
Journal of Network and Computer Applications 231 (2024) 103978

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Research paper

Fatriot : Fault-tolerant MEC architecture for mission-critical systems using a
SmartNIC
Taejune Park a, Myoungsung You b, Jinwoo Kim c,∗, Seungsoo Lee d,∗

a Chonnam National University, Republic of Korea
b KAIST, Republic of Korea
c Kwangwoon University, Republic of Korea
d Incheon National University, Republic of Korea

A R T I C L E I N F O

Keywords:
Mission-critical system
Multi-access Edge Computing (MEC)
Programmable data plane

A B S T R A C T

Multi-access edge computing (MEC), deploying cloud infrastructures proximate to end-devices and reducing
latency, takes pivotal roles for mission-critical services such as smart grids, self-driving cars, and healthcare.
Ensuring fault-tolerance is paramount for mission-critical services, as failures in these services can lead to fatal
accidents and blackouts. However, the distributed nature of MEC architectures makes them more susceptible
to failures than traditional cloud systems. Existing research in this field has focused on enhancing robustness
to prevent failures in MEC systems rather than restoring them from failure conditions. To bridge this gap,
we introduce Fatriot , a SmartNIC-based architecture designed to ensure fault-tolerance in MEC systems. Fatriot
actively monitors for anomalies on MEC hosts and seamlessly redirects incoming service traffic to backup hosts
upon detecting failures. Operating as a stand-alone solution on a SmartNIC, Fatriot guarantees the continuous
operation of its fault-tolerance mechanism, even during severe errors (e.g., kernel failure) on the MEC host,
maintaining uninterrupted service in mission-critical services. Our prototype of Fatriot , implemented on the
NetFPGA-SUME, demonstrates effective mitigation of various failure scenarios, achieving this with minimal
overhead to services (less than 1%).
1. Introduction

The recent advancements in cloud and network technology have
enabled a broader range of services, including the Internet of Things
(IoT) and cyber–physical systems, which are increasingly integral to
daily life. For instance, contemporary power systems, often referred
to as ‘smart grids’, utilize a centralized cloud for efficient electricity
management (Fang et al., 2011). Additionally, self-driving cars operate
autonomously, relying on data exchange with remote cloud servers for
navigation (Gerla et al., 2014). In healthcare, devices like pacemakers
monitor patient health and utilize cloud-based anomaly detection to
identify issues (Pace et al., 2018). Given their significant relevance to
daily life, one of the primary concerns for these services is ensuring high
availability. For example, failures in smart grid power management can
result in extensive blackouts (Asrari et al., 2020), and even minor de-
lays in the braking systems of self-driving cars can lead to catastrophic
accidents (Gerla et al., 2014).

These systems, known as mission-critical systems, necessitate high
levels of reliability in addition to availability, and thus must be ro-
bustly protected and managed to minimize downtime and data loss.

∗ Corresponding authors.
E-mail addresses: jinwookim@kw.ac.kr (J. Kim), seungsoo@inu.ac.kr (S. Lee).

Multi-access edge computing (MEC), also referred to as mobile edge
computing, is an emerging architecture designed to achieve these ob-
jectives. MEC, a form of distributed cloud technology, aims to reduce
traffic latency and enhance reliability by positioning a compact cloud
infrastructure, known as an MEC host, proximate to end devices. This
approach significantly reduces the physical distance between a core
network node and end devices, diverging from traditional cloud archi-
tectures. For these reasons, in recent mission-critical systems, where
network quality is a crucial component of service level agreements,
MEC has become an indispensable architecture, playing a pivotal role
in modern network infrastructures like 5G/6G (Patel et al., 2014; Hu
et al., 2015; Chiang and Zhang, 2016; Mao et al., 2017).

Despite its advantages, the primary focus of MEC remains on en-
suring network quality for mission-critical services, often overlooking
the aspect of reliability under failure conditions. Like traditional cloud
systems, MEC is susceptible to outages caused by application errors,
virtual machine faults, or hardware failures. A crucial distinction,
however, lies in their outage management strategies. Cloud systems
can mitigate these issues through service migration or backup sys-
tems, leveraging their centralized resources. In contrast, MEC, due to
vailable online 29 July 2024
084-8045/© 2024 Elsevier Ltd. All rights are reserved, including those for text and

https://doi.org/10.1016/j.jnca.2024.103978
Received 27 December 2023; Received in revised form 9 June 2024; Accepted 30 J
data mining, AI training, and similar technologies.

une 2024

https://www.elsevier.com/locate/jnca
https://www.elsevier.com/locate/jnca
mailto:jinwookim@kw.ac.kr
mailto:seungsoo@inu.ac.kr
https://doi.org/10.1016/j.jnca.2024.103978
https://doi.org/10.1016/j.jnca.2024.103978


Journal of Network and Computer Applications 231 (2024) 103978T. Park et al.

l
a
c
m
s
f
r
c
t
t
t
F
h
2
F
a

b

2

s
e
c
t

a

its distributed nature,1 encounters challenges in implementing such
solutions. Additionally, MEC must contend with a wider spectrum
of failure scenarios beyond service outages. For instance, processing
delays, seemingly minor but frequent in MEC environments due to
traffic surges or resource limitations, can critically impact mission-
critical systems. Therefore, issues that might be minor in standard cloud
settings emerge as significant reliability challenges in MEC. Address-
ing these challenges necessitates a more comprehensive and nuanced
approach, tailored to the unique properties and requirements of the
services in MEC contexts.

To address the issue of reliability in MEC, several previous studies
have been conducted (Wang et al., 2023a; Tuli et al., 2022b,a; Grover
and Garimella, 2018; Samanta et al., 2021; Sun et al., 2020). How-
ever, our review reveals that existing research primarily focuses on
enhancing system robustness itself to prevent failures, while research
on fault-tolerance—the capability to maintain reliable services during a
failure—is notably lacking. This gap in fault-tolerance research for MEC
systems poses challenges in ensuring true reliability for mission-critical
services that depend on MEC.

In this paper, we introduce Fatriot , a novel architecture meticu-
ously designed to enhance fault-tolerance in MEC systems. Serving
s a network interface card (NIC) for MEC hosts, Fatriot incorporates
omprehensive fault-tolerance management features. It continuously
onitors for anomalies such as service or host unavailability and

ervice-specific processing delays. Upon detecting packet processing
ailures, our system activates a fail-safe mode that seamlessly redi-
ects affected traffic to a backup host, ensuring uninterrupted service
ontinuity. Importantly, this fail-safe mode operates independently of
he host system’s state and, once configured, functions autonomously,
hereby enabling our system to maintain operational integrity. Even in
he face of a critical failure rendering the host system unresponsive,
atriot can ensure continuous service, provided that its power is on. We
ave developed a Fatriot prototype using NetFPGA-SUME (NetFPGA,
024a; Zilberman et al., 2014), and extensive evaluations confirm that
atriot effectively addresses failure scenarios with minimal overhead,
llowing services to continue without interruption during failures.
Contributions. In summary, this paper makes the following contri-

utions:

• We present potential failure scenarios within MEC hosts that
could compromise the reliability of mission-critical services. This
categorization underscores the diverse conditions that can consti-
tute a failure in mission-critical services, extending beyond mere
service downtime.

• We propose the design of a new data plane architecture, Fatriot ,
specifically tailored for MEC hosts. This architecture can detect
the failures in MEC hosts and provides a fail-safe mode. This
mode facilitates the seamless transition of affected traffic flows to
backup hosts in the event of a failure, indicating that our system
is a stand-alone functionality for effective response to host-wide
failures.

• We implement and evaluate a prototype of Fatriot using NetFPGA-
SUME. Our results show that Fatriot introduces minimal over-
head compared to a standard NIC, yet it efficiently detects and
addresses failure conditions.

. Background and motivation

In this section, we provide a concise overview of mission-critical
ystems and Multi-access Edge Computing (MEC). Subsequently, we
xplore the unique reliability concerns associated with MEC and the
hallenges encountered in implementing fault-tolerance mechanisms in
his context.

1 Note that in general MEC architecture, MEC hosts are distributed across
network and operate individually with a limited number of devices.
2

u

2.1. Mission-critical systems and multi-access edge computing

With the advancement of communication technologies, such as 5G
and 6G, numerous systems including the Internet of Things (IoT) and
cyber–physical systems, now rely on networked operations to connect
services with remote servers (e.g., cloud platforms) or nearby devices.
The uninterrupted 24/7 functioning of certain systems is critical, con-
sidering the potential risks to life and safety, significant economic
impacts, and legal consequence associated with any downtime or mal-
functioning. These mission-critical systems are required to adhere to
stringent standards encompassing high availability, performance, re-
liability, and security. These standards are part of ultra-reliable and
low-latency communications (URLLC), which necessitate a latency of
less than 1 ms and a permissible loss rate not exceeding 1 in 1,000,000.

In this context, maintaining high network quality is of paramount
importance. For this, the implementation of Multi-access Edge Comput-
ing (MEC), a distributed cloud infrastructure, has become a prominent
solution today. As illustrated in Fig. 1, MEC hosts are strategically
located near end devices (i.e., end users), enabling them to provide
services on behalf of remote cloud servers located far away from the
end devices. This proximity significantly reduces the physical distance
between end-devices and the services, leading to a marked decrease
in network latency. Consequently, this results in improved latency
and enhanced reliability of services. Therefore, many operators in
the mission-critical systems sector have adopted MEC, leveraging its
advantages for network quality enhancement (ETSI, 2024; ISGMEC
ETSI, 2019; Hu et al., 2015).

MEC inherits several architectural properties from cloud comput-
ing, primarily utilizing virtualization techniques such as network and
server virtualization, in compliance with the standards established by
the European Telecommunication Standards Institute (ETSI) (ISGMEC
ETSI, 2019; Tao et al., 2019; Sabella et al., 2016). According to those
properties, services are executed on virtual machines (VMs), and the
virtualization platform, commonly referred to as the hypervisor,2 effec-
tively manages incoming traffic at the host, routing it to the relevant
services. However, due to its close association with cloud infrastructure,
MEC encounters challenges similar to those in cloud environments,
such as potential VM/host failures. These challenges are particularly
critical in the context of MEC’s role in supporting mission-critical
systems, where reliability and uninterrupted service are imperative.

2.2. Reliability issues and failure conditions in MEC

The reliability of mission-critical systems is paramount, as fail-
ures within these systems can lead to significant risks. For example,
self-driving cars rely heavily on the exchange of critical data with
nearby vehicles and control servers for accurately assessing car speeds,
monitoring traffic and road conditions, and receiving essential control
signals. Considering the critical roles played by control servers in self-
driving cars, a temporary disruption resulting in the loss of control
signals could lead to catastrophic failures and even fatal accidents (Pa-
padimitratos et al., 2009; Lu et al., 2014; Uhlemann, 2015; Khan et al.,
2019). Therefore, even though uninterrupted service maintenance is
essential for MEC hosts, their architectural design renders them suscep-
tible to various failure risks, which can potentially compromise service
reliability.

To explore the reliability in MEC systemically, we first categorize
various failure conditions within an MEC host into two main types:
(i) component faults and (ii) processing delays. Subsequently, we examine
how these failures impact the reliability of mission-critical systems, as
detailed below (Perez-Botero et al., 2013; Coppolino et al., 2017) and
described in Fig. 2.

2 Note that although OS-level virtualization has recently become more pop-
lar, the ETSI standard advocates for hypervisor-based server virtualization.



Journal of Network and Computer Applications 231 (2024) 103978T. Park et al.
Fig. 1. An illustration of the MEC-deployed network. The remote cloud transfers mission-critical services, which are highly dependent on network performance, to an MEC host
situated in close proximity to end-devices.
Fig. 2. Reliability issues on the standard MEC architecture (ISGMEC ETSI, 2019; Tao et al., 2019; Sabella et al., 2016) for mission-critical systems, where the component faults
are denoted by #1–3 and processing delays are #4–6.
(i) Component faults: Operational errors in virtual machines (VMs),
which run networked service applications, can arise from multiple
factors (#1). These include application bugs, conflicts with other ap-
plications, operating system issues, or improper configurations. Such
errors can result in mission-critical systems malfunctioning or unex-
pectedly halting. Hypervisors are prone to fatal errors due to various
unexpected factors, such as resource limitations and misconfigurations
(#2). These errors can disrupt all the hosted VMs, adversely affecting
the mission-critical systems running on them. In a similar vein, MEC
hosts themselves, which operate the hypervisors, are also susceptible to
disruptions. Failures in the host device due to hardware malfunctions,
power issues, network outages, or similar factors can lead to significant
disruptions in mission-critical systems as well (#3).

(ii) Processing delays: MEC hosts, unlike cloud servers, may face
significant request volumes from certain regions or locations, leading to
server overload and processing delays. Such congestion can slow down
the response times of mission-critical systems, leading to user-perceived
service lags. (He et al., 2016; Lee et al., 2019; Park et al., 2022). In
this context, inadequate resources on an MEC host can slow down
the processing of applications or VMs (#4). Additionally, inefficient
application design or suboptimal data processing methods can cause
processing delays, potentially breaching the low-latency requirements
of mission-critical systems. The complexity introduced by virtualization
technology, and the interactions between VMs and the underlying
virtualization infrastructure, can result in processing delays as well
3

(#5). These issues are magnified under high service loads or when
resources are shared with other VMs, which can degrade service quality
and compromise system consistency and reliability (Zhou et al., 2012;
Allan et al., 2016; Anwar et al., 2017). In addition, network faults
are particularly critical in MEC, as it relies on network-based services
(#6). Communication between applications and end-devices can be
hindered by problems such as incorrect network configurations or
insufficient bandwidth. Additionally, this congestion can cause packet
loss, resulting in data inconsistencies.

The presence of those factors presents significant challenges to
the reliability of mission-critical systems operating within the MEC
environment. However, the existing architectural design of MEC has not
adequately addressed these conditions, nor has it elaborately discussed
strategies for the detection and recovery from such failures. This over-
sight leads to a noticeable research gap in the realm of MEC reliability,
particularly concerning mission-critical systems. Addressing this gap
is crucial, as it is imperative to ensure continuous operation of these
systems, even under fault conditions.

2.3. Challenges in achieving fault-tolerance on MEC

Fault-tolerance is a crucial design principle for mission-critical sys-
tems to ensure uninterrupted operation and resilience in the face of fail-
ures. Considering the role of MEC in conjunction with mission-critical
systems, implementing efficient fault-tolerance mechanisms on MEC



Journal of Network and Computer Applications 231 (2024) 103978T. Park et al.

s

c
s
t
d
c
A
l
e

p
t
a
t
f
w
(
T
u
u

f
t
N
⃝
m
t
d
t
⃝
a
a
d
t

is essential for enhancing the reliability and availability of mission-
critical systems (Tao et al., 2019). In what follows, we discuss lacking
of fault-tolerance mechanisms in MEC (Bala and Chana, 2012; Cher-
aghlou et al., 2016; Koren and Krishna, 2020; Sorin, 2022) and analyze
their limitations encountered when integrating these mechanisms into
current MEC environments.

(i) Redundancy: MEC implementation should incorporate server
redundancy to facilitate service transfer to other servers and the uti-
lization of load-balancing techniques for even traffic distribution. This
approach enhances the availability of MEC hosts in the event of failures
and improves overall system reliability by preventing server over-
loading. However, scaling out for redundancy presents challenges in
migrating services across distributed MEC hosts, unlike common cloud
servers located within the same data center (Sabharwal et al., 2013;
Khan et al., 2019; Tao et al., 2019; Wang et al., 2023b).

(ii) Monitoring and detection: The foundation of fault-tolerance
lies in system monitoring, where monitored data is utilized to diagnose
and address failures appropriately. Real-time monitoring is ideally nec-
essary for quick diagnosis and response. However, conducting real-time
monitoring for MEC hosts is challenging due to their limited resources
compared to cloud servers. As a result, monitoring can significantly
impact the performance of an MEC host, leading to a reduction in
available system resources for mission-critical systems. Paradoxically,
system monitoring can potentially contribute to the occurrence of fault
conditions in an MEC host rather than preventing them (Popiolek and
Mendizabal, 2012; Suneja et al., 2015; Rameshan, 2016; Popiolek et al.,
2021).

(iii) Gradual degradation and automatic recovery: As described
above, even a brief interruption of services in the MEC host caused by
failures such as network disconnection, kernel crash, or unexpected sys-
tem error, though typically short in duration, can significantly impact
the entire mission-critical systems. Therefore, fault-tolerant mission-
critical systems should continue functioning even in the presence of
failures by allowing certain performance or functionality degradation
instead of immediately halting entire services. Moreover, these systems
should be designed to autonomously recover from the failures and
restore their normal operations. In such cases, simply redundancy can
offer a solution to ensure service continuity, but it does raise cost
concerns, as mentioned earlier.

In summary, attaining fault-tolerance for MEC with mission-critical
systems poses several challenges: (i) redundancy may introduce ad-
ditional costs, (ii) monitoring anomalies can impact the performance
of MEC hosts, and (iii) MEC hosts are not inherently designed to
seamlessly handle the failures.

2.4. Research goal

To address the challenges previously outlined, we aim to develop
a fault-tolerance system that is specifically tailored for MEC envi-
ronments supporting mission-critical systems. We recognize that the
primary challenges stem from the resource-intensive nature of these
systems and their tight integration with the MEC host in current
architectures. In response, we propose a novel hardware-assisted ar-
chitecture that utilizes a SmartNIC. This SmartNIC operates within an
isolated execution environment and switches to a standalone mode
during failures in the MEC host. This design ensures that the fault-
tolerance system remains independent of the MEC host’s primary oper-
ations, thereby conserving host resources and significantly enhancing
the system’s capability to manage faults and sustain uninterrupted
functionality in mission-critical scenarios.

3. System design

In this section, we first explore the design considerations for our
system. Following this, we introduce Fatriot , a novel fault-tolerance
ystem for MEC environments, developed using a SmartNIC.
4

3.1. Design considerations

Reliable fault detection: Our primary objective is to achieve effec-
tive and reliable fault detection on an MEC host even under fatal errors
like a kernel panic. This approach is crucial to prevent any adverse ef-
fects on mission-critical systems. Furthermore, it is imperative that the
fault-tolerance system itself remains robust against host interruptions,
thereby ensuring continuous operation and bolstering the reliability
of mission-critical applications. Achieving these objectives requires the
system should operate independently of the MEC host’s state.

Real-time performance monitoring: As previously discussed, per-
formance degradation in mission-critical systems can significantly com-
promise the reliability of their continuous operations. Therefore, it
is essential not only to identify system failures but also to consider
performance anomalies when analyzing the state of the MEC system.
Furthermore, to proactively address these issues, the monitoring system
tasked with detecting anomalies must operate in real-time. This real-
time operation is critical to enable prompt responses and actions,
ensuring the continuous and reliable functioning of mission-critical
services.

Fail-safe operation: The fundamental principle of a fault-tolerant
system is to ensure continuous operation of mission-critical services,
even amidst failures. For instance, when a malfunction occurs in an
MEC host, an alternative server should be capable of seamlessly taking
over to handle requests, thereby guaranteeing uninterrupted function-
ality of mission-critical services. Consequently, the system should in-
corporate a fail-safe mechanism that ensures a reliable and continuous
service experience, especially for applications classified as mission-
critical.

3.2. Fatriot overview

Fig. 3 provides an overview of the architecture of Fatriot . It is con-
eptualized as a Network Interface Card (NIC) tailored for an MEC host
ystem, encompassing all essential functionalities for managing fault-
olerance. This approach empowers Fatriot to function autonomously,
etached from the state of the host device—except for the policy
onfiguration, elaborated upon later—as long as power is sustained.
s a result, Fatriot can continually monitor the host for any anoma-

ies, promptly responding to emerging faults in real-time, and thereby
nsuring the uninterrupted operation of mission-critical services.
System components: Fatriot consists of four fundamental com-

onents: (i) the heartbeat manager, which generates heartbeat signals
argeted at each service and the host platform (i.e., OS or hypervisor) to
scertain potential faults, (ii) the traffic classifier, responsible for iden-
ifying the traffic associated with mission-critical services to facilitate
ail-safe operations, (iii) the queue, which carries out the task of for-
arding or mirroring packets to the upper layer or another module, and

iv) the fail-safe handler, responsible for triggering fail-safe operations.
his module reroutes mission-critical traffic to a neighboring device
pon the detection of host or application failures, thereby ensuring
ninterrupted operation despite the identified issues.
Overall workflow: The operational sequence of Fatriot unfolds as

ollows (refer to Fig. 3). 1⃝Incoming traffic of an MEC host is subjected
o initial processing through the traffic classifier within the Fatriot
IC to classify whether it is a packet for a mission-critical service.

2 The packets are then enqueued with their classification result. 3⃝Non
ission-critical service packets are forwarded directly from the queue

o the host layer without additional processing. 4⃝In contrast, packets
eemed mission-critical are not only forwarded but also mirrored to
he fail-safe handler to facilitate the preparation of a fail-safe operation.
5 Concurrently, the heartbeat manager dispatches heartbeat packets to
pplications or VMs by inserting them to the queue to assess their avail-
bility. 6⃝Should any fault conditions (as mentioned in Section 2.2) be
etected on the host, the heartbeat manager signals the fail-safe handler
o redirect the packets to neighboring devices, wherein mission-critical



Journal of Network and Computer Applications 231 (2024) 103978T. Park et al.

s
o
w
s
m

3

o
a
e
c
i
t
s
t
N

w
w
f
t
t
s
a
t

Fig. 3. The overall architecture of Fatriot system.
Fig. 4. The design and workflow of the traffic classifier and queue.
ervices can be attended to. 7⃝In such scenarios, Fatriot seamlessly
perates as a network switch, transparently facilitating communication
ith another MEC host. 8⃝Finally, the Fatriot control plane in the host

oftware layer configures the Fatriot -NIC, enabling the identification of
ission-critical traffic and the early detection of faults.

.3. Traffic classifier and queues

While a primary requirement of Fatriot is to guarantee fail-safe
perations, even in instances of host failures, a significant challenge
rises from the limitations inherent in traditional NIC architectures in
ffectively accommodating these operations. In the traditional NIC ar-
hitecture, incoming packets are typically routed to the host. However,
n scenarios where the host experiences a fault, there emerges a need
o redirect enqueued packets to an alternative host. Unfortunately, the
tandard NICs lack the functionality required to support such redirec-
ion. To address this limitation, we propose the design of an advanced
IC queue, complemented by a specialized traffic classifier.

This combination is specifically engineered to enable the packet for-
arding mechanism we envision, as illustrated in Fig. 4. For instance,
hen a packet is incoming into Fatriot , before getting into a queue to be

orwarded to a host, the packet firstly goes through the traffic classifier
o determine whether it is intended for a mission-critical service. The
raffic classifier contains the target table, which is a list of service
ignatures (e.g., IP and port addresses of a destination service) and its
ddresses designated for mission-critical systems, and the header parser
5

o identify whether the packet is a mission-critical one or not based on
the table. The identification of services per packet is carried out using
the IP address of a service VM and its application’s port number. Then,
the packet is enqueued.

The queue consists of two 1:1 corresponding queues: one for for-
warding packets normally (i.e., main packet queue) and the other for
identifying whether the packet is meant for a mission-critical service
(i.e., sub-queue). When the packet that is identified as a mission-critical
one is enqueued, the corresponding sub-queue is also enqueued with a
flag data indicating that the packets entering the queue now are for
a mission-critical service and a service ID. When the packet in the
main packet queue is dequeued towards the host layer, the sub-queue
also dequeues at the same time. If the current packet is identified as
belonging to a mission-critical service, it is mirrored to the fail-safe
handler. Consequently, regardless of whether the host is behaving in a
faulty manner, the packets for mission-critical systems are always ready
to be forwarded to their neighbor via the fail-safe handler. Conversely,
if the host is functioning normally, the packet will be served through
the host as usual.

3.4. Heartbeat manager

Fatriot monitors the operational states of host platforms, including
the operating system and hypervisor, as well as service applications.
This monitoring is achieved by measuring the round-trip time (RTT) of
heartbeat messages sent to these components. If the RTT exceeds a pre-
determined threshold, expressed as a ratio to the average RTT observed
under normal operating conditions, Fatriot identifies this deviation as

indicative of an operational abnormality in the target component.



Journal of Network and Computer Applications 231 (2024) 103978T. Park et al.
Fig. 5. The design and workflow of the heartbeat manager.

Fig. 5 illustrates the design of the heartbeat manager. Its struc-
ture is fundamentally based on the previous research, specifically the
Formullar project (Park et al., 2021), which is an FPGA-based net-
work testing tool. Formullar is known for its ability to measure the
generation and reception of messages using a shared timer and for
implementing various traffic models in a programmable way. While its
original design was focused on the precise measurement of network
performance between hosts, we redesign its functionality to measure
the performance and availability of intra-host components, such as
services and VMs. This modification enables the generation of heartbeat
messages and monitoring of the host system’s running state based on
RTT measurements with hardware-level precision.

The heartbeat manager begins by configuring entries for heartbeat
messages, its interval and threshold ratio for a target (i.e., host or
service instances), ⟨𝑡𝑎𝑟𝑔𝑒𝑡, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑⟩ and manages the
entries in a table. The heartbeat messages can take ICMP or UDP with
predefined messages. These can be configured by a system adminis-
trator through control messages to check against application behavior,
such as intentionally sending a request message that triggers the return
of an error message. The 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 can be configured as small if the
administrator is concerned about any failures; thus, Fatriot sends heart-
beat packets frequently, increasing the heartbeat transmission rate.
However, it is important to note that injecting many heartbeat packets
does not impose performance overhead. After the configuration, the
heartbeat manager measures the average RTT for the target (e.g., the
host or services on it) using the designated heartbeat message under
normal conditions. After that, it transmits the heartbeat message to the
target at regular specified intervals, measures its RTT, and computes the
𝑅𝑇𝑇𝑙𝑎𝑠𝑡∕𝑅𝑇𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ratio. If this ratio surpasses the threshold, it signifies
an abnormal condition, triggering the activation of the fail-safe mode
for the target. Consequently, the timeout duration for the heartbeat
is inherently established as the product of the average RTT and the
threshold.

Fig. 5 contains an example of the heartbeat manager with its
configuration table. The heartbeat message for Service 1 in the host
system is set to ICMP, operates every 1 s, and the threshold is set to
1.5. Its average RTT is measured as 200 μs, the last RTT is measured
250 μs, and the (𝑙𝑎𝑠𝑡 𝑅𝑇𝑇 )∕(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑇𝑇 ) ratio is 1.25, lower than the
threshold, i.e., its state is normal. In the case of Service 2, it works
with a user-defined message, and its interval is set to be relatively
long at 5 s as if Service 2 is assumed that it does not need to be
checked often. Its (𝑙𝑎𝑠𝑡 𝑅𝑇𝑇 )∕(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑇𝑇 ) ratio is 0.93, i.e., it is also
normal. Otherwise, in Service 3, its interval 0.5 s as if it should be check
frequently, but the last RTT is measured as 600 μs as the heartbeat has
timed out by exceeding the threshold. Therefore, it is considered as
an abnormal state so that the fail-safe mode for Service 3 is activated.
6

Fig. 6. The design and workflow of the fail-safe handler.

Whereas, if the last RTT returns to within the threshold again, the fail-
safe mode is deactivated, and processing is performed again on the MEC
host. If an entire host is in an abnormal state (e.g., kernel failures),
the fail-safe mode is automatically activated for all registered services
because Fatriot remains functional independently of the availability of
host software stacks, requiring only power to function. Leveraging this
advantage, Fatriot incorporates a hybrid structure; its fail-safe mode
transitions from a NIC to a network switch upon detecting host system
or application failures via the heartbeat manager. Consequently, even if
the service processing becomes unavailable on the host, critical traffic
is rerouted to pre-configured neighboring hosts to maintain service
continuity.

3.5. Fail-safe handler

The fail-safe handler allows Fatriot to operate like a network switch.
When a host (or services running on it) is unavailable, the fail-safe
handler forwards incoming traffic to pre-designated backup hosts or
servers so that the services can continue there as illustrated in Fig. 6.

The fail-safe handler manages a service table that specifies backup
hosts against certain services as well as a default backup server (i.e., the
symbol ∗). Upon detection of a packet destined for an unavailable
service (App 2 of Fig. 6), the traffic classifier within Fatriot forwards
the packet to the fail-safe handler instead of forwarding it to the
host. The fail-safe handler then retrieves the service table, using the
packet’s destination IP and port as a key, to identify an appropriate
backup host. It proceeds to modify the packet’s destination IP and
port (DNAT), ensuring the packet’s seamless reception at the backup
host. Concurrently, the source IP and port are modified to predefined
values so that response packets can be routed back to the current Fatriot
instance. After address translation, the fail-safe handler recalculates
the necessary checksums to maintain packet integrity and forwards
the packet to the designated backup host. When a response packet is
received from the backup host, the NAT-modified address is restored
to its original state (SNAT), and the packet is then relayed back to the
original source. This process enables the fail-safe handler to seamlessly
relay traffic between the backup host and end-users for services that are
temporarily unavailable, thus maintaining the continuity and reliability
of services.

The neighbor discovery module autonomously manages the list
of available backup hosts by communicating other hosts, which also
includes those utilizing Fatriot . After an administrator configures the
backup hosts, the discovery module enables the exchange of available
service capacities and states among these backup hosts based on the
service signatures. Subsequently, it ensures that the available backup
hosts for a specific service are evenly distributed and utilized across
multiple hosts, preventing the concentration of load on any single
backup server.



Journal of Network and Computer Applications 231 (2024) 103978T. Park et al.
Fig. 7. NetFPGA-SUME.
Fig. 8. Evaluation environment.
-

3.6. Control interface

Fatriot serves as a SmartNIC that interfaces with a host machine
through a PCIe connection, guaranteeing service reliability for edge
systems. To enable communication with the host machine for the
configuration, Fatriot utilizes its device driver within the host’s soft-
ware layer and offers a range of APIs for management purposes (the
configruation API depicted in Fig. 3). Through this configuration API,
the host or the network administrator can configure necessary tables
essential for Fatriot ’s operation.

4. Implementation

We implement a full prototype of Fatriot utilizing NetFPGA-SUME,
an FPGA-based PCI Express board featuring the Xilinx Virtex-7
XC7V690T FPGA and equipped with four SFP+ 10 Gbps interfaces (NetF
PGA, 2024a; Zilberman et al., 2014) (see Fig. 7). It is installed on a host
machine powered by a Xeon Gold 5520 processor and 64 GB of RAM,
connected via a PCI Express interface. The host environment includes
KVM (RedHat, 2024) and Open vSwitch (Open vSwitch, 2024; Pfaff
et al., 2015) to implement the standard Multi-access Edge Computing
(MEC) architecture as defined by the European Telecommunications
Standards Institute (ETSI) (ISGMEC ETSI, 2019).

The overall development is based on the Reference NIC project
offered by the official NetFPGA-SUME project repository (NetFPGA,
2024b). The host software interface is implemented using the refer-
ence driver provided by the official repository as well. Also, the host
user interface (API) is implemented via netlink to the NetFPGA-SUME
reference device driver.

5. Evaluation

Experimental environment. The environment consists of a main
MEC host, a backup host, and a traffic generator as illustrated in Fig. 8.
Each host machine has an Intel Xeon Gold 5520, 64 GB of RAM, and
NetFPGA-SUME for the Fatriot prototype. These hosts run KVM-based
virtual machines (VMs), which act as mission-critical edge services, and
7

utilize Open vSwitch (Open vSwitch, 2024; Pfaff et al., 2015) to provide
network connectivity for VMs. All VMs perform a loop-back function
to respond (i.e., echo-ing) with the received payload under network
contentions.

To validate the feasibility of Fatriot , we assess its network perfor-
mance and compare it against the reference NIC of NetFPGA-SUME.
This reference NIC, a simple FIFO-based 10GbE network interface
card, is commonly utilized as a baseline in numerous NetFPGA-SUME
projects. Additionally, we evaluate the effectiveness of Fatriot ’s fail-safe
mode by benchmarking its response time in detecting and addressing
failure conditions on MEC hosts. Furthermore, we analyze the network
performance of backup hosts when the fail-safe operation is activated.
The test traffic is generated using the FPGA-based packet generator,
Formullar (Park et al., 2021). It transmits a specified amount of packets
at a certain traffic rate, allowing us to measure round-trip times with
a precision of 6.25 ns.

5.1. Performance overhead

To assess the performance impact of Fatriot ’s design, we initially
compare it to the reference NIC of NetFPGA-SUME. We subject the
main host to burst traffic generated by Formullar and measure both
throughput and latency. In this evaluation, the main host forwards the
received traffic to its VM, which returns the received traffic without
processing. Fig. 9 depicts the results of this evaluation; Ref.NIC-
Host/VM denotes the communication performance metrics observed
between the traffic generator and the main host (or its VM) when using
the reference NIC. Conversely, Fatriot-Host/VM represents the
communication performance metrics when Fatriot is employed instead
of the reference NIC.

The throughput and latency of Fatriot closely resemble those of the
reference NIC. As shown in Fig. 9(b), an increase of approximately
200 microseconds in latency is observed when traversing the VM,
but this overhead is equally evident on both the reference NIC and
Fatriot , attributable to the VM’s network stack (e.g., Open vSwitch).
This result aligns with expectations, given that the operations of Fatriot
occur entirely at the hardware level with no direct impact on host



Journal of Network and Computer Applications 231 (2024) 103978T. Park et al.
Fig. 9. The results of the performance comparison between Reference NIC and Fatriot .
Fig. 10. The results of mitigating processing delay failure.
performance. Consequently, the design of Fatriot does not introduce
extra overhead to the host systems, making it a promising solution for
enhancing availability in MEC environments.

Please note that although our platform, NetFPGA-SUME, is designed
to support 10 Gbps of bandwidth, our achieved result is only half of
that capacity. This degradation is attributed to the bottleneck in the
official device driver responsible for transmitting traffic between the
NIC and the host kernel (or vice versa). The official driver provided by
NetFPGA organization lacks optimal implementation, contributing to
this bottleneck. We believe that this overhead can be mitigated with the
implementation of an improved device driver. Nonetheless, our primary
objective revolves around enhancing the availability of MEC, rather
than focusing on performance improvement. Hence, since we verify
that there is no performance degradation in Fatriot when compared to
the reference NIC, we maintain efforts to improve its performance as
well as the reference device driver in future works.

5.2. Effectiveness of fail-safe mode

To evaluate the effectiveness of Fatriot in handling failure condi-
tions, we perform a test by deliberately triggering a failure in the
main host while initiating a traffic flow. In this experiment, traffic is
generated at a rate of 10 packets per second, directed towards a VM on
the main host. The VM then returns the received packets back to the
traffic generator.

Processing delay: This scenario considers potential failures arising
from factors such as suboptimal host performance and traffic conges-
tion, resulting in delayed response times. To simulate this scenario,
when the service VM responds to a request, we configured the VM
8

to intentionally introduce a time delay in its replies starting from the
40th packet. Then, assuming system recovery, this simulated delay
is removed beginning with the 80th packet. Subsequently, we assess
changes in round-trip time (RTT) using the traffic generator under two
conditions: (1) with fail-safe mode enabled (i.e., with Fatriot) and (2)
with fail-safe mode disabled (i.e., without Fatriot). Fail-safe detection
in Fatriot is configured to trigger when latency increases by over 50%
within a 0.5-second cycle. In such instances, traffic is rerouted to the
backup host for continued service.

The evaluation results are illustrated in Fig. 10(a), with the or-
ange line representing the scenario involving Fatriot and the blue line
depicting the situation without Fatriot . In the absence of Fatriot , the
RTT experiences two increments commencing from the 40th packet,
persisting until the failure restoration at the 80th packet. Conversely,
in the presence of Fatriot , an abrupt RTT surge is promptly detected,
prompting the activation of fail-safe mode and the rerouting of traffic
to the backup host. As a result, RTT rapidly diminishes by the 50th
packet. It is worth noting that the implementation of the fail-safe mode
may introduce a slight RTT increase owing to the extended distance to
the backup host. Nevertheless, this delay typically falls within the range
of a few microseconds, which is considered negligible in a real-world
environment.

The experiment depicted in Fig. 10(a) necessitates a minimum of
0.5 s for the activation of the fail-safe mode. This delay is a result of
Fatriot measuring RTTs within intervals specified by the administrator.
Initially, this delay may appear unsuitable for mission-critical services.
However, to address this concern, the interval time can be configured to
a shorter duration (e.g., 0.1 s), as exemplified in Fig. 10(b). By doing



Journal of Network and Computer Applications 231 (2024) 103978T. Park et al.

s
a

h
i
i
w
d
u
m

s
r
w
R
h
a
q
g
t
m

5

t
l
m

p

Fig. 11. The results of mitigating host down failure.
Fig. 12. The results of performance overheads via the backup host’s Fatriot NIC only, host system, and VM.
(
I
m
a
t
h

o, Fatriot can transition into fail-safe mode more rapidly, mitigating
ny potential delays in service processing.
Host down failure: This scenario reflects a situation where the

ost system (e.g., OS or hypervisor) undergoes a crash, rendering it
ncapable of delivering any services. To simulate this scenario, we
ntentionally induce a system crash on the main host at the 50th packet
hile continuing to send traffic to it. Subsequently, we assess both the
elivered rate of traffic and changes in RTT from the traffic generator
nder two conditions: with fail-safe mode enabled and with fail-safe
ode disabled.

The results are presented in Fig. 11. In the scenarios where the fail-
afe mode is disengaged (the orange line), packet delivery is suspended,
esulting in both the delivered rate and RTT recording zero. Conversely,
ith the fail-safe mode engaged (the blue line), the delivered rate and
TT exhibit stability as the service seamlessly transitions to the backup
ost, ensuring uninterrupted service provision. It is acknowledged that
marginal RTT increase is discernible; however, it is deemed inconse-
uential within the broader context and remains imperceptible in the
raphical representation. Taken together, we can see that Fatriot is able
o adequately detect anomalies in a system and handle them in a timely
anner and with low overhead.

.3. Network performance

Finally, to see if relaying and rerouting traffic to the backup host via
he fail-safe mode is practical, we measure the network throughput and
atency from the traffic generator to the backup host under the fail-safe
ode.

In Fig. 12, the blue line represents the result of measuring network
erformance to the backup host’s Fatriot via the main host’s Fatriot
9

i.e., traffic generator → main host’s Fatriot → backup host’s Fatriot).
t is evident that Fatriot achieves line-rate performance, showcasing
inimal observable overhead. Note that the throughput degradation

ttributed to the device driver does not affect this evaluation result, as
he traffic is relayed at the hardware layer without going through the
ost layer. Consequently, we observe Fatriot achieving nearly identical

performance as earlier measurements conducted on the main host,
whether the traffic is directed to a host or VM of the orange and green
lines (i.e., traffic generator → main host’s Fatriot → backup host’s Fatriot
→ backup host’s OS or VM). In fact, there is a slight increase in latency
attributable to increased travel and processing within Fatriot . However,
this increment is on the order of a few hundred nanoseconds, which
remains negligible at the overall scale. In summary, the overhead of the
fail-safe module is almost non-existent, and with enough backup hosts,
MEC should be able to support a reliable service in failure conditions.

6. Limitations and discussion

Dependency on admin configuration: Fatriot now relies on man-
ual configuration by administrators in many aspects, including detec-
tion policies and backup host configurations. Hence, failure detection
may not work properly if not configured correctly, and requires con-
stant updates from administrators as services are added or changed,
and as network conditions change on a permanent basis. We believe
these issues can be easily addressed by combining Software-Defined
Networking (SDN), introducing a global management scheme for the
network, and deploying a number of known intelligent/automated
detection and network environment configuration techniques. How-
ever, the intelligent behavior of anomaly detection and fail-safe mode



Journal of Network and Computer Applications 231 (2024) 103978T. Park et al.

M
H
o
T
i
F
a
r
H

h

d
e
2
S
f
h
e
n
t
s
t
s
e
m

8

i
a
s
M
f
c
p
c
S
i
I
U
c
a
a

activation is beyond the scope of this paper, which is primarily aimed
at hardware design, and will be addressed in future work.

Reliability and deployment issue: Fatriot is an extension of the
EC NIC, and there is a possibility of functional failure in this itself.
owever, the primary functionality of Fatriot involves ‘extending’ the
perations of a typical NIC with various features, including fail-safe.
he functionalities up to the traffic classifier and queues are almost

dentical to those of a common NIC. In other words, the main features of
atriot (e.g., fail-safe) and general packet processing are structured sep-
rately, so even if there is a malfunction in Fatriot , the NIC operations
emain functional. Therefore, the impact on the system is minimal.
owever, to fully utilize the functionality of Fatriot , it is necessary

to exchange state information between neighbor MECs considering
backup hosts, which implies that Fatriot needs to be installed on other
neighbors, increasing overall operational costs. While this is a direct
disadvantage of Fatriot , it can be mitigated by configuring the Fail-safe
andler and manually addressing responses from the backup host.
Stateful connection with backup servers: The current design of

Fatriot does not consider stateful connections with backup servers when
a flow/service turns into the fail-safe mode. This omission is due to
the complexities involved in maintaining a session with an external
device, as it necessitates duplicating all traffic and synchronizing all
states each time to sustain communication, resulting in significant
overhead. In addition, a session migration might be a viable solution
only for a L4 layer but if service packets contain contextual informa-
tion (i.e., L7), requiring advanced technology that could be a huge
research topic for this. The implementation of such aspects is beyond
the scope of this paper’s topic, while the major scope of this paper is to
implement a fault-tolerant mechanism in a MEC. However, we believe
that by combining Fatriot with several well-known stateful migration
strategies (Junior et al., 2020; Horii et al., 2018; Zandi et al., 2023)
and incorporating precise protocol information for each service, it is
possible to achieve a sufficiently stateful fault-tolerant system on MEC.

7. Related work

As reliability becomes critical in MEC systems, numerous stud-
ies have emerged to address this challenge. However, most focus on
preventing MEC system failures through early-stage detection or opti-
mizing resource utilization, rather than on robust mitigation strategies.
This section explores these studies, highlighting how our approach,
which leverages a SmartNIC for real-time failure detection and redi-
rection, differs significantly. Note that existing studies and Fatriot are
based on the standard MEC architecture proposed by ETSI (European
Telecommunication Standards Institute) (ISGMEC ETSI, 2019), where
a MEC host runs multiple virtualized applications.

Predicting failures in MEC systems: Most previous studies (Wang
et al., 2023a; Tuli et al., 2022b,a) in this domain aim to avoid fault
recovery by predicting failures in advance and taking appropriate
actions in response. B-Detection (Wang et al., 2023a) harnesses the
power of deep learning, utilizing a prediction model that identifies
runtime reliability anomalies in services on MEC systems, leveraging
the historical data distribution of these services. Another solution,
PreGan (Tuli et al., 2022b), employs Generative Adversarial Networks
(GANs) for early failure prediction, facilitating preemptive migrations
for fault tolerance. Additionally, DRAGON (Tuli et al., 2022a) adopts
a memory-efficient deep learning model, generative optimization net-
works (GON), enhancing the agility of failure detection mechanisms.
While invaluable for early detection, these studies do not provide
immediate fault response mechanisms, which is where our system’s
real-time detection and redirection capabilities using SmartNICs offer
a novel contribution.

Task deployment strategy for MEC systems: Another line of
research (Grover and Garimella, 2018; Samanta et al., 2021; Sun et al.,
2020) explores enhancing MEC system reliability through task repli-
cation and agent-based fault monitoring. Sun et al. (2020) propose a
QoS-aware task deployment model for dynamic task rearrangement,
and Grover and Garimella (2018) introduce software agents for failure
monitoring and task redirection. However, these methods are limited
10
in addressing failures in real-time and depend on the availability of the
host system. Our approach, in contrast, leverages the inherent capa-
bilities of a SmartNIC to detect and respond to failures immediately,
providing a robust and more effective fault tolerance solution for MEC
systems regardless of the availability of the host system.

Hardware extended MEC architecture: Advances in programmable
ata plane technologies have prompted researchers (Ricart-Sanchez
t al., 2019; Park et al., 2022; Paolucci et al., 2021; Mai et al.,
020) to enhance MEC system performance and reliability by utilizing
martNICs and programmable switches. MECaNIC (Park et al., 2022),
or example, offloads existing software-based network stacks of a MEC
ost to a SmartNIC for improved packet processing capabilities, thereby
nsuring network-level reliability even under resource contention sce-
arios. Similarly, Mai et al. (2020) utilize in-network computing for
ask acceleration for services running on MEC systems. While these
tudies effectively utilize hardware for performance and reliability,
hey do not focus on real-time failure detection and response. Our
ystem fills this gap by not only utilizing a SmartNIC for performance
nhancement but also for real-time failure detection and mitigation,
arking a significant advancement in MEC system reliability.

. Conclusion

MEC stands as an essential architecture for ensuring the reliabil-
ty of mission-critical services over networks so that ensuring service
vailability is paramount in MEC, prompting the proposal of numerous
olutions to address this critical need. However, previous research on
EC reliability has been focused on making MECs more robust against

ailure but placing lesser emphasis on strategies to maintain service
ontinuity in the event of an actual MEC failure. Therefore, in this
aper, we have organized a more rigorous definition of the failure
onditions that can occur in MEC services and then proposed Fatriot , a
martNIC for MEC that as well as a way to ensure service availability
n the event of those conditions. Despite functioning as a Network
nterface Card (NIC), it can monitor the service status of the MEC host.
pon detecting a failure, it relays traffic to backup hosts, ensuring
ontinuous service operation. Notably, it has standalone capabilities,
llowing it to establish a connection with the backup host even under
host system down. We anticipate that Fatriot will assume a critical

role in the Internet of Everything (IoE) era, as the proliferation of con-
nected devices increases. It will contribute significantly by enhancing
mission-critical services availability to preventing fatal malfunctions.

CRediT authorship contribution statement

Taejune Park: Writing – original draft, Validation, Software. My-
oungsung You: Writing – review & editing, Investigation. Jinwoo
Kim: Writing – review & editing, Writing – original draft, Conceptual-
ization. Seungsoo Lee: Writing – review & editing, Writing – original
draft.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No.

2022R1C1C1006967, RS-2022-00166401).



Journal of Network and Computer Applications 231 (2024) 103978T. Park et al.
References

Allan, T., Brumley, B.B., Falkner, K., Van de Pol, J., Yarom, Y., 2016. Amplifying side
channels through performance degradation. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications. pp. 422–435.

Anwar, S., Inayat, Z., Zolkipli, M.F., Zain, J.M., Gani, A., Anuar, N.B., Khan, M.K.,
Chang, V., 2017. Cross-VM cache-based side channel attacks and proposed
prevention mechanisms: A survey. J. Netw. Comput. Appl. 93, 259–279.

Asrari, A., Ansari, M., Khazaei, J., Cecchi, V., 2020. Real-time blackout prevention in
response to decentralized cyberattacks on a smart grid. In: 2020 IEEE Texas Power
and Energy Conference. TPEC, IEEE, pp. 1–5.

Bala, A., Chana, I., 2012. Fault tolerance-challenges, techniques and implementation in
cloud computing. Int. J. Comput. Sci. Iss. (IJCSI) 9 (1), 288.

Cheraghlou, M.N., Khadem-Zadeh, A., Haghparast, M., 2016. A survey of fault tolerance
architecture in cloud computing. J. Netw. Comput. Appl. 61, 81–92.

Chiang, M., Zhang, T., 2016. Fog and IoT: An overview of research opportunities. IEEE
Internet Things J. 3 (6), 854–864.

Coppolino, L., D’Antonio, S., Mazzeo, G., Romano, L., 2017. Cloud security: Emerging
threats and current solutions. Comput. Electr. Eng. 59, 126–140.

ETSI, 2024. Multi-access Edge Computing (MEC) https://www.etsi.org/technologies/
multi-access-edge-computing.

Fang, X., Misra, S., Xue, G., Yang, D., 2011. Smart grid—The new and improved power
grid: A survey. IEEE Commun. Surv. Tutor. 14 (4), 944–980.

Gerla, M., Lee, E.-K., Pau, G., Lee, U., 2014. Internet of vehicles: From intelligent grid
to autonomous cars and vehicular clouds. In: 2014 IEEE World Forum on Internet
of Things. WF-IoT, IEEE, pp. 241–246.

Grover, J., Garimella, R.M., 2018. Reliable and fault-tolerant IoT-edge architecture. In:
2018 IEEE Sensors. IEEE, pp. 1–4.

He, F., Yan, X., Liu, Y., Ma, L., 2016. A traffic congestion assessment method for urban
road networks based on speed performance index. Procedia Eng. 137, 425–433.

Horii, M., Kojima, Y., Fukuda, K., 2018. Stateful process migration for edge computing
applications. In: 2018 IEEE Wireless Communications and Networking Conference.
WCNC, IEEE, pp. 1–6.

Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V., 2015. Mobile Edge
Computing—-A Key Technology Towards 5G. ETSI White Pap. 11 (11), 1–16.

ISGMEC ETSI, 2019. Multi-Access Edge Computing (MEC); Framework and Reference
Architecture. Tech. Rep. 2016.

Junior, P.S., Miorandi, D., Pierre, G., 2020. Stateful container migration in geo-
distributed environments. In: 2020 IEEE International Conference on Cloud
Computing Technology and Science. CloudCom, IEEE, pp. 49–56.

Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A., 2019. Edge computing: A
survey. Future Gener. Comput. Syst. 97, 219–235.

Koren, I., Krishna, C.M., 2020. Fault-Tolerant Systems. Morgan Kaufmann.
Lee, K., Kim, M., Park, T., Chwa, H.S., Lee, J., Shin, S., Shin, I., 2019. MC-

SDN: Supporting mixed-criticality real-time communication using software-defined
networking. IEEE Internet Things J. 6 (4), 6325–6344.

Lu, N., Cheng, N., Zhang, N., Shen, X., Mark, J.W., 2014. Connected vehicles: Solutions
and challenges. IEEE Internet Things J. 1 (4), 289–299.

Mai, T., Yao, H., Guo, S., Liu, Y., 2020. In-network computing powered mobile edge:
Toward high performance industrial iot. IEEE Netw. 35 (1), 289–295.

Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B., 2017. A Survey on Mobile Edge
Computing: The Communication Perspective. IEEE Commun. Surv. Tutor. 19 (4),
2322–2358.

NetFPGA, 2024. NetFPGA-SUME https://netfpga.org/NetFPGA-SUME.html.
NetFPGA, 2024. NetFPGA-SUME github https://github.com/NetFPGA/NetFPGA-SUME-

public,
Open vSwitch, 2024. Open vSwitch, http://openvswitch.org/.
Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., Liotta, A., 2018. An edge-

based architecture to support efficient applications for healthcare industry 4.0. IEEE
Trans. Ind. Inform. 15 (1), 481–489.

Paolucci, F., Cugini, F., Castoldi, P., Osiński, T., 2021. Enhancing 5G SDN/NFV edge
with P4 data plane programmability. IEEE Netw. 35 (3), 154–160.

Papadimitratos, P., De La Fortelle, A., Evenssen, K., Brignolo, R., Cosenza, S., 2009.
Vehicular communication systems: Enabling technologies, applications, and future
outlook on intelligent transportation. IEEE Commun. Mag. 47 (11), 84–95.

Park, T., Shin, S., Shin, I., Lee, K., 2021. Formullar: An FPGA-based network testing
tool for flexible and precise measurement of ultra-low latency networking systems.
Comput. Netw. 185, 107689.

Park, T., You, M., Cui, J., Jin, Y., Lee, K., Shin, S., 2022. MECaNIC: SmartNIC to assist
URLLC processing in multi-access edge computing platforms. In: 2022 IEEE 30th
International Conference on Network Protocols. ICNP, IEEE, pp. 1–12.

Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., Neal, A., et al., 2014. Mobile-
edge Computing Introductory Technical White Paper. pp. 1089–7801, White paper,
mobile-edge computing (MEC) industry initiative.

Perez-Botero, D., Szefer, J., Lee, R.B., 2013. Characterizing hypervisor vulnerabilities
in cloud computing servers. In: Proceedings of the 2013 International Workshop
on Security in Cloud Computing. pp. 3–10.
11
Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J.,
Wang, A., Stringer, J., Shelar, P., Amidon, K., Casado, M., 2015. The design
and implementation of open vswitch. In: 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15). USENIX Association, Oakland, CA,
ISBN: 978-1-931971-218, pp. 117–130, URL https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/pfaff.

Popiolek, P.F., Mendizabal, O.M., 2012. Monitoring and analysis of performance impact
in virtualized environments.

Popiolek, P.F., dos Santos Machado, K., Mendizabal, O.M., 2021. Low overhead
performance monitoring for shared infrastructures. Expert Syst. Appl. 171, 114558.

Rameshan, N., 2016. On the role of performance interference in consolidated environ-
ments. In: IEEE/USENIX International Conference on Autonomic Computing. ICAC,
KTH Royal Institute of Technology.

RedHat, 2024. Linux KVM: Kernel Virtual Machine https://www.linux-kvm.org/page/
Main_Page.

Ricart-Sanchez, R., Malagon, P., Alcaraz-Calero, J.M., Wang, Q., 2019. P4-netfpga-based
network slicing solution for 5G MEC architectures. In: 2019 ACM/IEEE Symposium
on Architectures for Networking and Communications Systems. ANCS, IEEE, pp.
1–2.

Sabella, D., Vaillant, A., Kuure, P., Rauschenbach, U., Giust, F., 2016. Mobile-edge
computing architecture: The role of MEC in the internet of things. IEEE Consum.
Electron. Mag. 5 (4), 84–91.

Sabharwal, N., Wali, P., Sabharwal, N., Wali, P., 2013. Cloud Capacity Management.
Springer.

Samanta, A., Esposito, F., Nguyen, T.G., 2021. Fault-tolerant mechanism for edge-
based IoT networks with demand uncertainty. IEEE Internet Things J. 8 (23),
16963–16971.

Sorin, D., 2022. Fault Tolerant Computer Architecture. Springer Nature.
Sun, H., Yu, H., Fan, G., Chen, L., 2020. Qos-aware task placement with fault-tolerance

in the edge-cloud. IEEE Access 8, 77987–78003.
Suneja, S., Isci, C., De Lara, E., Bala, V., 2015. Exploring vm introspection: Techniques

and trade-offs. Acm Sigplan Notices 50 (7), 133–146.
Tao, Z., Xia, Q., Hao, Z., Li, C., Ma, L., Yi, S., Li, Q., 2019. A survey of virtual machine

management in edge computing. Proc. IEEE 107 (8), 1482–1499.
Tuli, S., Casale, G., Jennings, N.R., 2022a. Dragon: Decentralized fault tolerance in

edge federations. IEEE Trans. Netw. Serv. Manag. 20 (1), 276–291.
Tuli, S., Casale, G., Jennings, N.R., 2022b. Pregan: Preemptive migration prediction

network for proactive fault-tolerant edge computing. In: IEEE INFOCOM 2022-IEEE
Conference on Computer Communications. IEEE, pp. 670–679.

Uhlemann, E., 2015. Introducing connected vehicles [connected vehicles]. IEEE Veh.
Technol. Mag. 10 (1), 23–31.

Wang, L., Chen, S., Chen, F., He, Q., Liu, J., 2023a. B-detection: Runtime reliability
anomaly detection for MEC services with boosting LSTM autoencoder. IEEE Trans.
Mob. Comput..

Wang, P., Xu, J., Zhou, M., Albeshri, A., 2023b. Budget-constrained optimal deployment
of redundant services in edge computing environment. IEEE Internet Things J..

Zandi, F., Zadeh, S.A., Abbasloo, S., Pazhooheshy, P., Ganjali, Y., Hu, Z., 2023.
Live stateful migration of a virtual sub-network. In: NOMS 2023-2023 IEEE/IFIP
Network Operations and Management Symposium. IEEE, pp. 1–9.

Zhou, Y., Wang, Z., Zhou, W., Jiang, X., 2012. Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets. In: NDSS, Vol. 25, No.
4. pp. 50–52.

Zilberman, N., Audzevich, Y., Covington, G.A., Moore, A.W., 2014. NetFPGA SUME:
Toward 100 Gbps as research commodity. IEEE Micro 34 (5), 32–41.

Taejune Park is an assistant professor at the Department
of Artificial Intelligence Convergence, Chonnam National
University, South Korea. He received B.S. in Computer
Engineering at Korea Maritime and Ocean University, South
Korea, and M.S. and Ph.D. in information security at KAIST,
South Korea. His research interests focus on network and
IoT security and reliable/low-latency communications.

Myoungsung You is a Ph.D. candidate in the School
of Electrical Engineering at KAIST. He received his M.S.
degree from the Graduate School of Information Security
at KAIST and his B.S. degree in Computer Science from
Chungbuk National University. His research interests include
programmable network data planes, cloud security, and
distributed systems.

http://refhub.elsevier.com/S1084-8045(24)00155-3/sb1
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb1
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb1
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb1
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb1
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb2
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb2
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb2
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb2
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb2
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb3
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb3
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb3
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb3
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb3
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb4
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb4
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb4
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb5
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb5
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb5
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb6
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb6
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb6
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb7
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb7
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb7
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb9
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb9
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb9
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb10
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb10
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb10
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb10
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb10
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb11
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb11
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb11
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb12
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb12
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb12
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb13
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb13
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb13
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb13
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb13
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb14
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb14
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb14
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb15
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb15
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb15
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb16
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb16
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb16
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb16
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb16
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb17
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb17
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb17
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb18
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb19
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb19
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb19
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb19
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb19
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb20
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb20
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb20
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb21
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb21
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb21
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb22
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb22
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb22
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb22
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb22
https://netfpga.org/NetFPGA-SUME.html
https://github.com/NetFPGA/NetFPGA-SUME-public
https://github.com/NetFPGA/NetFPGA-SUME-public
https://github.com/NetFPGA/NetFPGA-SUME-public
http://openvswitch.org/
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb26
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb26
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb26
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb26
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb26
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb27
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb27
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb27
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb28
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb28
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb28
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb28
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb28
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb29
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb29
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb29
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb29
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb29
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb30
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb30
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb30
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb30
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb30
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb31
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb31
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb31
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb31
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb31
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb32
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb32
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb32
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb32
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb32
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb34
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb34
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb34
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb35
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb35
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb35
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb36
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb36
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb36
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb36
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb36
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb38
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb38
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb38
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb38
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb38
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb38
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb38
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb39
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb39
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb39
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb39
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb39
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb40
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb40
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb40
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb41
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb41
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb41
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb41
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb41
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb42
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb43
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb43
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb43
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb44
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb44
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb44
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb45
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb45
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb45
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb46
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb46
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb46
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb47
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb47
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb47
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb47
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb47
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb48
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb48
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb48
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb49
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb49
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb49
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb49
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb49
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb50
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb50
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb50
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb51
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb51
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb51
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb51
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb51
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb52
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb52
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb52
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb52
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb52
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb53
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb53
http://refhub.elsevier.com/S1084-8045(24)00155-3/sb53


Journal of Network and Computer Applications 231 (2024) 103978T. Park et al.
Jinwoo Kim is an assistant professor in the School of
Software at Kwangwoon University, Seoul, South Korea. He
received his Ph.D. degree in School of Electrical Engineering
and his M.S degree in Graduate School of Information
Security from KAIST, and his B.S degree from Chungnam
National University in Computer Science and Engineering.
His research topic focuses on investigating security issues
with software defined networks and cloud systems.
12
Seungsoo Lee is an assistant professor in the Department
of Computer Science and Engineering at Incheon National
University, Incheon, South Korea. He received his B.S.
degree in Computer Science from Soongsil University in
Korea. He received his Ph.D. degree and M.S. degree both
in Information Security from KAIST. His research interests
focus on cloud computing and network systems security.
He is especially focusing his attention on software-defined
networking (SDN), network function virtualization (NFV),
containers, and its security issues.


	Fatriot: Fault-tolerant MEC architecture for mission-critical systems using a SmartNIC
	Introduction
	Background and Motivation
	Mission-critical Systems and Multi-access Edge Computing
	Reliability Issues and Failure Conditions in MEC
	Challenges in Achieving Fault-tolerance on MEC
	Research Goal

	System Design
	Design Considerations
	Fatriot Overview
	Traffic Classifier and Queues
	Heartbeat Manager
	Fail-safe Handler
	Control Interface

	Implementation
	Evaluation
	Performance Overhead
	Effectiveness of Fail-safe Mode
	Network Performance

	Limitations and Discussion
	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


