complex protocol
state machine would make a testing tool generate many test
cases that require significant testing time for discovering
attacks. Additionally, a complicated state machine prevents
network operators from understanding cluster behavior.

3) C3. Need to Consider Cluster Synchronization: An SDN
cluster typically requires all controllers to be kept online
because aliveness is crucial for many components, such as
leader or mastership election. For example, in ONOS, a con-
troller periodically sends keep-alive messages to other nodes.
If a reply is not received for a certain threshold, that node is
determined dead, reverting to an initial state. Thus, keeping
the periodic interaction between a tester and target cluster
is necessary. This approach ensures that the target cluster
remains in an inferred state, facilitating the reproducibility of
a discovered attack using the same message sequence.

4) C4. Lack of an Automated State Fuzzing Methodology:
Existing protocol state fuzzing methodologies [35], [36] rely
extensively on manual analysis for vulnerability discovery.
Thus, network operators must examine the inferred state
machine against a specification or ground-truth state machine
to detect attacks or abnormal behavior. However, this manual
process demands significant time commitment from operators
and introduces challenges in efficiently reproducing attacks.
Therefore, an automatic method is required to discover or

generate attacks based on the inferred state machine of an
SDN cluster.

5) C5. Lack of Ground Truth for the State Machine:
Distinguishing between legitimate and malicious behavior by
inspecting the obtained protocol state machine is challenging
because there is no ground truth on how the cluster’s protocol
state machine should ideally be. If that existed, one could
identify potential attacks by exploring how inconsistencies
between the ideal and obtained protocol state machine could
be exploited to carry out attacks.

C. Our Approach
To tackle C1 and C2, we adopt an abstraction approach by

treating the entire set of nodes as a unified entity to construct a
straightforward learning model. In particular, we treat a target
cluster as a single node by focusing on the interaction with
a leader node. Given the leader-centric event synchronization,
this strategy leverages the observation that the leader node
manages the majority of messages. Additionally, we streamline
the input space of message headers by concentrating on a
minimal set capable of triggering deterministic state transi-
tions. To this end, we empirically select messages likely to
induce state transitions by analyzing the controller source
code. Consequently, network operators can derive a single and
relatively simple protocol state machine to facilitate reasoning
about the security of the entire SDN cluster.

To tackle C3, we develop a state-aware learner capable of
identifying synchronization signals transmitted by a cluster.
This learner responds with appropriate messages to maintain
a valid state. It is important to note that this implementation
necessitates the incorporation of protocol parsers specifically
tailored to synchronization processes. To that end, we design a
controller-specific proxy to generate synchronization messages
needed for each state.

In response to C4, we formulate an algorithm for state
machine fuzzing. This algorithm traverses an inferred state
machine, extracting all conceivable message sequences origi-
nating from an initial state. Note that we define a message
sequence as a sequence of protocol messages that trigger
state transitions of a cluster. By doing so, we automate the
process of identifying and replicating attack scenarios, thereby
minimizing operators’ need for manual intervention.

In response to C5, we establish detection criteria to be
employed when injecting diverse message sequences into
the cluster. This approach involves continuous monitoring of
alterations in both the controllers (e.g., detecting the deletion
of applications) and the cluster (e.g., identifying changes in
leadership or adding nodes). Furthermore, we gather informa-
tion from various metrics, such as the CPU usage of each
node, to unveil valuable insights for detecting attacks (e.g.,
elevated CPU usage in a node signaling a potential ongoing
DoS attack).

IV. Ambusher DESIGN

In this section, we present system architecture of Ambusher
with a workflow. We then discuss details of state learning and
state fuzzing techniques for an SDN cluster.

A. System Overview
We aim to design Ambusher as a generic testing tool

for distributed SDN controllers. To achieve this, a network
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Fig. 4. Ambusher system overview and workflow.

operator can provide a testing configuration comprising input
alphabets (i.e., abstract symbols of protocol messages) and
cluster information (i.e., controller type, number of nodes,
topology). At a high level, Ambusher consists of two phases:
i) state machine learning and ii) state machine fuzzing. The
former aims to learn a state machine from a specified cluster
with predetermined input alphabets, while the latter seeks
to identify attacks by mutating them. Note that Ambusher
provides an initial set of input alphabets for popularly used
East-West protocols, but they can be extended to incorporate
other controllers (see §VII).

Fig. 4 illustrates the overall architecture of Ambusher and
its workflow. It is composed of three main modules: (i) state
machine builder, (ii) state machine fuzzer, and (iii) cluster
environment manager. In the state machine builder, the learner
is responsible for inferring a state machine. 1 For this
purpose, it first takes a configuration from a network operator.
2 The learner then generates queries used for learning states
(§IV-B) and delivers them to the proxy, which in turn converts
the queries into concrete protocol messages. These messages
are then sent to the target cluster by a dummy node created
inside the cluster. 3 When the proxy retrieves the response
messages from the cluster, these messages are transferred to
the learner oppositely to learn matched outputs. 4 This loop
continues as the learner discovers new states derived from new
responses, halting only when no new states emerge, resulting
in the creation of an inferred state machine. 5 The sequence
extractor in the state machine fuzzer explores the state machine
and chooses a message sequence that the cluster environment
can accept. After the sequence pruner removes unnecessary
inputs that do not affect state transitions, the attack conductor
uses it as a seed. 6 It iteratively randomizes the message
sequence (§IV-C), executes it, and retrieves outputs from
cluster logs. 7 Finally, the state machine fuzzer yields the
attack result, which is subsequently analyzed with several
criteria for finding attacks (§IV-D).

B. Learning State Machine
Here, we elaborate on the details of the learning technique

to infer the internal states of an SDN cluster. It is important

Fig. 5. The workflow of the learning procedure in the state machine builder.

to note that our goal is a more challenging task than the
previous studies aimed at learning states or transitions of
well-known protocols (e.g., TLS/DTLS [35], [36]) because
SDN East-West protocols do not have standard specification
and its implementation is dependent to controller vendors.
What is worse, protocol dependencies can be dramatically
complicated and increased depending on the cluster size (e.g.,
number of nodes, configuration settings).

1) Automata Learning: To address this, we use automata
learning, which is a framework for systematically inferring a
finite state machine (FSM) of a target system [49]. It enables
us to learn a simple and abstract FSM by interacting with the
target system. Among many FSMs, the Mealy machine has
been primarily used for protocol state fuzzing since it is well
suited to understand protocol behavior due to its deterministic
property—the state transition is determined by a unique input
and state [35], [36]. Here, we call a Mealy machine if a
state machine is an FSM whose outputs are determined by
current states and inputs. In order to form a series of learning
procedures, the framework is composed of two main concepts:
(i) learner and (ii) system under learning (SUL). The learner is
responsible for inferring the Mealy machine of the given SUL,
which is the target cluster environment in our case. During a
learning process, the learner iterates the exploration and testing
phases. In the exploration phase, predetermined symbols (i.e.,
input alphabets) are sent to the SUL to observe its responses
(i.e., output alphabets). Once suitable responses are observed,
the learner constructs a hypothesis model, a minimal Mealy
machine whose states conform to the observation. In the test-
ing phase, the hypothesis model is verified by finding whether
or not there is a counterexample that violates it. If no one is
found, the hypothesis model is accepted; otherwise, the model
is refined. Those tasks are repeated until no counterexample
is found from the model.

2) Learning Model Design: The alphabets are abstract sym-
bols that SUL does not understand since they are not protocol
messages. For this, it is necessary to have an intermediate
proxy that interprets the input alphabets into concrete mes-
sages. On the other hand, protocols in an SDN cluster typically
have keep-alive messages for aliveness checking—when a new
node joins a cluster, existing members send those keep-alive
messages to the node periodically. Whereas responding to the
messages is inevitable to maintain a valid East-West session
with the SUL, they are merely required to learn states due
to uniformity. Furthermore, protocols use individual sessions
to transmit/receive messages, and the communications run
parallel among nodes. Given this concurrency, determining
which output is derived from which input is challenging.

We design the proxy to incorporate the considerations
above, as shown in Fig. 5. When the translator receives an
input alphabet, it converts the symbol into a protocol message.
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Fig. 6. The abstract model for interactions between a dummy node and
ONOS cluster.

Since there is currently no standard for East-West protocols,
most distributed controllers use their custom protocol imple-
mentations. Hence, this conversion requires us to analyze the
controller’s source code to create concrete messages. The
concrete message is sent by the message sender connected
to the dummy node in SUL. The receiver pool dynamically
invokes creating a new thread in case a new channel is
established with SUL. To process the messages that are sent
concurrently, we use the shared queue. If the sender forwards
messages to SUL, threads in the receiver pool enqueue the
received messages into the shared queue. Then the translator
dequeues the messages within a threshold window (We use
the same threshold with the heartbeat threshold of a cluster
configuration.). The message sender maintains a logical clock
and produces a timestamp when sending an input message.
By checking this clock, the translator guarantees a correct
message order. The session keeper is used for answering the
keep-alive messages to maintain East-West channels, but the
received messages are not used for learning. As such, utilizing
the proxy plays an essential role in bridging the gap between
the learner and SUL by converting the symbol into a protocol
message.

3) Modeling Node-to-Cluster Interactions: Understanding
cluster behavior holistically should be preceded to avoid
complex state learning in distributed environments. In general,
the leader manages the cluster; thus, most messages are
answered by the leader node. Given this fact, we devise an
abstract model that illustrates unified interactions from the
aspect of the node-to-cluster relation, not the protocol-wise
communications. Fig. 6 depicts the message interactions that
occur when a dummy node starts communicating with a target
cluster from scratch. We analyze ONOS/Atomix [38], [50] as
a representative SDN cluster that realizes the aforementioned

TABLE I
A LIST OF ONOS CLUSTER MESSAGES THAT ARE USED FOR

INPUT/OUTPUT ALPHABETS FOR AUTOMATA LEARNING

distributed architecture/protocols. Below, we introduce four
interaction phases with brief descriptions of protocol messages
if not given in §II (e.g., implementation-specific messages).

a) Discovery phase: This phase aims to discover and join
a target cluster as a legitimate member. Initially, the node sends
ProbeRequest that subsequently triggers the cluster to reply
with ProbeResponse and BootstrapRequest. The latter contains
configuration information, such as cluster members/protocols.
The node sends with BootstrapResponse that specifies its
architectural information (e.g., protocols, nodes), and it also
sends RaftJoinRequest for joining the cluster as a Raft mem-
ber. Subsequently, the cluster responds with RaftJoinResponse
and RaftConfigureRequest that carries current Raft protocol
information (e.g., term, leader).

b) Election phase: Messages in this phase are mostly
related to the leader election process in the Raft protocol.
When joining a cluster, the node’s default role is assigned
as a follower. The node has its election timer, and when
the timer expires, it attempts to promote to a leader by
sending RaftVoteRequest messages to the cluster. The node
will become a leader if it receives RaftVoteResponse messages
that most nodes agree.

c) Synchronization phase: The node joined in the cluster
starts to synchronize events. When receiving RaftAppen-
dRequest that includes a commit message pushed by a leader,
the node will send a RaftAppendResponse, noticing it has
received the request and executed the commit. The node can
read and modify shared views (e.g., application, topology)
in distributed storage using RaftCommandRequest, and the
cluster notifies the result with RaftCommandResponse.

d) Membership phase: A node periodically checks the
aliveness of peer nodes based on membership protocols. When
a SWIM protocol is used, a node randomly chooses a target
node and sends ProbeRequest that specifies its identifier to the
cluster and receives a ProbeResponse message.
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4) Defining Alphabets: Based on the message exchange
model, we define alphabets used for learning a state machine
as summarized in Table I. To make a state machine that
incorporates diverse cases, we pick and choose the message
parameters that can affect the internal states of a cluster based
on the manual analysis of source code (We discuss how this
can be achieved in §VII.). For example, ProbeResponse(n, s)
implies that the node n is in the membership status s, which
can be either alive or dead for answering ProbeRequest(n).
The BootstrapRequest(N ′) and BootstrapResponse(N ′) indi-
cate that there are a set of nodes N ′ currently configured in
the cluster. The variable N ′ can be a subset of the entire
node set N . The RaftJoinRequest(n) denotes that a node
n joins a Raft protocol interaction, subsequently replied by
RaftJoinResponse. The variable n can be a current member
node n′ or a new node n′′. The RaftConfigureRequest indicates
a configuration request for a Raft cluster, which is responded to
by RaftConfigureResponse. The RaftVoteRequest(n, t) denotes
that a node n attempts to be promoted to a leader with
a term t that can be a greater term th or current term
tc. The RaftVoteResponse(v) is used for notifying a vot-
ing result that can be either approved or rejected . The
RaftCommandRequest(d, o) instructs a cluster to execute an
operation o that can be either add, modi f y, or remove for
a shared data d , and it can be important information, such
as application, topology, or mastership information (denoted
by app, topo, respectively). Fig. 7 illustrates an example of
a state machine learned from an ONOS/Atomix cluster with
those alphabets.

C. State Machine Fuzzing
We now present a fuzzing technique that uses a state

machine to produce test cases systematically. This stage aims
to generate a set of message sequences that allow us to explore
as many states as possible.

1) State Machine Formalization: To utilize the constructed
Mealy machine for fuzzing, we first should formalize it with
a suitable structure. A Mealy machine can be represented as
a directed, multi-edged graph G = (V, E, I,O), where V
denotes the states and E denotes the transitions labeled by cor-
responding input alphabets I and output alphabets O. The I
and O are functions that map a transition e ∈ E to message m.

2) Pruning Transitions: To reduce efforts for exploring
states, we prune alphabets that do not affect transitions from
the state machine. For example, a state machine can have
a loop that a state is connected with itself. Besides, keep-
alive messages merely activate meaningful transitions such as
ProbeRequest and RaftAppendRequest. We also exclude those
transitions from the set of candidate message sequences, and
they are denoted by Others in the state diagram.

3) Message Sequence Extraction: We want to explore all
reachable states and generate possible message sequences that
can be made from a state machine. For this, we propose
an algorithm that extracts message sequences using graph
depth-first search (DFS) as shown in Algorithm 1. The SDFS
(State DFS) algorithm takes a Mealy machine graph G and ini-
tial state v0 as inputs and yields a set of message sequences M
as an output. SDFS initializes two variables S and M (lines
2 to 3). The former is used for storing messages extracted on
visited states so far, and the latter is the algorithm’s output,

Algorithm 1 SDFS for Message Sequence Extraction
Require:

A Mealy machine graph G = (V, E, I,O),
An initial state v0

Ensure:
A set of message sequences M

1: procedure INIT(G, v0)
2: S ← [] ▷ Empty list
3: M← {} ▷ Empty set
4: Set all states in G as not visited
5: M← SDFS(G, v0,M,S)
6: return M
7: end procedure

Require:
A currently visited state v,
A subsequence that consists of states visited previously
Spre

8: procedure SDFS(G, v,M,Spre)
9: for e ∈ G.outgoingEdges(v), where e = (v, w) do

10: if w is not visited then
11: Mark w as visited
12: m ← I(e) ▷ Get a message from a transition
13: Spre.append(m) ▷ Add the message to the

sequence
14: M←M ∪ Spre ▷ Add the subsequence to

the set
15: Spost ← SDFS(G, w,M,Spre) ▷ Call SDFS

recursively
16: M←M ∪ Spost ▷ Add the subsequence to

the set
17: end if
18: end for
19: return M
20: end procedure

which will have the final set of message sequences in the end.
At first, the algorithm marks all states as not visited and starts a
traversal from an initial state v0 (lines 4 to 5). When invoked,
SDFS finds all outgoing edges (i.e., transitions) e from the
current state v, and checks whether or not the next state w

is visited (lines 9 to 10). If not, the algorithm marks the next
state w as visited and gets a message m from a transition
e (lines 11 to 12). The message is added to the sequence
Spre, and it is also added to the set M (lines 13 to 14). The
SDFS is recursively invoked by having the next state w and the
pre-sequence Spre, and subsequently produces post-sequence
Spost (lines 15 to 16). Finally, the message set M that includes
pre- and post-sequences is generated (line 19). Note that the
worst-case time complexity is O(|V|+|E |) considering that the
algorithm visits all nodes V for initialization (line 4) and iter-
ates all transitions E (line 9) for traversing all adjacent states.
Other operations take constant time like adding elements to a
set or list (i.e., O(1)).

4) Sequence/Message Randomization: Injecting the same
message sequence that always follows the state machine will
not lead to attacks. To address this, Ambusher randomizes
an extracted message sequence to make a target cluster in
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Fig. 7. The automatically constructed Mealy machine of an ONOS cluster. The red arrows denote the state transitions that can be abused for attacking a
cluster. Please refer to Table I for abbreviations.

abnormal status. The primary fuzzing strategy of Ambusher
is frequently randomizing message orders while minimally
modifying message parameters. This strategy stems from
the fact that randomizing the entire message parameters
generates many test cases, often called a space explosion.
Suppose that we want to randomize a message sequence
S = (m1, m2, . . . , mn)—extracted from Algorithm 1—that
consists of n messages. At each fuzzing stage, Ambusher
chooses a message mi , where i is randomly chosen from the
range 1 ≤ i ≤ n. For this, Ambusher takes one of the following
actions:
• Duplicate the message mi several times.
• Remove the message mi from the sequence S .
• Replace it with another message randomly picked from

the sequence S .
• If the message mi has an argument, change the argument

to other valid ones (as defined in Table I).
This way, Ambusher can increase the probability of occurring
abnormal events from a target cluster.

D. Detection Criteria
After injecting the mutated message, assessing its potential

to launch a successful attack on the target cluster is crucial.
To accomplish this goal, we define detection criteria (DC)
aimed at identifying abnormal situations that pose risks to
a cluster’s confidentiality, integrity, and availability. These
criteria are intricately crafted to detect and signal any devi-
ations that may endanger the confidentiality of sensitive data,
compromise the integrity of stored information, and disrupt
the overall availability of controller nodes.

1) DC1. Leaking Cluster Information: Receiving a message
that leaks information about a cluster indicates a potential
threat. For example, BootstrapRequest contains configuration
information such as cluster members and protocols. Suppose
that a malicious node can receive this message by injecting
a certain message sequence (discovered with Ambusher) that
allows a node to join a cluster. Then, it can learn this
information and hence compromise the confidentiality of the
cluster.

2) DC2. Cluster Configuration Changes: Ambusher period-
ically updates the global topology view to check node and link
connection status. At the same time, it identifies the current
leader in the cluster by parsing the updated protocol messages.
Accordingly, it can compare the modified information with the
original one. This criterion enables us to define the attacks
aiming to compromise the cluster configuration integrity (i.e.,
topology, leadership).

3) DC3. Cluster Status Changes: The status of a cluster,
including its applications, holds significant relevance in cluster
management. In addressing this, Ambusher employs a linear
search to update the app-list from the internal storage of each
node within the cluster (e.g., persistent storage or in-memory
storage). Subsequently, it scrutinizes the app-list information
to detect any manipulations, allowing us to define attacks
targeting the compromise of cluster status changes that violate
integrity.

4) DC4. Network Reachability Changes: Another crucial
indicator is end-to-end reachability between nodes. Specif-
ically, Ambusher performs a pair-wise ICMP ping test to
identify that all nodes in the cluster are verified. Therefore,
it enables us to define attacks aiming to compromise the
availability of network connections.

5) DC5. Excessive Resource Usage: The final indicator to
warn of vulnerability is monitoring the RAM and CPU usage
periodically used by the nodes in the cluster. Ambusher reports
benign usage history in the storage to define any denial of
service trial if excessive usage is detected from the monitoring.
This metric enables us to identify attacks relating to network
service availability.

V. EXPERIMENTAL ENVIRONMENT

A. Implementation

We implemented a prototype of Ambusher based on Learn-
lib v0.14 [51], which is an automata learning framework used
for inferring states of a target system. To learn state machines
of distributed controllers, we used the L∗ algorithm [52] for
the exploration phase and the W-method [53] for the testing
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Fig. 8. The architecture of an ONOS/Atomix cluster.

Fig. 9. Private SD-WAN testbed architecture overview.

phase (§IV-B). For verifying the feasibility of Ambusher,
we tested ONOS v2.4.0 [38], one of the popular open-source
SDN controllers widely used in practice [54], [55], [56],
[57]. Note that in the recent ONOS architecture, some of
the controller functionalities are realized in a separate node
called Arbiter to reduce the load of the cluster nodes (see
Fig. 8). Thus, a set of arbiter and controller nodes together
forms a cluster. For this, we also used Atomix v3.1.5 [50]
for running arbiters and providing APIs for underlying cluster
engines of ONOS controllers. To implement the proxy in the
state machine builder, we leveraged APIs provided by Atomix
to generate cluster messages used in ONOS.

B. SD-WAN Testbed

To find feasible attack cases in a practical environment,
we tried to emulate SD-WAN as similar to real distributed
networks as possible for scientific research and run various
ONOS applications (e.g., Reactive Forwarding, OpenFlow
Driver, Access Control, Stats Provider, etc.). To this end,
we constructed a private SD-WAN testbed that spans two
campus networks and one enterprise network (see Fig. 9).
Those networks are physically distant from each other and
connected through a VPN. Each site has one or two hardware
OpenFlow switches (i.e., Pica 3297, 3290, and EdgeCore
AS4610-54T) controlled by a local cluster, which is composed
of a controller and arbiter node. In order to consider as many
distributed environments as possible and solve the limitation of
the hardware testbed (e.g., the number of nodes), we devised a
builder that can synthesize cluster environments automatically.
Therefore, we can demonstrate the feasibility of attack case

studies including 4 nodes to 16 nodes while considering
various configurations in our testbed.

VI. ATTACK CASE STUDIES

In this section, we demonstrate comprehensive cases of
cluster attacks discovered by Ambusher through the evaluation
conducted on our private SD-WAN testbed. We constructed
a state machine by learning in a real cluster environment
based on ONOS/Atomix and considering a variety of state
transitions. From the constructed state machine shown in
Fig. 7, we extracted 258 seed message sequences, where each
sequence consists of 97 input alphabets on average (min: 1,
max : 129, SD: 41) with Algorithm 1. We tried to find abnor-
mal behaviors that can be generated from the state machine
and thus generated 1,572,940 random message sequences,
where each sequence consists of 120 input alphabets on
average (min: 1, max : 134, SD: 19) through the methodology
mentioned in §IV-C. When injecting the random messages,
we analyzed unexpected operations and vulnerabilities depend-
ing on the four major components (§II-B): (i) Distributed
Storage, (ii) Leader Election, (iii) Membership Check, and
(iv) Mastership Segmentation. As a result, we found 6 attack
scenarios determined as vulnerabilities based on the criteria in
§IV-D.

A. Threat Model
Ambusher is a testing tool that allows network operators

to investigate potential attacks against distributed controllers
aimed to disrupt or poison the controllers’ cluster. We consider
an adversary who can only inject a small number of messages
into the controllers’ cluster to conduct attacks without raising
suspicion (i.e., in a stealthy manner). This assumption is
important because if the network operators detect an ongoing
attack against one of the controllers within the cluster, they
could quickly disconnect the affected controller from the
cluster before the attack is completed. To inject messages into
the controllers’ cluster, the adversary can either control (i)
one of the nodes within the cluster or (ii) any middlebox
that receives and analyzes the messages exchanged between
controllers. Past work has already demonstrated that SDN
controllers are complex components that often contain serious
vulnerabilities which can be exploited from both the data
plane [9], [11] and the application plane [10], [58], [59].

B. Distributed Storage
1) Cluster Session Flooding (CVE-2020-35210): We dis-

cover that an adversary can make the target cluster unavailable
by performing denial-of-service (DoS) attacks using cluster
messages. They can indirectly exhaust the resources of a
machine that runs arbiter instances by generating a bunch
of cluster session requests (see Fig. 10 (top)). (i) They
employ dummy nodes that send the leader many RaftCom-
mandRequest messages. When creating a message, they use
a randomized member ID and network identifier to force
the leader to maintain more session states. (ii) When the
leader receives a RaftCommandRequest message, it creates
a dedicated server-side thread to maintain the session state
and handle subsequent cluster messages (i.e., the transition
V7→V4 in Fig. 7). (iii) The arbiter node is supposed to
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Fig. 10. The scenario (top) and result (bottom) of the cluster session flooding
attack.

disconnect the session, which does not receive further mes-
sages. However, if the flooding rate exceeds the disconnecting
rate, the enormous threads significantly consume the leader’s
resources. Ultimately, the victim leader node cannot process
other essential jobs, such as state replication invoked by the
controller nodes. Moreover, it will finally freeze the entire
cluster operation.

Fig. 10 (bottom) demonstrates this attack scenario against
ONOS. A dummy arbiter node continuously sends a bunch
of SessionRequest messages to the leader arbiter node
Atomix-2, which causes the leader node to generate many
unnecessary cluster sessions. Subsequently, it turns out that
receiving device information from distributed storage is no
longer possible, as shown in the console. Therefore, it is deter-
mined that this vulnerability is correlated with the criterion
“Excessive Resource Usage” (DC5 in §IV-D).

2) Blocking Service Operation (CVE-2020-35214): Man-
agement of synchronized states is essential for maintaining a
logically centralized view of controllers. For this, distributed
controllers use shared data that stores current network states
and configuration information with diverse data structures
(e.g., map, set, list, counter). Controller applications can
write/update/query the data stored in distributed storage, and
then the data is synchronized over all nodes in the cluster.
Here, an adversary can abuse this propagation mechanism to
disrupt entire cluster management: (i) They can invoke an
instruction that removes all entries by targeting one of the
important primitive tables for network management, such as an
application list (i.e., the transition V7→V4 in Fig. 7). (ii) This
operation is synchronized over all nodes, removing all installed
applications in their local storage. (iii) As a result, benign
controller nodes cannot properly use the deleted applications
anymore. Fig. 11 (top) elaborates on this attack scenario.

Fig. 11. The scenario (top) and result (bottom) of the blocking service
operation attack.

Fig. 11 (bottom) shows the result of the operation abuse
attack in ONOS. Once a dummy arbiter node joins a target
cluster, it can access the onos-apps map that contains all
currently installed SD-WAN applications. When installing and
activating an application, controller nodes update the table and
synchronize it with each other. The dummy node can call the
clear API that removes all application lists of the target
primitive. As shown in the console, the controller node regards
all applications as being removed, making services unavail-
able. Consequently, this attack corresponds to the criterion
“Cluster Status Changes” (DC3 in §IV-D).

C. Leader Election

1) Seizing Leadership (CVE-2020-35211): In general, con-
troller nodes maintain election terms to track current election
period of a cluster (§II). This metadata is to prevent a
cluster from suffering a partitioning problem—indicating a
situation in which two leaders exist at the same time due to
a disconnected link between two partitions—by suppressing
a lower-term node to be a leader [42]. While it is the key
design of the Raft algorithm, we discover that an adversary
can abuse this to make their dummy node become a new
leader by manipulating the election term. Fig. 12 (top) shows
how an adversary’s node seizes the leadership with an election
manipulation process.

Fig. 12 (bottom) illustrates the result of the attack. The
dummy node (i.e., Atomix-5) first discovers that the cur-
rent leader node is Atomix-2 (on the top console) before
conducting the attack. The dummy node then sends a series
of manipulated RaftVoteRequest messages that always have a
higher election term than the current leader. When receiving
those messages, the current leader resigns from the leader
role and becomes a follower, and the entire cluster starts a
re-election process (i.e., the transition V4→V3 in Fig. 7).
Here, the dummy node repeatedly sends the messages with
a higher term to compete with other nodes. Then, those
messages with a higher term from the dummy node make other
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Fig. 12. The scenario (top) and result (bottom) of the leader seizing attack.

nodes in the candidate state relinquish the election and deprive
them of chances to become leaders. This process continues
until the dummy node receives the majority of votes, and
finally, it obtains leadership and will be able to receive all
states sent from cluster nodes. Therefore, this vulnerability is
correlated with the criterion “Cluster Status Changes” (DC2
in §IV-D).

D. Membership Check
1) Unauthorized Cluster Joining (CVE-2020-35209):

Adding/removing a new node to a cluster should be managed
carefully because a cluster node can perform crucial operations
(e.g., state replication, election). However, we found that an
adversary can make their dummy node illegally participate
in a target cluster by providing a suitable configuration.
Fig. 13 (top) shows an example attack scenario: When a
dummy arbiter node establishes a connection with the clus-
ter, it receives a BootstrapRequest message that includes
information about a cluster configuration (DC1 in §IV-D).
The dummy node then sends a sequence of three messages:
ProbeResponse, BootstrapResponse, and RaftJoinRequest to a
certain node in the cluster. Here, BootstrapResponse contains
configuration details specifying the composition of a cluster
(e.g., member nodes). Here, the leader node investigates the
configuration validity; if not, the message will be rejected.
However, a critical security problem is that the cluster allows
an unknown node to join the cluster if the configuration
includes a correct cluster-ID and a list of existing members
(i.e., the transitions V0→V1→V4 in Fig. 7). For example,
if the dummy node sends the cluster-ID (i.e., SD-WAN) with
the existing member list (i.e., Arbiter-1 to 4) including
itself, the leader accepts the request and marks the dummy
node as a valid one.

Fig. 13. The scenario (top) and result (bottom) of the unauthorized cluster
joining attack.

Fig. 13 (bottom) shows the result of the cluster join-
ing attack. Atomix differentiates cluster nodes according to
whether a node is in a system group or not. As it brings the
capability for cluster management, joining the system group
empowers an adversary to perform diverse cluster operations.
The dummy arbiter node Atomix-5 configures itself as one
of the system group members to access the core functions of
a cluster.

2) Fake Membership State Advertisement (CVE-2020-
35216): SWIM protocol, used in a membership engine,
utilizes an indirect probe to keep in touch with a node that
did not respond to prior direct probes (§II). This feature
enables cluster nodes to indirectly obtain the node’s aliveness
information by synchronizing with its peers (i.e., the transition
V2→V5 in Fig. 7). However, we reveal that it is possible
to abuse this feature by injecting fake messages that include
erroneous membership states. For example, in Fig. 14 (top),
(i) the adversary’s dummy node can send fake ProbeResponse
messages, which tell a lie that all peers are dead, to a victim
node. (ii) The victim node then considers this as a truth. Thus,
it attempts to execute a series of failure recovery operations,
such as removing the dead members from its membership list
and re-electing a new leader (if the message contains a current
leader). (iii) However, at the same time, since these allegedly
“dead” nodes are alive, they attempt to synchronize with the
victim node to let it know their aliveness. Subsequently, a race
condition occurs, which exhausts the victim’s resources for
updating membership states mainly due to the infinite up and
down.

Fig. 14 (bottom) shows the result evaluated in our envi-
ronment. When a dummy Atomix node notifies the fake
membership state, the Atomix-1 immediately removes the
members from its membership list. However, spoofed peer
members try to connect with the victim node through Raft pro-
tocol messages. This race condition makes the victim node’s
RaftServer refer to the wrong connection information,
raising an exception. Therefore, this vulnerability corresponds
to the “Cluster Configuration Changes” (DC2 in §IV-D).
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Fig. 14. The scenario (top) and result (bottom) of the fake member state
advertisement attack.

E. Mastership Segmentation
1) Fake Data-plane Event Injection (CVE-2020-35213):

A link state is one of the significant assets of an SDN con-
troller to know the current connectivity between switches for
determining a correct routing path. For this reason, topology
poisoning attacks for SDN controllers have been well-known
attack vectors. For example, an adversary injects fake LLDP
packets, causing a switch to report a non-existing link to a
controller [6], [13]. While controllers try to address this with
a periodic state-synchronization from switches to a controller,
we reveal that such a poisoning attack is also feasible by
abusing a cluster relation (see Fig. 15 (top)). In this scenario,
a dummy node crafts and sends a RaftCommandRequest,
reporting an addition of a fake link that does not exist in the
data plane. Then, the master controller node updates its local
storage and propagates the event via a distributed storage (i.e.,
the transition V7→V4 in Fig 7).

Fig. 15 (bottom) shows the result of this attack in the
ONOS controller. The dummy controller node (i.e., Dummy
ONOS) sends a fake link event to ONOS-1 node, which is
the master instance for the switch b2. Before conducting
the attack, there is no link between switches a2 and b2.
However, when we inject a fake event into the master node,
it updates its eventually consistent distributed storage without
integrity checking. Even worse, we confirm that this poisoned
state is not cleaned up until (i) spoofed network devices are
re-connected or (ii) the master controller node gets restarted.
Note that both cases are time-consuming and cause service
disruption in practice. This case corresponds to the criterion
“Network Reachability Changes” (DC4 in §IV-D).

F. Execution Time Measurement
Finally, we evaluated the duration of each attack across

different cluster sizes to confirm its practical feasibility. Fig. 16
illustrates the execution time of each attack case in different
clusters, including 4 nodes to 16 nodes. In the case of Cluster
Session Flooding, the more cluster nodes increase, the better
session flooding can be exploited. This result stems from

Fig. 15. The scenario (top) and result (bottom) of the fake data-plane event
injection attack.

the fact that a larger cluster should manage many service
operations and nodes, and thus it can be highly vulnerable
to resource exhaustion attacks. Additionally, the Blocking
Service Operation and Fake Membership State Advertisement
attack show that longer execution time is needed as more
nodes are added because the cluster states need to be spread
over all controller nodes. Also, the Seizing Leadership attack
shows that the execution time gradually increases depending
on the cluster size because the execution time can be influ-
enced by the intensity of competition, which is determined
by the number of cluster nodes. Compared with the above
cases, we figure out that the Unauthorized Cluster Joining
attack case maintains constant execution time regardless of the
number of cluster nodes because an intruding node already
has predefined configuration information and needs to send
a join message to one cluster node, i.e., leader. Likewise,
the Fake Data-plane Event Injection attack maintains constant
execution time because the master node propagates events with
broadcasting; thus, the cluster size does not affect execution
time.

VII. DISCUSSION AND LIMITATIONS

This section provides in-depth discussions for analyzing the
root cause of vulnerabilities in distributed SDN controllers and
proposes countermeasures to prevent them from being abused.
We also discuss the limitations associated with Ambusher.

A. Weak Authentication for Node Validity
While current distributed controllers require a cluster ID

when a node attempts to join a cluster, we have discovered that
adversaries can easily estimate this ID. For example, we found
that ONOS uses default string values as cluster IDs, such as
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Fig. 16. Attack execution time across different cluster sizes.

onos and raft [62]. This weakness allows adversaries to
predict the cluster ID using dictionary attacks based on those
strings. To avoid this situation, one may leverage an idea from
TCP handshaking. Specifically, distributed controllers can use
a random ID to negotiate with cluster members similarly to
the TCP random sequence number. This approach makes it
difficult for adversaries to guess the required IDs.

B. Lack of Inspection for Storage Integrity
Eventual consistency aims to alleviate the constraints of

strong consistency, which are not scalable in large-scale
networks, and therefore, it is widely adopted in distributed
SDN controllers [37]. However, we demonstrate that a storage
system built on eventual consistency is not easily cleaned if it
becomes tainted with fake information (i.e., Fake Data-plane
Event Injection). The underlying issue is that the storage
system updates its entries in a notification-based manner. For
instance, in ONOS, the storage system does not eliminate
the contaminated entry if there is no LinkRemoved event to
signal to remove a fake link. As a solution, we propose
that distributed controllers should periodically cross-reference
the events injected from peer nodes with actual data-plane
information.

C. Architectural Issues in the Decoupled Structure
Although the recent architecture of distributed controllers—

where certain functionalities are separated as arbiters (§V)—
offers benefits in terms of flexibility, we argue that it
significantly expands attack surfaces for adversaries. For
instance, due to the separation of distributed modules from
ONOS, Atomix exposes a vulnerability that allows unknown
nodes to join a cluster even if they are not registered as
initial members (§VI-D). To address this, the controller vendor
should provide an alternative that integrates the controllers
with arbiters to reduce attack surfaces.

D. Lack of Access Control for Distributed Controllers
We observe that current distributed controllers do not

mandate authentication when nodes invoke APIs to perform
cluster operations, granting adversaries access to various
harmful attack scenarios. Specifically, we propose that cru-
cial cluster operations (e.g., adding new nodes, removing
applications) should require additional authentication when
executed. Furthermore, API-level access control should be
implemented to prevent malicious nodes from exploitation.
However, despite the existence of access control models for

single controllers [15], [17], [63], [64], none have addressed
a permission model for distributed controllers.

E. Obtaining Input/Output Alphabets via Manual Analysis
One limitation of Ambusher is that it relies on the manual

analysis of source code to obtain input/output alphabets of
distributed SDN controllers. The primary reason is that there is
no standard specification for East-West interfaces, in contrast
to TLS/DTLS cases [35], [36]. However, we argue that those
efforts are minimal as the alphabets can be easily obtained
from their public code base (e.g., ONOS [65], ODL [66]).

F. Supporting Other Controllers in Ambusher
The current Ambusher prototype uses the ONOS controller

as a representative example. However, it is important to note
that Ambusher can be extended to test other controllers with
minimal effort, such as ODL. For example, ODL also relies on
the Raft algorithm for consensus; thus, many input alphabets
of ONOS can be utilized. While this requires us to implement
an additional proxy (see Fig. 4) that can generate ODL-specific
messages, it could be achieved by leveraging the existing
code base. For example, ODL is an open-source distributed
controller whose cluster message implementations are publicly
available [66].

G. Missing Edge Cases by the Simplified Model
Since Ambusher takes a node-to-cluster model to reduce

large state space, some edge cases can be missing in the
cluster communication. We perform a manual analysis for
the extracted state machine by comparing it with the con-
troller’s source code to avoid excluding important states or
transitions. We confirmed that most of them are incorporated,
and excluded cases do not play an essential role in cluster
operations. While this manual analysis violates our design
consideration that seeks an automatic tool, it is adopted in
other protocol state fuzzing tools [35], [36].

VIII. RELATED WORK

A. Vulnerabilities in SDN
Security concerns have been raised over various SDN

components since its inception [59], [67], [68], [69]. For
example, the SDN centralized architecture is fundamentally
weak to control-plane saturation when a switch generates
a huge number of flow requests, causing PacketIn flood-
ing attacks [5], [7], [16], [70]. While this is a well-known
attack vector in a single controller, no previous works studied
flooding attacks in distributed controllers, as demonstrated in
our paper. On the other hand, a malicious application can
execute harmful operations due to the lack of permissions in
Northbound interfaces [15], [58], [71]. However, prior studies
did not focus on the security problem of East-West interfaces.
In addition, controller storage can be corrupted by malicious
data-plane events [6], [12], [13], [14], [30], [72], [73] or by
abusing a Northbound interface [31], [61], causing inconsis-
tencies between control and data plane. Distinguished by the
previous attacks, we discover a poisoning attack via East-West
interfaces. As such, our work is the first to investigate the
vulnerabilities of East-West interfaces in distributed controllers
comprehensively.
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TABLE II
COMPARISON OF EXISTING SDN ATTACK DETECTION TOOLS AND Ambusher

(* DENOTES THAT THE FEATURE IS PARTIALLY SUPPORTED BUT NOT A MAIN GOAL)

B. Securing SDN Controllers
There have been efforts towards building secure SDN con-

trollers resilient to known SDN vulnerabilities. Role-based
access controls (RBAC) have been regarded as promising
solutions for preventing malicious API invocation [17], [63],
[74]. Meanwhile, secure controller architectures have been
proposed with modular approaches [15], [75], [76]. While
these works contributed to building secure architectures in
a single controller case, the design of secure architecture
for distributed controllers should be studied according to the
disclosed vulnerabilities in our paper.

C. SDN Attack Detection Tools
To find potential vulnerabilities in SDN, many attack

detection tools have been proposed with various techniques.
NICE [25] utilized model checking and symbolic execution to
find bugs in SDN applications while reducing the large state
space. STS [26] adopted delta debugging to identify mini-
mal causal sequences for troubleshooting issues within SDN
environments. ConGuard [12] used dynamic analysis based on
happens-before relationships to discover harmful race condi-
tions in SDN applications. DELTA [28], [60] and BEADS [29]
used black-box fuzzing to find vulnerabilities in SDN North-
bound interfaces and applications. ATTAIN [21] proposed
an attack injection framework to discover vulnerabilities in
controllers. AIM-SDN [30] found semantic gaps in con-
troller datastores using black-box fuzzing. AudiSDN [31], [61]
discovered policy inconsistencies with black-box fuzzing. Spi-
der [32] used grey-box fuzzing to locate stateful performance
issues in controllers. Intender [33] aimed to find vulnerabil-
ities within the intent-based networking subsystem in SDN
controllers through black-box fuzzing.

However, none of the existing works focused on the vulner-
abilities of the East-West interfaces in distributed controllers,
which is the contribution of Ambusher. The most similar one to
ours is Jury [27], which aimed to pinpoint faulty controllers in
an SDN cluster. However, it did not consider attack scenarios
that abuse the protocols used in distributed controllers. Also,
while we observe that several fuzzing tools utilized a state
machine, most relied on manual analysis of specification

or source code, which is difficult to achieve in distributed
controllers. In contrast, Ambusher learns a state machine using
automata learning and generates a single yet relatively simple
one via pruning methodologies. Table II shows the comparison
of existing tools and Ambusher.

IX. CONCLUSION

Distributed SDN controllers have received significant atten-
tion from industry and academia to realize more flexible and
efficient wide-area networking environments (i.e., SD-WAN).
However, increasing SD-WAN usage attracts adversaries since
successful attacks against distributed controllers guarantee
control over more critical networks. Thus, verifying the secu-
rity issues in distributed controllers is indispensable. For this
reason, we propose an automatic testing tool, Ambusher, for
systematically learning states in an SDN cluster and con-
ducting state-aware fuzzing. We show that Ambusher allows
us to discover unknown vulnerabilities from a popular SDN
controller, ONOS. To our knowledge, this is the first work
to automatically find vulnerabilities in a distributed controller
in an SD-WAN environment. By utilizing Ambusher, net-
work operators can effectively and efficiently conduct in-depth
testing to uncover any unknown vulnerabilities in distributed
controllers. We believe that our work assists researchers in
discovering more possible vulnerabilities in SD-WAN.
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