
Received 19 July 2024, accepted 15 August 2024, date of publication 20 August 2024, date of current version 28 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3446535

BotFence: A Framework for Network-Enriched
Botnet Detection and Response With SmartNICs
HYUNMIN SEO1, SEUNGWON SHIN 1, (Member, IEEE), AND SEUNGSOO LEE 2
1School of Electrical Engineering, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
2Department of Computer Science and Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea

Corresponding author: Seungsoo Lee (seungsoo@inu.ac.kr)

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) funded by Korean
Government [Ministry of Science and ICT (MSIT)] through the Development of Darkweb Hidden Service Identification and Real IP Trace
Technology under Grant RS-2022-II220740.

ABSTRACT The scale of botnet attacks is on the rise, yet traditional network security systems are
inadequate to effectively respond to these threats, primarily due to high false positive rates and the extensive
manpower required for analysis. In contrast, the cutting-edge method of intrusion detection, known as
provenance-based analysis, offers a novel paradigm by establishing causality between host events for
meticulous examination. Nonetheless, this method faces challenges in analyzing the payload of network
packets, which contains critical attack information resides, due to performance efficiency constraints
from packet inspection. To address these challenges, we introduce BotFence, a pioneering approach that
integrates payload inspection of network packets with provenance-based analysis to enhance botnet intrusion
detection and response. Notably, our system leverages SmartNICs to minimize the impact on network
performance. Our system initially gathers and analyzes events within the host system, representing them
as Tactics, Techniques, and Procedures (TTP). Concurrently, it collects and scrutinizes the network packets
associated with these events, integrating the relationships between these TTPs and the collected network
data into a Network-enhanced Threat Provenance Graph (NTPG) model that we devised. Consequently, our
system provides a comprehensive security analysis of the network with minimal overhead. Demonstrations
with complex attack scenarios show that BotFence successfully identifies and mitigates automated botnet
infection in real time, analyzing more than 99. 9% host events in 1 ms, without degrading network
performance.

INDEX TERMS Botnet, endpoint detection and response, programmable dataplane, network security.

I. INTRODUCTION
The World Economic Forum’s Global Risks Report 2023 [1]
identifies cyberattacks on critical infrastructure as a swiftly
escalating global risk, projecting that cybercrime costs will
ascend to $10.5 trillion annually by 2025. The prevalence of
botnet attacks is also escalating, with a documented annual
increase of 25% [2]. A botnet constitutes a network of
compromised computers that are collectively orchestrated to
execute coordinated cyber-attacks. These networks exhibit
significant offensive capabilities and are instrumental in

The associate editor coordinating the review of this manuscript and

approving it for publication was S. K. Hafizul Islam .

conducting a variety of highly disruptive operations, includ-
ing Distributed Denial of Service (DDoS) attacks, spam
dissemination, and phishing campaigns, all managed through
a centralized command and control infrastructure. Typically,
bot-infected systems operate without the user’s awareness,
complicating both detection and eradication processes, thus
prolonging the duration of the attack. Furthermore, botnets
facilitate malicious activities targeting infected computers
and networks, such as exfiltrating sensitive data (e.g., per-
sonal or login information), deploying ransomware to extort
funds, and exploiting system resources for cryptojacking.

To counter such botnet infection, there have been numerous
security solutions utilizing logs from host systems as a

114878

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-1077-5606
https://orcid.org/0000-0002-6883-1869
https://orcid.org/0000-0002-2703-0213

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

means of detecting intrusions. In traditional attack detection
systems, such as Endpoint Detection and Response (EDR) [3]
and Security Information and Event Management (SIEM) [4]
systems, the malicious activities was predicated on the col-
lection and analysis of various system logs occurring within
individual hosts. However, this approach induces significant
challenges in the identifying malicious behavior [5]. (i) The
necessity to monitor and analyze a vast array of events for
intrusion attack detection demands extensive data processing
and analytical capabilities. (ii) The protracted nature of
attacks complicates the continuous storage and management
of all pertinent logs and data. (iii) The resemblance of attacker
actions to legitimate user activities, making distinction
arduous and leading to a high rate of false positives. Given
these multifaceted challenges, the field of intrusion attack
detection and response has evolved beyond conventional log
analysis.

In response to those challenges, the field has seen the rise
of provenance-based host behavior analysis as a preferable
alternative to traditional security frameworks [5], [6], [7],
[8], [9], [10], [11]. This method involves the collection
of information regarding the behavior of the host system,
including the creation and termination of processes, file
system interactions, and network activities, categorized as
host events. The analysis of the causality among these events
aids in the identification of attack signatures. Through the
use of a provenance graph to depict the causal connections
between host behaviors, the technique offers an analysis that
includes a definitive explanation of the attack scenario and a
detailed investigation of the threat’s root cause.

However, this method still possesses drawbacks, partic-
ularly in its limited efficacy in detecting network-related
malicious events. This limitation arises because the
provenance-based approach is predominantly reliant on
host event data and only garners limited information
from network packets [12]. Considering that botnets are
constructed and orchestrated via network connections,
network packets provide significant indications of malicious
activities. The payload of these packets is likely to carry
distinct signatures of the attack, such as Command and
Control (C&C) communications and malicious code [13],
making the analysis of packet payloads a potent method
for identifying malicious activity. Nevertheless, traditional
host-based approaches, including provenance-based analysis,
often overlook the potential of network payload inspection,
primarily due to concerns over performance degradation
and resource consumption [14]. Moreover, adversaries
frequently employ payload encryption techniques to obscure
their actions, thereby complicating the process of direct
packet inspection [15], [16]. Consequently, such systems are
compelled to detect the attacks by analyzing the relationships
between host events rather than through direct observation
of network packets. Also, this methodology necessitates the
aggregation of host events on a central server for subsequent
analysis, which incurs significant latency, thereby hindering
immediate response to attacks.

Thus, we propose BotFence, a novel system architecture
designed to concurrently monitor host and network envi-
ronments by leveraging the capabilities of SmartNICs [17],
as programmable dataplanes, can be seamlessly integrated
into hosts to perform a plethora of operations pertinent to
network packet management. These devices are equipped
with packet-processing hardware accelerators and facilitate
diverse packet steering mechanisms without compromising
network throughput. Our system harnesses the advantages
offered by SmartNIC for accurate packet inspection. Further-
more, recent advancements in SmartNIC technology have
seen the integration of general-purpose processors, such as
ARM cores, into the NICs. BotFence capitalizes on this
feature to delegate the task of analyzing host events to
the SmartNIC, thereby offloading significant computational
workloads from the host CPU.
BotFence is designed to aggregate host events and distill

them into high-level Tactics, Techniques, and Procedures
(TTPs) [18]. It constructs a provenance graph that delineates
the causal relationships among TTPs and enhances it by
appending network information, resulting in the Network
Enhanced Threat Provenance Graph (NTPG). To achieve
this, BotFence concurrently scrutinizes network packets and
correlates these findings with host events, facilitating the
timely detection and mitigation of botnet attacks. In addition,
our system leverages the specialized Deep Packet Inspection
(DPI) engine, which ensures line-rate network throughput
with segregation of the inspection rules, thereby minimizing
performance degradation. BotFence demonstrates a high
processing capability, handling over 99.9% of events within
a 1-millisecond timeframe, thereby supporting real-time
detection and response mechanisms.

In summary, we make the following contributions:
• We introduce BotFence, a real-time botnet intrusion
detection and response system augmented by Smart-
NICs. This system reduces the workload related to the
attack detection and analysis by integrating comprehen-
sive packet inspection seamlessly.

• We design the Network enhanced Threat Provenance
Graph (NTPG), an innovative methodology for per-
forming provenance-based botnet intrusion analysis,
enriched with network packet information.

• We evaluate BotFence using a meticulously designed
attack scenario, demonstrating the system’s proficiency
in real-time attack identification without impairing
network performance.

The rest of this paper is organized as follows: Section II
provides the background in botnet attacks and data prove-
nances. Section IV describes the motivation for our work.
The overall design of BotFence and its detail are presented in
Section V and Section VI respectively. The implementation
of BotFence and its evaluation results are summarized
in Section VII. Section VIII discusses the limitations of
the current design. Section III reviews previous studies
and their limitations. Finally, we conclude this paper in
Section IX.

VOLUME 12, 2024 114879

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

FIGURE 1. Lifecycle of Botnet.

II. BACKGROUND
A. CYBER ATTACK WITH BOTNET
A botnet is a system in which an attacker links multiple
computers into a single network and remotely controls them
to execute attacks. To configure these networks and infect
as many hosts as possible, attackers often utilize automated
malware that replicates itself and spreads across the network,
thereby expanding the scope of infection and taking over the
network to form a botnet. Figure 1 illustrates the life cycle
of a botnet. Initially, the botnet identifies vulnerable hosts
and performs the initial malware injection. It exploits host
vulnerabilities or uses phishing emails containing malicious
attachments or links to infect host systems and establish a
foothold. Subsequently, It downloads and executes malicious
codes to integrate the infected host into the botnet. Once
a host becomes a member of the botnet, it connects to
the Command and Control (C&C) server set up by the
attacker to receive remote commands. The host establishes
a communication channel and waits for instructions from
the attacker. To carry out an attack, the botnet operator
issues commands through the C&C server, enabling various
malicious activities. Botnets constructed in this manner are
typically employed for cybercrime, engaging in activities
such as Distributed Denial of Service (DDoS) attacks,
sending spam emails, data theft, and generating clicks on
illegal advertisements.

Botnets target various hosts, including PCs, servers, and
IoT devices, automatically identifying and infecting vulnera-
ble devices without human intervention. Mirai [19], the most
well-known botnet, specifically targets IoT devices, obtaining
administrator privileges through brute force attacks. It then
downloads and executes the malicious payload from the
C&C server, integrating the infected device into the botnet.
Botnets targeting common hosts, such as Emotet [20],
Conficker [21], Zbot [22], and Necurs [23], primarily
propagate through phishing emails containing malicious
attachments or links. They gain control of the system by
executing macros, deploying Trojan horses, or exploiting
security vulnerabilities, subsequently downloading malicious
payloads to incorporate the infected host into the botnet.

Additionally, botnets employ various network techniques
such as encryption and obfuscation, camouflaging into

network traffic, and domain generation algorithms to evade
detection. Since they must receive commands from the
C&C server, maintaining communication with the C&C
is essential. Consequently, botnets use regular web traf-
fic, such as HTTPS, to conceal command messages and
employ encryption and obfuscation to render the payload
indiscernible. Additionally, to obscure the address of the
C&C server, techniques like DNS fast flux [24] or domain
generation algorithms are used to hide the domain and IP
address utilized in the commands. These attack detection and
evasion techniques significantly complicate the detection of
botnets.

B. BOTNET DETECTION WITH DATA PROVENANCE
During the process of botnet intrusion, attackers inevitably
generate numerous indicators in the form of host events.
These events serve as a record of a host’s activities,

encapsulating a range of actions from process creation and
termination to file system access and network socket creation.
The anomalous activities indicative of an attacker’s malicious
endeavors often manifest distinctly when compared to the
baseline behavior of a typical host, enabling the detection
of intrusions through the monitoring of these host events.
Traditional host log analysis-driven detection frameworks,
such as Endpoint Detection and Response(EDR) and Security
Information and Event Management(SIEM) systems, ingest
these host events in the form of logs for subsequent
analysis [3], [4]. Their primary objective is to identify
indicators of compromise within the logs related to specific
host services. Furthermore, these systems aggregate and
scrutinize multiple logs to discern patterns of malicious
activity.

However, traditional methods often overlook the crucial
correlation between logs, rendering the detection of complex
attack patterns increasingly challenging due to the prevalence
of false positives and the substantial human effort required
for analysis [5], [7]. In response to these limitations, the
application of data provenance in enhancing intrusion attack
detection capabilities is being explored. Provenance-based
intrusion detection approaches elucidate the causality of
security incidents by examining the relationships between
system executions [25]. This method involves the collection
of host event data to explore the precedence relationships
between events, facilitating the analysis of malicious behav-
ior through graphical representation. With attack behaviors
depicted graphically, it enables the identification of malicious
activities through the examination of event sequences that
have been classified as malevolent or by contrasting them
against patterns of normal operations.

It also becomes feasible to trace the origins of an
attack by navigating backwards in the graph. This enables
the identification and fortification of vulnerabilities that
could precipitate further malicious activities. Conversely,
forward tracing within the graph aids in discerning the
objectives of the attackers, allowing for targeted security
enhancements. Furthermore, this approach involves the

114880 VOLUME 12, 2024

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

exploration of event correlations across multiple hosts,
thereby enabling a holistic comprehension of their interde-
pendencies and potential security implications. By focusing
on the behavioral analysis of hosts, data provenance analysis
surpasses traditional log analysis methods in its capacity for
early detection of cyber threats, thus offering a significant
advantage in the preemptive identification of malicious
activities.

III. RELATED WORKS
Botnet infections deploy automated malware aimed at max-
imizing host infiltration and assimilating them into the bot-
net’s network. Consequently, the methodologies employed
in these attacks have evolved to become increasingly
sophisticated and covert [19], [26], [27]. In response to
this evolving threat landscape, cybersecurity systems have
evolved, broadly categorizing into network-based and host-
based security solutions, contingent upon the domain of
attack detection.

Network-based security systems, such as Intrusion Detec-
tion Systems (IDS) [28] and Intrusion Prevention Systems
(IPS) [29], engage in the monitoring and analysis of
network traffic to identify potential threats. These sys-
tems scrutinize packets traversing the network, employing
signature-based detection to identify known attack patterns
and anomaly-based detection to flag irregular traffic behav-
iors [30]. Such approaches enable the real-time analysis
of voluminous network data streams, facilitating the early
identification of intrusion attempts. Nonetheless, these mech-
anisms exhibit limitations in decrypting encrypted traffic and
in identifying threats that emanate from within the internal
network or from adversaries who have successfully breached
network defenses [31]. Conversely, host-based security solu-
tions focus on monitoring and analyzing activities on specific
hosts, including computers or servers. Solutions within
this category, such as Endpoint Detection and Response
(EDR) [3] and Security Information and Event Management
(SIEM) [4] systems, are designed to continuously monitor
and document activities on individual endpoints, identifying
anomalous behaviors or known threat signatures. However,
these solutions impose computational burdens on host
systems, potentially impacting performance [12]. Moreover,
their reactive nature means that detection occurs post-
incident, potentially missing opportunities for preemptive
attack mitigation.

Recent advancements in cybersecurity research have led
to the development of methodologies that adeptly organize
and analyze logs generated by host systems and security
frameworks, employing data provenance analysis to elucidate
causal relationships between events for enhanced intrusion
detection. Notably, SLEUTH [6] pioneered the representation
of attacks on enterprise hosts via provenance graphs,
facilitating attack detection through taggingmechanisms, and
MORSE [8] sought to diminish the incidence of false positive
alerts by introducing a refined policy model. Similarly,
HOLMES [7] leveraged data provenance analysis alongside

Tactics, Techniques, and Procedures (TTP) to articulate
attack scenarios at a granular level, thereby streamlining
analytical processes. Similarly, RapSheet [5] constructed a
TTP graph derived from logs aggregated by extant EDR
systems, applying data provenance principles to enhance
attack detection capabilities. These methodologies primarily
concentrate on host-level events, endeavoring to identify
intrusions through the implementation of alert minimization
and alarm triage protocols.

Distinct from these approaches, which rely on establishing
direct matching rules for TTP identification and attack detec-
tion, other studies have explored the detection of anomaly-
based attacks. UNICORN [9], for instance, introduced a
novel method for detecting prolonged attack by transforming
the graph into sketches, which serves as a clustering
feature, with outliers subsequently categorized as anomalies.
ProveDetector [10] employed a probability density-based
algorithm, known as the Local Outlier Factor, to identify
stealth malware. Meanwhile, Poirot [11] approached attack
detection as a graph pattern matching challenge, aligning the
provenance graph with a Query Graph derived from Cyber
Threat Intelligence, leveraging various machine learning
techniques to discern data deviating from normative patterns
as malicious.

However, these methodologies share a common limitation
in their delayed response to detected threats, attributed to the
protracted duration required for identifying genuine threats
solely through host-level events. Additionally, the necessity
of centralizing data collection for analysis compounds the
latency, as the time involved in data transmission, central
processing, and decision-making extends the interval before
protective measures can be enacted, rendering the immediate
mitigation of attacks nearly unfeasible.

On the other hand, BotFence enhances attack detection
capabilities by synergizing the analysis of network packets
with conventional host event-based methods, addressing the
limitations inherent in solely relying on host events for
identifying threats. By incorporating previously overlooked
network packet information, our system achieves more pre-
cise identification of cyber threats, leveraging the untapped
potential of network packet data to augment the botnet
detection.

In addition, while aforementioned approaches focus on
identifying the formation of botnets, considerable effort
has also been made to detect and mitigate attacks post-
formation. Botnets, once established, frequently engage in
DDoS attacks with the objective of incapacitating target
networks. Consequently, it is crucial to identify and thwart
signs of DDoS attacks before the traffic overwhelms the
network. Extensive research has been conducted to pre-
dict real-time fluctuations in attack traffic volume [32],
[33], [34]. Our study aims to detect attacks during the
botnet formation stage, and can be effectively integrated
with existing post-formation attack mitigation method-
ologies to improve overall defense against botnet-related
threats.

VOLUME 12, 2024 114881

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

IV. MOTIVATION
Despite the efficacy of data provenance analysis in detecting
intrusion attack of botnet infection, it exhibits certain
limitations. Systems employing data provenance analysis
predominantly collect host event data through conventional
audit frameworks, yet they eschew the direct monitoring
of network packet payload primarily due to concerns over
performance degradation. The necessity for deep packet
inspection (DPI) to obtain packet data from hosts introduces
substantial computational overhead. DPI entails rigorous
regular expression matching processes, which, when exe-
cuted in software, lead to significant CPU resource con-
sumption [14]. This, in turn, detrimentally impacts not only
network performance but also the overall system efficiency.
Consequently, to circumvent these limitations, systems opt to
collect indirect network information through the acquisition
of headers or analysis of traffic patterns. However, this
approach is susceptible to evasion by adversaries, who may
alter IP addresses or port numbers to bypass header-based
detection mechanisms, and it is also prone to a higher rate
of false positives associated with traffic pattern analysis.

Nevertheless, the integration of DPI with host events is
crucial, as broadening the scope of data collection to encom-
pass detailed network information significantly enhances the
effectiveness of attack identification processes. One critical
purpose of packet inspection is the detection of Command
and Control (C&C) servers, which are crucial for facilitating
communication between attackers and compromised sys-
tems [13]. A deeper understanding of the attack’s commands,
characteristics, and goals can be obtained through the direct
analysis of communications with these servers by examining
packet payloads. This analysis allows for the detection of
malicious code or links, revealing attempts by attackers to
spread malware or infiltrate systems. However, attackers
frequently use encrypted communications to conceal their
traffic, making traditional packet payload analysis methods,
such as IDS, ineffective [15], [16]. The monitoring of attacks
with encrypted traffics becomes significantly more difficult
as messages are hidden behind the ciphertext. To analyze
such network traffic with traditional approach, it is imperative
to implement techniques that initially decrypt the packets,
subsequently analyze the payload, and thereafter re-encrypt
it whilst in transit through the network infrastructure [35].
Employing these methods requires additional resources for
redundant decryption and encryption, which may further
reduce network performance.

A. MOTIVATING EXAMPLE
Consider a scenario where an attacker successfully deploys
malware on a host and subsequently attempts to establish a
connection with the C&C server, as depicted in Figure 2.
Traditional security systems, which primarily focus on
collecting host events, conduct a limited examination of
network packets, typically verifying connections based solely
on specific IP addresses or ports. However, when attackers
employ DNS Fast Flux [24] techniques to frequently change

FIGURE 2. Example scenario of C&C session establishment in botnet
attack. The attacker hide its IP address by DNS fast flux and encrypt C&C
message.

the IP addresses or leverage VPNs to obscure their IP, iden-
tifying the attack becomes significantly more challenging.
Moreover, attackers often mask their activities by utilizing
encrypted HTTPSweb traffic, rendering the payload contents
opaque. Consequently, if attack detection relies solely on
host events, all HTTPS connections would need to be treated
as potential threats. Yet, not all connections are inherently
malicious, and distinguishing between benign and malicious
connections necessitates an understanding of the relationship
between host events and network sessions deemed malicious.
This requirement makes the process inefficient for prompt
actions.

Consequently, conducting immediate and detailed payload
analysis of network packets is crucial for the detection
of botnet intrusion attacks. This process should incur the
lowest possible overheads to ensure efficiency. By doing
so, it provides a wealth of critical information essential for
enhancing the data provenance approach, enabling a more
effective identification and understanding of such attacks.

V. SYSTEM OVERVIEW
A. DESIGN CONSIDERATION
Network packets are crucial for botnet detection, necessitat-
ing the integration of packet analysis with data provenance
analysis. Therefore, we propose the integration with Smart-
NICs to effectively conduct the network packet inspection in
enhancing data provenance-based botnet infection analysis.
Specifically, the workload of data provenance-based attack
analysis is offloaded into SmartNIC to enable monitoring of
host events with detailed and real-time examination of packet
payloads using Deep Packet Inspection (DPI) technology.
This approach seeks to optimize the correlation between
network packet data and host events, thereby impeding the
ability of malicious processes to effectively interact with
the network. Thus, we first derive the following design
considerations that a system should adhere to enable real-time
monitoring of host events and detailed examination of packet
payloads with minimal overheads.
First, BotFence should monitor malicious process activi-

ties with its network packet payload and formulate network
rules capable of preempting attacks. This begins by collecting
host activities through the aggregation of host events,
which are then offloaded for in-depth analysis. This process
involves characterizing host events, subsequently translating

114882 VOLUME 12, 2024

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

FIGURE 3. The overall architecture and workflow of BotFence with four key components: (i) Host Agent, (ii) Event Handler, (ii) Attack Analyzer, and
(iv) Policy Enforcer.

them into Tactics, Techniques, and Procedures (TTPs) for
high-level observation. Concurrently, our system examines
packets entering and exiting the host to assess their potential
maliciousness. The integration of host event data with
network packet inspection culminates in the creation of the
Network enhanced Threat Providence Graph (NTPG), laying
the groundwork for identifying malicious activities.
Second, BotFence should significantly enhance the efficacy

of packet monitoring and encryption handling to minimize
the impact on the network performance. All packets entering
and exiting the host are compulsorily processed through
the SmartNIC, our system facilitates such architecture
to comprehensively monitor the traffic of the host. This
approach supports the dynamic steering and blocking of
packets, playing a pivotal role in preventing potential attacks.
Furthermore, our system inspects packet payloads subsequent
to decryption by utilizing packet encryption offloading. The
techniques such as kernel TLS (kTLS) is designed to reduce
copy overhead by performing TLS encryption and decryption
directly within the kernel [36], a process that can also
be offloaded to hardware components. By leveraging this
functionality within the host operating system, our system can
inspect payloads of unencrypted packets. These decrypted
plaintext packets can then be delivered to the host OS,
ensuring seamless security integration without degradation of
performance.

B. THREAT MODEL AND ASSUMPTIONS
This study focuses on detecting botnet construction of botnets
within an enterprise environment consisting ofmultiple hosts.
A ‘host’ is defined as any general computing device or server
within a network, which has the capability to interconnect
with other hosts internally and communicate with external
networks. This interconnectivity facilitates resource sharing
and external communication. The construction of botnets is
initiated through automated malware that infiltrates the host
via system vulnerabilities or phishing methods. Upon initial
penetration, the malware seeks to propagate to additional
hosts, with the objective of dominating and controlling the
entire target network, thereby integrating it into the botnet.

These attacks typically employ network-based strategies due
to the lack of physical access to the hosts.

Our objective is to detect and prevent the formation
of botnets. Consequently, we do not consider detecting
attacks that occur post-botnet creation (such as DDoS). The
deployment of our system involves using a SmartNIC, which
interfaces with the host through a PCIe channel. Notably,
in restricted mode, the host is prevented from accessing the
SmartNIC control channel. This restricted mode can only be
configured during the boot process of the SmartNIC, after
which all control channels, except those requiring physical
access, are deactivated.

C. SYSTEM ARCHITECTURE
Figure 3 illustrates the overall architecture and workflow of
BotFencewith four keymodules. The pathway facilitates data
transfer and packet movement among the different modules
to monitor host events, amalgamate packet information to
construct the Network enhanced Threat Providence Graph
(NTPG), and identify attacks. Especially, our system executes
attack detection by integrating network packet inspection
with the collection of host events via kernel probe, with
minimal overheads. This approach is complemented by the
analysis of events through data provenance analysis, offering
a comprehensive method for identifying and mitigating cyber
threats. To achieve this, our system conducts three core
operations as follows.

1) HOST EVENT HANDLING
BotFence initiates this process at the stage of host event
collection. This is achieved through the deployment of the
host agentmodule, which utilizes Extended Berkeley Packet
Filter (eBPF) technology to interface with the host kernel.
The primary function of this agent is to intercept host events,
which are then transmitted to a SmartNIC via the Direct
Memory Access (DMA) channel. Upon reception, the event
handler module processes these host events, transforming
them into TTPs based on predefined criteria within a TTP
table. The transformation allows a single TTP to reflect a
singular event or an aggregation of multiple events.

VOLUME 12, 2024 114883

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

TABLE 1. The three different categories of the host events monitored by
the host agent.

2) ATTACK ANALYSIS
The next phase involves the attack analyzer module, which
integrates the processed TTPs with network packet data to
determine the presence of cyber-attacks. This module interre-
lates TTPs based on their origin and causal relationship. Con-
currently, it examines incoming and outgoing packets of the
hosts to identify potentially malicious activities. The attack
analyzer formulates an attack scenario by synthesizing the
sequence of TTPs with insights from network packet analysis
to construct NTPG, thereby facilitating comprehensive attack
detection.

3) SECURITY POLICY ENFORCEMENT
The final module, the policy enforcer, operationalizes the
attack determinations made by the attack analyzer. It gener-
ates network rules aimed at either preventing the activities of
malicious processes or monitoring for suspicious behaviors.
These rules are integrated into the packet processing pipeline,
equipped to execute actions such as blocking, inspecting,
or collectively offloading network packets based on the
established rules. The decisions to direct packets to the host
or to execute predefined actions are governed by these rules,
enabling effective network security management.

VI. SYSTEM DETAIL
A. HOST EVENT HANDLING
Within a host environment, numerous host events relevant
to the botnet operations occur. The host agent, installed
within the host operating system, is tasked with aggregating
these events. It utilizes the eBPF to collect host events by
hooking into the kernel probe. This interception enables the
collection of system calls raised by processes along with
their parameters. For example, the action of a parent process
initiating a child process is traced through the interception of
a kernel probe of the sys_clone() system call, revealing
the pid of the child process. A compendium of these collected
events is cataloged in Table 1. The host events gathered by
the agent are then transmitted to event handler via the DMA
channel, facilitating offloaded analysis.

The event handler performs dual functions; aggregating
events and correlating TTP. For aggregation, this module
receives host events from the host agent through the DMA
channel and organizes these events into a standardized
format, referred to as feeds. A unique feed is generated
for each host event, which encapsulates the identifier of
the process (pid) responsible for the event, the category,

FIGURE 4. The botnet malware installed in the host tries to connect C&C
server via HTTP protocol.

the specific operation executed, and an array of variables
(arguments) associated with the event. These feeds are crucial
for conducting TTP correlation within the event handler and
enable the delivery of network events to additional modules
within BotFence for further integrated analysis.
For the TTP correlation, the event handler compares the

processed feed against a pre-established set of generation
rules in TTP table. The rules are formulated with reference
to the MITRE ATT&CK TTP database [37] and established
a priori to the activation of the system. With rules, event
handler represents the feed, which is the low-level host
event as a corresponding high-level TTP. For instance, if a
process performs a read operation on the contents of the
/etc/passwd file followed by the creation of a network
socket, this sequence of events can be recognized as a TTP
that signifies the extraction of local file data (T1005 - Data
from Local System) [38]. Once classified into TTP formats,
the host events are forwarded to the attack analysis module
for provenance analysis, thereby enhancing the accuracy of
threat detection and characterization.

Figure 4 illustrates a scenario that demonstrates how
our system captures and processes events from the host.
Initially, malware infiltrates Host A through an unidentified
entry point, installs itself, and becomes operational with PID
12345. The malware then attempts to establish a connection
with a Command and Control (C&C) server to download
additional malicious code. To achieve this, the malware on
the host sends an HTTP request to the C&C server using
port 80. This process involves the malware transmitting the
payload to the kernel via the pkt_send system call (1),
which constructs a packet containing the HTTP request and
forwards it to the C&C server (2). Upon receiving the request,
the C&C server responds by sending back a binary file laden
with malicious code to Host A (3).

To prevent such attack scenario, we assume there exists
a TTP generation rule1 as shown in Figure 5(a). According
to this rule, a TTP is generated with specific PID when a
host event involves a process initiating a pkt_send event
within the network category and targeting port 80; this is
classified under T1071.001 (Application Layer Protocol:
Web Protocols) [39]. The malware starts running and the
host agent collects the pkt_send system call initiated by the
malicious process (PID: 12345) via a kernel probe. This
system call, along with the PID and its arguments, is relayed
to the event handler through the DMA channel, initiating the

1We refered RapSheet [5] for the format of the rule.

114884 VOLUME 12, 2024

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

FIGURE 5. The transformation of the host event received from the agent
into a TTP.

data processing for attack analysis. The event is converted
into a standardized feed ((b) in Figure 5) and forwarded to
the TTP correlation submodule. This feed indicates that PID
12345 initiated a pkt_send event within the network category,
targeting the address 192.168.1.123:80. Upon receiving the
relevant feed, the TTP correlation submodule applies the
TTP generation rule to the feed. Figure 5(c) displays the
resultant TTP node, indicating that process PID 12345 has
been implicated in generating the T1071.001 TTP node. This
node is then conveyed to the attack analyzer. The delineated
TTP corresponds to event (2) in Figure 4, specifically,
the transmission of an HTTP request to the C&C server.
In addition, event (3) in Figure 4, involving the download
of a malicious binary, can be processed and transformed to
another TTP in a similar manner.

B. ATTACK ANALYSIS
Within the attack analyzer module, an NTPG is constructed
to elucidate the causal relationships among TTPs with
relevant network activities. The NTPG is first organized
by sequencing TTPs chronologically, based on the PID,
thereby facilitating an intuitive understanding of the temporal
precedence of events orchestrated by a specific process.
Subsequently, the attack analyzer inserts the constructed
NTPG into the database. Upon the emergence of a new TTP
node from the event handler, the relevant NTPG is queried
from the database to aid in the dynamic assembly of the graph,
enabling a comprehensive analysis of attack vectors.

Basically, NTPGs are managed based on PIDs, so it is
critical to thoroughly track the lineage between parent-child
processes. For example, when a malicious process initiates a
child process that, in turn, triggers an event, the PID recorded
at the event may differ from that of the initiating malicious
process. Thus, relying exclusively on PID for TTP association
presents a challenge, as it may not link events emanating
from the child process. To address this issue, it is essential to
ascertain the ancestor process information via the parent PID
(PPID). The inception of a child process typically involves
a system call, such as clone, enabling the identification of
both the child process’s PID and its PPID.

Algorithm 1 NTPG generation
Inputs : Feed f ; Packet inspection result d
Output: Network enhanced Threat Provenance Graph

NTPG
Data: List of TTP generation rules Listrule
foreach rule ∈ Listrule do

TTP← MatchRule(f , rule);
end
NTPG← φ;
if TTP ̸= φ then

pid ← GetPid(f);
category← GetCategory(f);
NTPG← GetNTPG(pid);
if category = network then

ft ← Get5tuple(f), 5-tuple of feed;
dt ← Get5tuple(d), 5-tuple from DPI result;
if ft = dt then

N ← d , network node;
TTP← TTP ∪ N ;

end
end
NTPG← NTPG ∪ TTP;

end

TABLE 2. Severity and numeric score of TTP.

To enhance the attack analysis with completion of
NTPG, our system incorporates the inspection of network
packets, which is not extensively explored in traditional
provenance-based attack analysis. The attack analyzer exam-
ines the payload of packets using DPI technique to identify
the presence of malicious content. Moreover, the attack
analyzer utilizes the DPI engine, optimized for DPI tasks,
enabling thorough inspections without impeding network
performance. The inline packet examination is conducted
within the packet processing pipeline; upon detection of a
malicious payload, the attack analyzer establishes correla-
tions with TTPs by leveraging the five-tuple information
extracted from the packet, thereby beginning the decision-
making process. Algorithm 1 illustrates the whole sequence
of processes involved in the NTPG creation, detailing the
generation of TTP from the feed within the event handler,
correlation of TTPs with PID and incorporation of network
packet inspection results.

Our system evaluates the malevolence of process activities
by scoring the constructed provenance graph and integrating
the outcomes of malicious message assessments conducted
through packet inspection. The scoring of each TTP within
the graph aims to quantify the severity of the NTPG,
referencing the Common Attack Pattern Enumeration and

VOLUME 12, 2024 114885

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

FIGURE 6. The generation of the policy based on constructed NTPG and
inspected network information.

Classification (CAPEC) [40] database. This database cat-
egorizes the severity of each TTP into four levels: Low,
Moderate, High, and Critical, with our system assigning
numerical values to these categories as delineated in Table 2.
The methodology for defining the severity of TTP can be
adjusted by operators as required. If the cumulative score of
the NTPG, as determined by the CAPEC criteria, exceeds a
predefined threshold,2 the corresponding events are classified
as malicious actions. The attack analyzer, based on these
scores, delineates policies, enacting packet inspection rules
for processes that attain a score yet remain below the
threshold, and packet block rules for processes that either
surpass this threshold or are identified as malicious via packet
inspection. Policies related to processes adjudged as engaging
in malicious activities are subsequently transferred to the
policy enforcer, facilitating the inhibition of the network
activities from such processes.

The attack analyzer formulates packet filtering rules for
processes subjected to a final assessment regarding their
malicious nature. Each packet filtering rule is defined by
the PID to which it applies, coupled with a specified action
that governs the process’s network behavior. Two distinct
actions are employed: block, which entirely prohibits network
activity for the process, and inspect, which routes packets
to undergo further inspection. The block action is deployed
to inhibit the network activities of processes conclusively
identified as malicious. Conversely, the inspect action is
reserved for processes not definitively classified as malicious
but exhibiting potential malicious behavior, necessitating
comprehensive scrutiny of their network activities. This
approach facilitates targeted traffic inspection to minimize
disruptions to network performance. The decisions rendered
by the attack analyzer are transferred to the policy enforcer,
which then implements packet filtering rules to restrict the
network activities of malicious processes.

Figure 6 illustrates how our system synthesizes the NTPG
and incorporates network packet data for decision-making,

2We referred Holmes [7] for calculation of the severity to the numerical
value and decision of the threshold.

following the scenario shown in Figure 4. The attack analyzer
constructs the NTPG by evaluating the PID associations and
the causal linkages between two TTP nodes, subsequently
interconnecting them. The resulting NTPG is depicted in
Figure 6(a). Concurrently, the packet exchanged between the
host and the C&C server is being inspected. Since these
packets stem from the host events, they are inherently linked
to the corresponding high-level TTP node that represents the
host event. In this analysis, the packet inspection module
detects malicious code within the packet associated with the
binary download event (i.e., Figure 6(b)), relaying this finding
to the decision-making logic. As a result, the network packet
is classified as malicious, leading to the classification of
the behavior exhibited by the process with PID 12345 as
malicious as well. This assessment leads to the development
of a policy, depicted in Figure 6(c), aimed at halting all
network activities originating from the implicated process.

C. POLICY ENFORCEMENT
Given that botnet attacks are orchestrated via the network,
curtailing network activity effectively prevents attackers from
compromising additional hosts within the network. This
is accomplished by the policy enforcer, which implements
network rules within the packet processing pipeline to
obstruct the network activities of malevolent processes. The
policy DB catalogues processes identified as malicious or
potentially malicious by the attack analyzer, recording their
information and prescribed actions—specifically, whether
to block or inspect their network activities—without the
network session details of the process as delineated in
section VI-B. This omission is deliberate, as network sessions
can be initiated at any moment, necessitating the dynamic
acquisition. To dynamically gather network session data
generated by a process, the policy enforcer obtains that data
(i.e., 5-tuple) alongside the PID from the event handler.
Subsequently, packets originating from the processes are
intercepted and blocked, contingent upon a comparison
with the malicious process information maintained in the
policy DB.

Moreover, BotFence conducts inline and real-time process-
ing of packets via the packet processing pipeline, a hardware
accelerator embedded within the SmartNIC designed to
offload and manage packet flows. This pipeline facilitates
the seamless transit of packets to and from the host, thereby
allowing interaction with all traffic that traverses the host.
Within this infrastructure, the packet filtering mechanisms
are implemented, enabling the application of network rules
to selectively filter and obstruct packets based on predefined
criteria. When a process, identified as malicious through
its PID, attempts to initiate a network session, the policy
enforcer intervenes by applying a network rule specifically
tailored to inhibit the network activity of the process. The
block rule outright prevents network activity for flagged
processes, whereas the inspect rule directs traffic from
processes under suspicion of malicious intent to a packet
inspection module for detailed analysis. This strategy ensures

114886 VOLUME 12, 2024

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

FIGURE 7. BotFence utilizes encryption module to offload packet
encryption to the SmartNIC for packet inspection.

that benign traffic remains uninspected, thereby preserving
optimal network performance without the encumbrance of
unnecessary scrutiny.

However, adversaries may encrypt packets to obfuscate
their activities within network traffic. To handle such
encrypted packets, our system leverages the advanced
capabilities of SmartNIC’s packet encryption offloading
technology [41]. Initially, the system employs mechanisms
such as kernel TLS (kTLS) offloading, thereby delegating
the task of packet encryption to the hardware level. This
approach enables the host operating system to transmit
packets to our system in an unencrypted state, accompanied
by pertinent session information. Figure 7 delineates the
packet encryption offloading of BotFence. The process
commences with the host dispatching encryption session
data to our system via its driver. Subsequently, our system
scrutinizes the headers of packets destined for external hosts,
aligning them with the session information to ensure the
encryption of packets prior to their exit from the pipeline.
For incoming packets that are encrypted, we employ the
stored session and key data to decrypt the packets before
their introduction into the pipeline. Thus, the adoption of
encryption offloading technology permits the host operating
system to relay packets to our system without encryption,
thereby enabling our system to examine the packet payloads
prior to encryption. Conversely, packets received by the host
undergo decryption before entering the pipeline, facilitating
the inspection of packet payloads. The inspection logic is
strategically integrated within the pipeline, both preceding
encryption and following decryption, enhancing its capacity
to conduct thorough inspections of packets in their plaintext
form.

Figure 8 shows how BotFence inhibits the network
activities of malicious processes. First of all, as delineated in
Figure 6(c), the policy is instituted in our system to obstruct
all network interactions of the process PID 12345. Next,
the event feed depicted in Figure 8(a) is generated from the
host, which means to transfer malicious code to the host
(i.e., (3) in Figure 4). Upon detection of the policy violation
by the feed, the policy enforcer deploys rule to obstruct
the network session associated with PID 12345. Figure 8(b)
delineates the enforcement of a network rule designed to
halt the download session by intercepting packets routed
from 192.168.1.123:80 to 10.0.0.10:53482. To block future
network activities emanating from PID 12345, the policy

FIGURE 8. The generation of network rule by the network feed of the
process which violates deployed policy.

enforcer continually acquires feeds from the event handler,
thereby ensuring the proactive blockade of any network
engagement by the specified process.

VII. EVALUATION
A. IMPLEMENTATION
A prototype of BotFencewas developed leveraging commod-
ity SmartNIC to evaluate the practicality and performance
efficiency. The development of each module was facilitated
with NVIDIA BlueField-2 [17] through the utilization of the
DOCA API [42]. The host agent employs the libbpf [43]
library, enabling an eBPF [44] program to trace kernel
probes, thereby gathering essential events occurring within
the host. These events are subsequently conveyed to the
SmartNIC utilizing the DMA channel. Within our system,
the ARM core in the SmartNIC is tasked with event
collection, NTPG generation, decision-making processes,
policy formulation, and rule establishment. The system’s
generated NTPGs and policies are preserved within an
in-memory database, a strategic choice to expedite query
responses. We also utilizes the in-built packet processing
pipeline from the SmartNIC for enhanced packet processing
speed. This pipeline facilitates the processing of packets in
accordance with the predefined rules. Moreover, the DPI
module plays a pivotal role in conducting thorough packet
inspections. This holistic approach underscores the proto-
type’s capacity to not only validate the proposed system’s
feasibility but also its effectiveness in optimizing network
security measures through advanced hardware integration
and software engineering practices.

B. SECURITY EVALUATION
Figure 9 depicts a simulated botnet infection attack scenario,
utilized to illustrate the detection and mitigation of attacks
by BotFence. Such attacks frequently commence due to
the inadvertent installation of malware by users [45], [46].
Initially, the malware on the host establishes encrypted
communication with the Command and Control (C&C)
server, aiming to download and install a rootkit. This is
achieved by (1) dispatching a ‘‘hello’’ packet to the C&C
server’s IP address, obtained via DNS lookup, and employing
the HTTPS protocol to masquerade the traffic as legitimate

VOLUME 12, 2024 114887

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

FIGURE 9. A security evaluation scenario consisting of 5 stages. The
infiltrated malware in the Host A and attempted to establish
communication with the C&C server. To obfuscate its actions,
the attacker leveraged an encrypted session.

FIGURE 10. The host events of the attack scenario (Figure 9) are
transformed into the feeds. (a) corresponds to Stage (2), while
(b) corresponds to Stage (3). The host events of other stages are
formulated in a similar manner.

FIGURE 11. TTP generation rule correlates the feed into specific TTP. For
enhanced clarity, the rules are articulated utilizing a SQL-like syntax.

web activity with encryption. Upon successful connection to
the C&C server, (2) the malware proceeds to gather internal
system data, such as kernel version of operating system,
user account list and cpu information. This information
is (3) promptly relayed to the C&C server, enabling the
attacker to tailor a compatible rootkit. Subsequently, (4) the
attacker transmits the customised rootkit back to the host
via an established network session, initiating its installation.
The harvested system information and the deployed rootkit
serve dual purposes: they facilitate further attacks and solidify
the attacker’s presence within the host system, (5) thereby
transforming the infected host into a strategic vantage point
for launching additional attacks on other hosts within the
network.

Figure 10 and Figure 11 show the feed and TTP
generation rule for Stages (2) and (3) of the attack scenario

FIGURE 12. Network enhanced TTP Provenance Graph (NTPG) related to
the attack scenario (Figure 9).

respectively. During Stage (2), the malware attempts to
acquire system information, as feed depicted in Figure 10(a).
This event is subsequently mapped to the TTP through
the generation rule (i.e., Figure 11(a)), which classifies the
execution of the uname -a command and the reading
of the /etc/passwd and /proc/cpuinfo files as
System Information Discovery (T1082) [47]. In Stage (3),
the malware endeavors to transmit the data regarding
the operating system to the C&C server for subsequent
exploitation. This event is refined in the feed as depicted
in Figure 10(b) and is associated with the TTP through a
generation rule (i.e., Figure 11(b)). This correlation identifies
the network activity of the process that is already associated
with T1082 in theNTPG. Consequently, the event of Stage (3)
is characterized as Exfiltration Over Command and Control
Channel (T1041) [48] and incorporated into the NTPG. The
other stages, (1), (4), and (5), are analogously structured into
the TTPs in this way as well.

Figure 12 represents the NTPG that encapsulates the
attack scenario through the amalgamation of the host and
network events as discerned by BotFence. The captured
host event sequences represented in the graphs, akin to
those found in prior research like RapSheet [5], does not
integrate network packet data, a gap BotFence addresses. Our
system extends the analysis to encompass extensive network
packet data generated during attack scenarios, integrating
this data with the host events for enhanced detection
accuracy. Moreover, despite the communication is encrypted,
we encounter no challenges in inspecting the packets due to
the implementation of encryption offloading. For the clear
presentation, the payload item of network information node
(the blue boxes in Figure 12), which normally represent
specific strings identified within malicious packet payloads,
is simplified.

The NTPG is structured into six distinct stages shown in
Figure 12, mirroring the phases delineated in the attack sce-
nario. The initial TTP involves malware sending an encrypted
hello packet to the C&C server for authentication and session
establishment (Stage (1)), is categorized under Encypted

114888 VOLUME 12, 2024

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

FIGURE 13. The result of tcpdump log from the Host A. The attacker
endeavors to gain access to another host (Host B), but this attempt is
thwarted by a network rule implemented by BotFence.

Channel (T1573) [49] and Application Layer Protocol:
Web Protocols (T1071.001) [39]. Analysis of the network
nodes reveals the transmission of an encrypted authentication
packet from the C&C server (192.168.1.123) to the internal
Host A (10.0.0.10) via the HTTPS default port 443,
enabling BotFence to identify and potentially thwart attack
preparations at the C&C access point. The next TTP focuses
on the collection of internal system information (Stage (2)),
termed System Information Discovery (T1082) [47]. This
phase is internal to the host, with no corresponding network
events, hence the absence of a network node. The fourth TTP,
characterized by the exfiltration of collected data through the
C&C access channel (Stage (3)), is labeled Exfiltration Over
C2 Channel (T1041) [48]. Here, a network event is identified,
showcasing the transmission of OS information from Host A
to the C&C server.

The final two TTPs in Figure 12 provide critical insights
into the attack scenario, indicating the completion of
establishing a foothold within the host and the subsequent
initiation of a genuine threat to the network. The fifth TTP
involves the delivery of a rootkit to the host (Stage (4)),
leveraging the previously leaked internal information, and
is designated as Rootkit (T1014) [50]. One network event
is again observed, indicating the transfer of the binary code
(i.e., rootkit from the C&C server to Host A) highlighting
the holistic approach of BotFence in detecting and analyzing
botnet malware activities. Finally, the last TTP, which
indicates the attempt to access an additional host via an
installed rootkit (Stage (5)), is represented as Exploitation of
Remote Services (T1210) [51].
The analysis conducted via the NTPG reveals that the

rootkit has been downloaded via the malware process, which
subsequently utilizes the rootkit for accessing additional
internal hosts. Consequently, it necessitates the creation and
deployment of a network rule specifically designed to inhibit
the network activities associated with the process. Figure 13
shows the network session aimed at accessing another host,
denoted as Host B (10.0.0.11), through the Remote Desktop
Protocol (RDP) being effectively neutralized by BotFence,
as corroborated by the tcpdump log (i.e., a red dotted
box). The session initiation between Host A and Host B is
observed; however, upon detection of RDP utilization for
communication, our system categorizes this as an endeavor
for lateral movement and subsequently obstructs the session
employing a network rule to drop the packets. Consequently,
despite the attacker’s initial successful infiltration, their
efforts to proliferate the attack to additional hosts are impeded

FIGURE 14. Test environments for performance evaluation; BotFence is
deployed on the server machine. The route (a) is configured for BotFence,
and the route (b) is for Snort IPS.

by BotFence, thereby rendering any further packet exchange
unachievable.

The efficacy of BotFence in mitigating the attack scenario
can be attributed to its advanced detection of suspicious activ-
ities via the NTPG, which facilitates the visualization of host
event sequences and the analysis of network packet payload.
Leveraging encryption offloading capabilities within our
system, it became possible to discern that a binary—critical
evidence indicative of attack behavior—had been retrieved
from the network packets. Furthermore, the execution of the
downloaded rootkit binary and the subsequent attempts to
compromise remote services on other hosts were identifiable
through NTPG. This comprehensive detection mechanism
enabled our system to successfully obstruct the attack.

C. PERFORMANCE EVALUATION
BotFence aggregates events from the host, conducts analyses,
and integrates these findings with outcomes from network
packet scrutiny to ascertain the presence of malicious
activities. Consequently, potential impacts on system and
host performance due to the operational overhead of our
system can be categorized into two primary areas: monitoring
of host events and monitoring of network packets. The
overhead associatedwithmonitoring host events arises during
the event processing and malicious activity determination
phases. By measuring the duration required for our system
to collect, analyze events, and formulate rules for malicious
activity, the extent of this overhead can be assessed.
Similarly, the overhead for monitoring network packets is
encountered during the packet inspection phase. Assessing
the impact on network performance involves comparing
network throughput and latency under normal conditionswith
those observed when our system is operational, utilizing the
SmartNIC capabilities.

For the evaluation, an experimental setup comprising two
machines—a server and a client, both equipped with Intel
Xeon Silver CPUs and 64GB of RAM—was employed
as Figure 14. The server was outfitted with an NVIDIA
BlueField-2 [17], whereas the client utilized a standard 40G
Ethernet NIC, with both machines interconnected via a 40G
Ethernet link. BotFence was installed on the server, where
it functioned to detect and assess attack activities targeting
the server. We conducted network overhead measurements

VOLUME 12, 2024 114889

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

FIGURE 15. (a) Decision making time comparison with the increasing
number of NTPGs. (b) Rule generation time comparison with the
increasing number of policies.

for the L7 HTTP protocol by deploying the Nginx [52] web
server on the server machine. Requests were generated using
the HTTP performance measurement tools wrk [53] and
wrk2 [54] on the client machine.

1) REAL-TIME EXECUTION
Contrary to conventional systems that accumulate host events
for subsequent analysis, BotFence is designed to identify
attacks in real-time and establish policies to inhibit the
network activities of malicious processes. To substantiate this
capability, an assessment of the execution latency intrinsic
to the operational flow of our system is conducted, estab-
lishing the viability of real-time execution. The methodology
employed by our system for the identification of attacks
and the subsequent enactment of defences can be succinctly
categorized into two distinct stages: decision-making and
policy enforcement. The decision-making encapsulates the
sequence from event collecting, through the NTPG gener-
ation and network packet inspection, to the formulation of
policy. Conversely, the policy enforcement encompasses the
derivation of network rules from the monitored events for
the application of the formulated policy. Consequently, the
execution time of the decision-making phase is contingent
upon the quantity of the NTPGs, while the policy enforce-
ment phase is influenced by the number of policies. Through
measurement of the execution durations associated with these
phases, an empirical understanding of the temporal efficiency
with which our system operates is achieved.

Figure 15a illustrates the temporal metrics associated with
the decision-making phase, revealing that the execution time
remains relatively stable despite an escalation in the number
of NTPGs. Similarly, Figure 15b quantifies the duration
required during the policy enforcement phase, echoing the
pattern observed in Figure 15a where the execution time
exhibits minimal increase with the augmentation of policy
count. Notably, it is observed that in excess of 99% of
operations within both phases were concluded within a 1ms
threshold. This efficiency is a direct consequence of the
methodology employed by BotFence, which involves the
real-time scoring of NTPGs upon the identification of any
TTPs, thereby facilitating swift attack detection. Moreover,
the strategy of utilizing an in-memory database for the
conservation of NTPGs and policies substantially curtails

FIGURE 16. (a) L7 throughput comparison with the increasing number of
network rules. (b) L7 latency comparison.

both the volume and temporal extent of database queries. This
streamlined architecture ensures the capability of our system
to perform attack detection and defense implementation in a
real-time.

2) NETWORK OVERHEAD
BotFence scrutinizes network packets, specifically focusing
on the Layer 7 (L7) content to determine the presence
of malicious payloads. Operating inline with the packet
processing pipeline, packet inspection could potentially
introduce a notable overhead to the host’s networking
capabilities. This experiment aimed to evaluate the impact on
throughput and latency for L7 packet inspection to quantify
the overhead induced by our system. To assess the efficacy of
our sytsem in packet inspection, we conducted a comparative
analysis with Snort [55], a widely recognized software-based
security system that employs DPI. Snort is capable of
operating in both passive and inline modes for scrutinizing
packets. Given that our system is designed to inspect
packets concurrently within the packet processing pipeline,
we specifically focused on comparing its performance against
the inline mode of Snort. According to the findings illustrated
in figure 16, the throughput for L7 packets under inspection
of our system demonstrates parity with the baseline network
performance, indicating no discernible degradation. Further
analysis, varying the number of network rules, revealed
a consistent network performance, unaffected by the rule
quantity. In contrast, Snort demonstrates the throughput
that is less than 25% compared to our system, with its
performance further diminishing as the rule count increases.
Figure 16b presents the latencymeasurements for L7 packets,
showing a marginal increase in latency compared to the
baseline, yet outperforming Snort. These outcomes are
attributed to the integration of the specialized DPI engine
designed for high-speed packet analysis. The engine, being
hardware-based, facilitates rapid packet inspection, enabling
our sytem to conduct thorough attack detection without
compromising network performance, even as the volume of
network rules increases.

VIII. DISCUSSION
A. LIMITATION OF SmartNIC RESOURCES
SmartNICs deliver foundational network functionalities in
addition to advanced packet processing capabilities. Despite

114890 VOLUME 12, 2024

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

this, such devices possess comparatively limited compu-
tational resources compared to conventional hosts. For
instance, the Bluefield-2 SmartNIC, employed within our
framework, is equipped with an ARM processor and 16GB of
memory. While this configuration suffices for the processing
of network packets, it may exhibit constraints when tasked
with more intricate operations, such as the analysis of host
events. The direct execution of these complex tasks on
SmartNICs may precipitate performance detriments.

Nonetheless, we have substantiated the feasibility of
real-time detection via the deployment of BotFence, as delin-
eated in Section VII-C1. This affirmation underscores the
potential of SmartNICs to maintain real-time operational
efficiency, notwithstanding their limited resource. Our
methodologywith SmartNICs prioritizes themaximization of
packet monitoring acceleration. To this end, we leverage the
DPI engine to conduct packet analyseswithout compromising
network throughput. By amalgamating traffic analysis and
security surveillance functionalities within SmartNICs, our
system effectively diminishes the CPU burden on hosts and
augments the overall system efficiency.

Despite the relatively high cost and limited resources asso-
ciated with SmartNIC, its advantages in enhancing network
performance are substantial. SmartNIC offloads network
packet processing from the server’s main resources, thereby
significantly boosting network efficiency. Additionally, its
isolated processing environment, separate from the host
operating system, fortifies network security by enabling
security functions at the hardware level. Consequently,
SmartNICs are extensively employed in high-performance
server environments, including data centers, cloud service
providers, and large-scale enterprise networks. By leveraging
the capabilities of SmartNIC, our system can be effectively
deployed in networks that demand both high security and
superior performance.

B. ADOPTION OF DECISION MAKING METHOD
BotFence employs a dual-faceted approach to botnet detec-
tion, integrating host event analysis with network packet
inspection to identify security threats. This combined strategy
enables our system to detect anomalies by scrutinizing host
events while concurrently monitoring network traffic for
suspicious packet transmissions. For host event analysis, our
system utilizes the Holmes methodology [7], which heavily
relies on the CAPEC database. This repository provides a
comprehensive range of attack patterns and vulnerabilities,
facilitating precise identification and categorization of secu-
rity threats. Although this rule-based method offers high-
speed detection, it is less effective in identifying new attacks.
The accuracy of host event analysis and the detection of
novel attacks can be enhanced by incorporating insights
from existing anomaly-based detection studies [9], [10],
[11]. However, employing advanced analytical techniques
like graph analysis may present challenges for real-time
execution. Our system is designed to separate host event
analysis and packet inspection processes, allowing for

asynchronous operation. This separation optimizes the use
of each analytical method without compromising real-time
performance efficiency.

C. DETECTION OF PROLONGED ATTACK
In the context of malware-based automated attacks, attackers
often employ an incubation period to obscure the signs and
processes of their actions. Botnet infection attacks similarly
rely on malware-based automation, enabling them to conceal
their activities, such as accessing C&C servers after a
prolonged incubation period. When attacks are executed over
extended durations, traditional detection methods struggle
to identify them due to issues like log loss. This challenge
persists in data provenance graph-based attack detection,
prompting the development of various solutions. For instance,
Holmes [7] and Rapsheet [5] transformed the raw provenance
graph into an alert graph, introducing the concept of
TTP to represent attack sequences. Our system adopts a
similar approach by introducing the NTPG. Borrowing from
Rapsheet’s methodology, our system does not retain the
entire provenance graph but instead organizes and stores
data identified as actual attacks in the form of NTPG.
This approach minimizes the data size required for attack
detection, enhancing data preservation and enabling the
detection of attacks that unfold over extended periods.

D. REAL-WORLD DEPLOYMENT OF SYSTEM
Our security evaluation experiments were conducted not in a
real-world environment, but through simulations designed to
closely replicate attack scenarios. Specifically, we emulated
an automated botnet expansion attack, adhering as closely
as possible to the lifecycle of an actual botnet as detailed
in Section II-A. The simulated attack process involved the
installation of malware on the host system, and subsequent
communication with a C&C server to receive and install a
customized rootkit for the system environment.

During these simulated attack scenarios, our system col-
lected host event information and integrated it with network
packet data to generate a NTPG. The security evaluation
demonstrated the NTPG creation process, showing the feed
generated during event collection and the generation rules to
configure TTP. This integration helps network security opera-
tors analyze attacks by visualizing the attack process through
the NTPG, which is linked to the collection of network
packets, providing crucial insights into attack methodologies.
Through these processes, our system effectively detects
attacks and provides comprehensive information on the
nature of attacks, thereby enhancing our readiness for
potential security incidents.

IX. CONCLUSION
In light of the escalating magnitude and complexity of
botnet attacks, we introduces a novel system, BotFence,
which amalgamates host event and network packet payload
inspection to optimize the detection and mitigation of

VOLUME 12, 2024 114891

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

botnet infections. BotFence leverages SmartNIC to offload
analysis and construct NTPG for detailed investigation while
concurrently preventing the diminution of network perfor-
mance. Through the execution of simulated attack scenarios,
we demonstrated that our system possesses the capability
to efficaciously identify botnet activities. Furthermore, these
simulations substantiated the proficiency of BotFence in
obstructing attack maneuvers in real-time, affirming its
efficacy without compromising network performance.

REFERENCES
[1] (2023). The Global Risks Report 2023 18th Edition. [Online]. Available:

https://www3.weforum.org/docs/WEF_Global_Risks_Report_2023.pdf
[2] (2024). Botnet and IoT Security Trends 2024. [Online]. Available: https://

www.ustelecom.org/wp-content/uploads/2024/03/USTelecom-Botnet-and
-Security-Trends-2024.pdf

[3] A. Arfeen, S. Ahmed, M. A. Khan, and S. F. A. Jafri, ‘‘Endpoint detection
& response: A malware identification solution,’’ in Proc. Int. Conf. Cyber
Warfare Secur. (ICCWS), Nov. 2021, pp. 1–8.

[4] S. Bhatt, P. K.Manadhata, and L. Zomlot, ‘‘The operational role of security
information and event management systems,’’ IEEE Secur. Privacy,
vol. 12, no. 5, pp. 35–41, Sep. 2014.

[5] W. U. Hassan, A. Bates, and D. Marino, ‘‘Tactical provenance analysis
for endpoint detection and response systems,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2020, pp. 1172–1189.

[6] M. N. Hossain, S.M.Milajerdi, J.Wang, B. Eshete, R. Gjomemo, R. Sekar,
S. Stoller, and V. Venkatakrishnan, ‘‘SLEUTH: Real-time attack scenario
reconstruction from COTS audit data,’’ in Proc. 26th USENIX Secur.
Symp., 2017, pp. 487–504.

[7] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. N. Venkatakr-
ishnan, ‘‘HOLMES: Real-time APT detection through correlation of
suspicious information flows,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 1137–1152.

[8] M. N. Hossain, S. Sheikhi, and R. Sekar, ‘‘Combating dependence
explosion in forensic analysis using alternative tag propagation semantics,’’
in Proc. IEEE Symp. Secur. Privacy (SP), May 2020, pp. 1139–1155.

[9] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, ‘‘UNICORN:
Runtime provenance-based detector for advanced persistent threats,’’ 2020,
arXiv:2001.01525.

[10] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen,
W. Cheng, C. A. Gunter, and H. Chen, ‘‘You are what you do: Hunting
stealthy malware via data provenance analysis,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp., 2020, pp. 1–24.

[11] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. N. Venkatakrishnan,
‘‘POIROT: Aligning attack behavior with kernel audit records for cyber
threat hunting,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2019, pp. 1795–1812.

[12] F. Dong, S. Li, P. Jiang, D. Li, H. Wang, L. Huang, X. Xiao, J. Chen,
X. Luo, Y. Guo, and X. Chen, ‘‘Are we there yet? An industrial viewpoint
on provenance-based endpoint detection and response tools,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2023, pp. 2396–2410.

[13] X. Wang, K. Zheng, X. Niu, B. Wu, and C. Wu, ‘‘Detection of command
and control in advanced persistent threat based on independent access,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[14] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and J. Sherry, ‘‘Achieving
100Gbps intrusion prevention on a single server,’’ in Proc. 14th USENIX
Symp. Operating Syst. Design Implement., 2020, pp. 1083–1100.

[15] R. Brewer, ‘‘Advanced persistent threats: Minimising the damage,’’ Netw.
Secur., vol. 2014, no. 4, pp. 5–9, Apr. 2014.

[16] M. Marchetti, F. Pierazzi, M. Colajanni, and A. Guido, ‘‘Analysis of
high volumes of network traffic for advanced persistent threat detection,’’
Comput. Netw., vol. 109, pp. 127–141, Nov. 2016.

[17] (2023). Nvidia Bluefield-2 DPU. [Online]. Available: https://www.nvidia.
com/en-us/networking/products/data-processing-unit/

[18] P. N. Bahrami, A. Dehghantanha, T. Dargahi, R. M. Parizi, K.-K. R. Choo,
andH. H. Javadi, ‘‘Cyber kill chain-based taxonomy of advanced persistent
threat actors: Analogy of tactics, techniques, and procedures,’’ J. Inf.
Process. Syst., vol. 15, no. 4, pp. 865–889, 2019.

[19] M. Antonakakis et al., ‘‘Understanding the Mirai botnet,’’ in Proc. 26th
USENIX Secur. Symp., 2017, pp. 1093–1110.

[20] S. R. Team, ‘‘Emotet exposed: Looking inside highly destructive
malware,’’ Netw. Secur., vol. 2019, no. 6, pp. 6–11, Jun. 2019.

[21] S. Shin, G. Gu, N. Reddy, and C. P. Lee, ‘‘A large-scale empirical study of
conficker,’’ IEEE Trans. Inf. Forensics Security, vol. 7, no. 2, pp. 676–690,
Apr. 2012.

[22] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef,
M. Debbabi, and L. Wang, ‘‘On the analysis of the Zeus botnet crimeware
toolkit,’’ inProc. 8th Int. Conf. Privacy, Secur. Trust, Aug. 2010, pp. 31–38.

[23] (2023). Necurs: Uncovering the Sophisticated Botnet. [Online]. Available:
https://www.blackhatethicalhacking.com/articles/necurs-uncovering-the-
sophisticated-botnet/

[24] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, ‘‘Measuring and detecting
fast-flux service networks,’’ in Proc. Ndss, 2008, pp. 1–12.

[25] U. J. Braun, A. Shinnar, andM. I. Seltzer, ‘‘Securing provenance,’’ in Proc.
3rd USENIX Workshop Hot Topics Secur., 2008, pp. 1–20.

[26] S. Gaonkar, N. F. Dessai, J. Costa, A. Borkar, S. Aswale, and
P. Shetgaonkar, ‘‘A survey on botnet detection techniques,’’ in Proc. Int.
Conf. Emerg. Trends Inf. Technol. Eng., Feb. 2020, pp. 1–6.

[27] Y. Xing, H. Shu, H. Zhao, D. Li, and L. Guo, ‘‘Survey on botnet detection
techniques: Classification, methods, and evaluation,’’ Math. Problems
Eng., vol. 2021, pp. 1–24, Apr. 2021.

[28] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, ‘‘Intrusion detection
system: A comprehensive review,’’ J. Netw. Comput. Appl., vol. 36, no. 1,
pp. 16–24, 2013.

[29] X. Zhang, C. Li, and W. Zheng, ‘‘Intrusion prevention system design,’’ in
Proc. 4th Int. Conf. Computer Inf. Technol., 2013, pp. 375–382.

[30] N. Chakraborty, ‘‘Intrusion detection system and intrusion prevention
system: A comparative study,’’ Int. J. Comput. Bus. Res. (IJCBR), vol. 4,
no. 2, pp. 1–8, 2013.

[31] T. Kovanen, G. David, and T. Hämäläinen, ‘‘Survey: Intrusion detection
systems in encrypted traffic,’’ in Proc. 16th Int. Conf., 2016, pp. 281–293.

[32] K. Özgun, A. Tosun, and M. Sandıkkaya, ‘‘A recommender system to
detect distributed denial of service attacks with network and transport
layer features,’’ in Proc. 10th Int. Conf. Inf. Syst. Secur. Privacy, 2024,
pp. 390–397.

[33] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, ‘‘Botnet in DDoS attacks:
Trends and challenges,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2242–2270, 4th Quart., 2015.

[34] T. A. Tuan, H. V. Long, L. H. Son, R. Kumar, I. Priyadarshini, and
N. T. K. Son, ‘‘Performance evaluation of botnet DDoS attack detection
using machine learning,’’ Evol. Intell., vol. 13, no. 2, pp. 283–294,
Jun. 2020.

[35] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson, ‘‘Analyzing forged SSL
certificates in the wild,’’ in Proc. IEEE Symp. Secur. Privacy, May 2014,
pp. 83–97.

[36] (2023). Kernel TLS Offload—The Linux Kernel Documentation. [Online].
Available: https://docs.kernel.org/networking/tls-offload.html

[37] (2023).MITRE ATT&CK. [Online]. Available: https://attack.mitre.org/
[38] (2023). Data From Local System, Technique T1005—Enterprise | MITRE

ATT&CK. [Online]. Available: https://attack.mitre.org/techniques/T1005/
[39] (2023). Application Layer Protocol: Web Protocols, Sub-technique

T1071.001—Enterprise | MITRE ATT&CK. [Online]. Available: https://
attack.mitre.org/techniques/T1071/001/

[40] (2023). Common Attack Pattern Enumerations and Classifications.
[Online]. Available: https://capec.mitre.org/

[41] B. Pismenny, I. Lesokhin, L. Liss, and H. Eran, ‘‘TLS offload to network
devices,’’ in Proc. Tech. Conf. Linux Netw., 2016, pp. 1–24.

[42] (2023). DOCA SDK Documentation. [Online]. Available: https://docs.
nvidia.com/doca/sdk/index.html

[43] (2023). Libbpf. [Online]. Available: https://github.com/libbpf/libbpf
[44] (2023). EBPF. [Online]. Available: https://ebpf.io/
[45] (2021). Apt1: Exposing One of China’s Cyber Espionage Units.

[Online]. Available: https://www.mandiant.com/sites/default/files/2021-
09/mandiant-apt1-report.pdf

[46] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, ‘‘A survey
on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1851–1877, 2nd Quart., 2019.

[47] (2023). System Information Discovery, Technique T1082—Enterprise |
MITRE ATT&CK. [Online]. Available: https://attack.mitre.org/techniques/
T1082/

114892 VOLUME 12, 2024

H. Seo et al.: BotFence: A Framework for Network-Enriched Botnet Detection and Response

[48] (2023). Exfiltration Over C2 Channel, Technique T1041—Enterprise |
MITRE ATT&CK. [Online]. Available: https://attack.mitre.org/techniques/
T1041/

[49] (2023). Encrypted Channel, Technique T1573—Enterprise | MITRE
ATT&CK. [Online]. Available: https://attack.mitre.org/techniques/T1573/

[50] (2023). Rootkit, Technique T1014—Enterprise | MITRE ATT&CK.
[Online]. Available: https://attack.mitre.org/techniques/T1014/

[51] (2023). Exploitation of Remote Services, Technique T1210—Enterprise |
MITRE ATT&CK. [Online]. Available: https://attack.mitre.org/techniques/
T1210/

[52] NGINX: Advanced Load Balancer, Web Server, & Reverse Proxy.
Accessed: Aug. 20, 2024. [Online]. Available: https://www.nginx.com/

[53] (2021). WRK—A HTTP Benchmarking Tool. [Online]. Available: https://
github.com/wg/wrk

[54] (2019).WRK2. [Online]. Available: https://github.com/giltene/wrk2
[55] (2023). Snort—Network Intrusion Detection & Prevention System.

[Online]. Available: https://www.snort.org/

HYUNMIN SEO received the B.S. and M.S.
degrees in electrical engineering from KAIST,
where he is currently pursuing the Ph.D. degree
with the School of Electrical Engineering. His
research interests include programmable network
data planes, cyberattack, and cloud security.

SEUNGWON SHIN (Member, IEEE) received the
B.S. and M.S. degrees in electrical and computer
engineering from KAIST and the Ph.D. degree
in computer engineering from the Electrical and
Computer Engineering Department, Texas A&M
University. He is currently an Associate Professor
with the School of Electrical Engineering, KAIST.
His research interests include software-defined
networking security, dark web analysis, and cyber
threat intelligence.

SEUNGSOO LEE received the B.S. degree in
computer science from Soongsil University and
theM.S. and Ph.D. degrees in information security
from KAIST, in 2020. He is currently an Assis-
tant Professor with the Department of Computer
Science and Engineering, Incheon National Uni-
versity. His research interest includes developing
secure and robust cloud/network systems against
potential threats.

VOLUME 12, 2024 114893

