IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 24 January 2025, accepted 17 February 2025, date of publication 20 February 2025, date of current version 27 February 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3543841

== RESEARCH ARTICLE

Exploring Security Enhancements in Kubernetes
CNI: A Deep Dive Into Network Policies

BOM KIM™“7, JINWOO KIM*“2, AND SEUNGSOO LEE"!

!Incheon National University, Incheon 22012, Republic of Korea
2Kwangwoon University, Seoul 01897, Republic of Korea

Corresponding authors: Jinwoo Kim (jinwookim@kw.ac.kr) and Seungsoo Lee (seungsoo@inu.ac.kr)

This work was supported by Incheon National University (International Cooperative) Research Grant, in 2024.

ABSTRACT With the explosive growth of Kubernetes adoption, Container Network Interfaces (CNIs) have
become critical components for configuring and securing container networks, but a comprehensive analysis
of their security capabilities and performance impact is noticeably lacking. Our study conducts a compre-
hensive security analysis of the major CNI plugins (Cilium, Calico, WeaveNet, Kube-router, and Antrea)
in cloud-native environments with Kubernetes through extensive evaluation of Layer 3/4 policy processing,
policy complexity scaling, pod scalability, and Layer 7 policy processing. The experimental results show that
eBPF-based Cilium maintains 8.9K Mbps throughput under complex L.3/4 policies, but drops to 94 Mbps
with L7 processing, while Antrea achieves 6.6K Mbps at L7 through HTTP filtering, with performance
degrading as policy complexity increases. Under high concurrent pod loads, iptables-based CNIs show a
60-70% reduction in throughput, while Cilium maintains performance within 10% of baseline. These results
reveal critical trade-offs between architectural choices and security capabilities, and provide practical guide-
lines for CNI selection based on specific operational and security requirements in cloud-native environments.

INDEX TERMS Container network interface, cloud security, container security, network policy.

I. INTRODUCTION

The rapid adoption of cloud computing and container
technologies is fundamentally changing today’s IT landscape.
According to IDC’s 2024 report [1], global public cloud
services revenue is expected to exceed $800 billion in 2024.
This represents a 20.5% increase from 2023. The growth is
particularly strong in the TaaS and PaaS segments, driven by
increasing demand for Al and high-performance computing
applications. As the cloud market expands, cloud-native
computing is becoming increasingly important to enterprises’
digital transformation initiatives. Cloud-native architectures
emphasize flexibility, scalability, and automation, with
microservices, containers, and orchestration tools emerging
as foundational technology components [1], [2].

However, this accelerated growth has been accompanied
by a concurrent rise in security concerns [3], [4]. As
documented in the AlgoSec 2024 State of Network Security
Report [5], 97% of respondents cited security and compliance

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak

as a top concern when selecting cloud platforms. In particular,
the complex network configurations inherent in hybrid and
multi-cloud environments have emerged as a significant
source of security challenges.

In container environments, traditional network security
approaches are inadequate due to three factors: the dynamic
scaling of workloads, the ephemeral nature of containers, and
the complex communication patterns between microservices.
The Container Network Interface (CNI) [6] plays a pivotal
role in standardizing and managing network connections
between containers, thereby facilitating the integration of a
variety of networking solutions into container orchestration
platforms such as Kubernetes [7]. However, the default con-
figuration of Kubernetes allows unrestricted communication
between all pods without isolation, creating potential security
vulnerabilities that CNI cannot adequately address on its own.

Thus, network policies serve as a security mechanism
to address such a vulnerability, providing sophisticated
capabilities for granular traffic control within container
environments. When implemented, these policies enable
precise regulation of inter-pod communication patterns,

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

35322

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 13, 2025


https://orcid.org/0009-0006-5983-0844
https://orcid.org/0000-0003-1303-8668
https://orcid.org/0000-0002-6883-1869
https://orcid.org/0000-0001-5822-3432

B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

IEEE Access

minimizing network exposure vulnerabilities and enforcing
the principle of least privilege within microservice archi-
tectures. Additionally, the extensive monitoring and logging
inherent in network policies facilitates rapid detection and
response to potential security breaches, improving overall
system resilience. As sophisticated threat vectors such
as side-channel attacks, container hijacking, and network
sniffers become more prevalent, granular access control
and traffic monitoring through CNI and network policies
have become critical. However, network policy handling and
security characteristics vary among CNIs, and the impact
of these differences on security effectiveness has not been
systematically analyzed. Therefore, designing an effective
security architecture requires careful analysis of each CNI’s
security features and how they support network policies.

Existing analyses of CNIs have predominantly focused on
basic features or performance metrics [8], [9], [10], [11], [12],
[13], with only cursory mentions of policy support mecha-
nisms. Even studies that do address security policies tend to
focus narrowly on specific L3/L4 technologies such as eBPF
and iptables, rather than providing a holistic examination of
how CNIs implement and enforce network policies across
all layers (L3/L4/L7). Despite emerging research interests
in policy management and automation in Kubernetes [14],
[15],[16], [17], [18], analytical research on container network
security remains fragmented and incomplete. This gap creates
an urgent need for a more thorough analysis of how different
CNIs manage and process security policies.

To address these limitations, this paper presents a compre-
hensive analysis of the network policy support and security
features of the major CNI plugins used in the Kubernetes
environment, specifically Flannel [19], WeaveNet [20],
Calico [21], Kube-router [22], Cilium [23], and Antrea [24].
We present a quantitative and qualitative analysis of the
relationships between architectural design choices, security
capabilities, and performance characteristics for each CNI.
Our results show that Kubernetes policies take precedence
over CNI policies due to the positioning of the kernel stack,
allowing for complementary security enforcement.

In L3/L4 testing, eBPF-based Cilium achieves 8.9K
Mbps throughput even with 1,000 policy rules, while
OVS-based Antrea shows significant degradation to 1.2K
Mbps. In concurrent pod scaling tests, iptables-based CNIs
experience 60-70% throughput reduction at 200 pods, while
Cilium maintains performance within 10% of baseline. AtL7,
architectural choices lead to an interesting reversal - Cilium’s
extensive protocol support leads to significant performance
drops (94 Mbps), while Antrea’s HTTP filtering maintains
6.6K Mbps throughput. Finally, this paper presents the
results of an empirical analysis to support optimal CNI
selection based on operational characteristics when building
cloud-native environments based on these overall findings.

The primary contributions of this paper are as follows:

o In-depth analysis of security and network policy
features across CNIs: We conduct a comprehensive
investigation into security-related feature variations

VOLUME 13, 2025

among Container Network Interfaces (CNIs) to evaluate
how each CNI’s architectural characteristics and policy
support mechanisms contribute to enhancing network
security.

« Quantitative performance evaluation of policy pro-
cessing overhead: We present a rigorous quantitative
assessment of the impact of Layer 3/4 and Layer
7 network policies on CNI workload performance.
This analysis includes detailed measurements and
evaluations of throughput, latency, and system resource
utilization (CPU and memory) under varying policy
enforcement conditions.

o Tailored guidelines for CNI selection: We offer
detailed guidelines to assist in selecting appropri-
ate CNIs and network policies suited to different
cloud-native environments and operational require-
ments. Based on our findings, we propose optimized
network policies for specific scenarios, establishing
selection criteria that effectively balance security
improvements with performance optimization.

The remainder of this paper is organized as follows: Sec-
tion Il introduces the background and motivation. Sections III
and IV present an analysis of the baseline and security
features of each CNI, including its network policy. Section V
provides an experimental analysis of the performance impact
of network policy enforcement. Section VI reviews related
work and its limitations. Section VII discusses our key find-
ings and current limitations. Finally, Section VIII concludes
with insights and future research.

Il. BACKGROUND AND MOTIVATION

A. CONTAINERIZATION AND KUBERNETES
Containerization [25] packages applications and their depen-
dencies into independent units, allowing them to run
consistently across environments. Unlike traditional virtu-
alization, which requires a separate guest operating system
for each VM, containers share the host operating system
kernel. This approach maintains isolation while providing
improved resource efficiency and faster deployment times.
The efficiency and portability of containerization have
made it a fundamental part of cloud-native application
development. Kubernetes [7] has emerged as the leading
container orchestration platform, where applications run in
pods - the smallest deployable units that can contain one
or more containers. Kubernetes manages these pods across
distributed environments. It automates deployment, scaling,
and load balancing. It also provides application resiliency and
service discovery. This orchestration enables organizations to
efficiently manage containerized applications at scale while
maintaining operational consistency.

B. CONTAINER NETWORK INTERFACE

There are several challenges to pod networking across
multiple nodes in Kubernetes clusters. The main issues
include IP address duplication when container networks
share the same IP range. Also, communication difficulties

35323



IEEE Access

B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

Built-in Plug-ins Third-party Plug-ins

‘IoopbackH ipvlan H bridge ‘ ‘ Cilium H Calico H Flannel ‘

‘MACvIanH dhcp H PTP ‘Weave H Canal H Antrea ‘
I I

l CNI (Container Network Interface) l

!

‘ Container Runtime ‘

‘ Container H Container H Container H Container ‘

FIGURE 1. Various container network interfaces in Kubernetes.

between nodes occur when pod IP addresses cannot identify
physical locations. To address these challenges, Kubernetes
introduced the Container Network Interface (CNI) [6].!
CNI provides a standardized approach that abstracts the
complexity of networking while enabling efficient resource
management and optimization.

Kubernetes provides ‘Kubenet’ as the default CNI, but its
functionality is severely limited and lacks even basic support
for cross-node networking. To address these limitations,
several CNI solutions have emerged, as shown in Figure 1.
Built-in plug-ins (loopback, bridge, etc.) provide basic
networking capabilities. For example, Bridge facilitates con-
tainer communication by creating a Linux bridge to connect
container interfaces on the same node. However, to meet
the needs of complex orchestration environments, third-party
plug-ins (Cilium, Calico, etc.) have emerged that go beyond
basic networking to provide advanced security features such
as deep packet inspection, encrypted communications, and
dynamic access control, becoming essential components in
modern containerized environments.

C. MOTIVATION

As container environments become an integral part of modern
infrastructure, ensuring secure network isolation and policy
enforcement through CNIs has become critical to protecting
containerized applications and data. Most existing studies
have focused on evaluating basic network capabilities and
performance benchmarks, while the interaction between
security policies and system performance remains largely
unexplored. There is a notable lack of a perspective that
comprehensively considers architectural aspects, security
features, and their performance implications together. Thus,
we organize the three main limitations as follows.

Li. Lack of analysis of gaps in CNI security features:
According to the 2023 CNCF Annual Survey [26], 40% of
organizations using cloud services identify security as a major
challenge. Monitoring and visibility into network traffic,
especially in container environments, is a growing concern.
To establish an effective security posture that addresses the
multifaceted need for visibility, it is essential to examine both
the practical implementation and effectiveness of advanced
CNI security features, such as encrypted communications and
support for real-time monitoring.

L2. Lack of comparison between network policy capabil-
ities: The 2024 Cloud Security Report from Fortinet [27]

Lhereafter referred to as ‘CNI’ in this paper.

35324

shows that 45% of organizations struggle with consistent
security policy management in multi-cloud environments.
Specifically, differences in policy scope, priority schemes,
and enforcement mechanisms across different CNIs add
complexity to policy management and often lead to security
misconfigurations. Furthermore, the 2024 State of Kuber-
netes Security Report from Red Hat [28] shows that 40%
of organizations have encountered misconfigurations in
container environments, with 60% expressing concern about
the potential security risks associated with these issues. This
highlights the need for a comprehensive analysis of the
security mechanisms provided by each CNI, including how
their policies are enforced and managed, to ensure optimal
policy configuration tailored to organizational needs.

L3. Lack of assessments of policy impacts on system
performance: The 2024 Cloud Native Security and Usage
Report from Sysdig [29] found that over 50% of container
environments lack alerts or limits on system resource usage.
This lack of monitoring raises concerns about the ability to
accurately predict and manage the performance impact of
security policies. This issue is particularly pertinent because
each CNI processes policies differently from L3 to L7, and
as policy complexity increases, there are notable variations
in throughput, latency, and resource utilization patterns.
Therefore, empirical criteria are needed to quantitatively
assess the impact of each CNI’s policy handling mechanisms
on overall system performance. Such criteria would enable
organizations to select the most appropriate CNI based
on their specific infrastructure characteristics and security
requirements.

To address those challenges, this study poses the following
key research questions:

o RQ1. How do security features across CNIs differ in
their implementation, and what are their implications
for network policy operations? (Section III)

o RQ2. How do CNIs differ in their policy extensibility
and what capabilities do they provide for advanced
policy control? (Section IV)

o RQ3. How do performance metrics vary with policy
complexity and processing layer (L3/L4 vs. L7), and
what are the performance and resource trade-offs when
selecting a CNI? (Section V)

Ill. SECURITY FEATURES ANALYSIS IN CNI

A. UNDERSTANDING CNI ARCHITECTURES

In order to evaluate their security capabilities and perfor-
mance implications, it is essential to understand the basic
architectural features of different CNIs. This section provides
a brief overview of the basic features and architectures of each
CNI based on the Table 1.

1) FLANNEL

Flannel [19] operates at L2/L.3 and implements UDP-based
overlay networks through multiple network modes, including
VXLAN [30], [31], [32], Host-GW [33], and direct routing.

VOLUME 13, 2025



B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

IEEE Access

TABLE 1. Summary of basic feature analysis for major CNI plugins within a layered network architecture.

CNI Distributors OSI Layer Network Architecture (Layer-wise) Data Storage Multi-cloud Support
Flannel CoreOS L2, L3 L2: VXLAN eted No
L3: UDP-based Overlay, VXLAN, Host-GW, Direct Routing
Yes
WeaveNet None L2, L3 L2: Overlay (VXLAN) No g .
L3: Overlay, Routed Mesh, VXLAN, Host-GW, Direct Routing (Multi-Hop Routing)
Kube-router CloudNativeLabs L3 L3: BGP-based routing No No
Calico Tigera L3, L4, L7 L3: IP-in-IP tunneling, BGP routing, VXLAN support (optional). eted Yes
¢BPF-based datapath (or K8s API) (Federation)
L4: eBPF-based kube-proxy replacement (load balancing)
L7: Application layer visibility and traffic control through eBPF
Cilium Tsovalent L3,L4, L7  L3: eBPE-based Overlay or itcf:sul) (cm;zéer;/[egh)
L4: eBPF Socket Filtering C ;
L7: Layer-aware routing through eBPF
Antrea VMware L3, L4, L7 L3: Open vSwitch-based Overlay, VXLAN, GENEVE eted Ml lz‘jwer)
L4: Flow-based packet filtering via OVS (or CRD) i
L7: Advanced policy control through Suricata
. . . Pod A
As shown in Figure 2 (A), Flannel’s architecture centers e ‘ ‘ Pod® l ‘ ‘ ’%‘
(Apache Busybox) v 2

around the Flanneld daemon running on each node, which
configures local routing tables based on the network con-
figuration stored in etcd. In VXLAN mode, Flannel installs
a bridge interface (cni0) with a unique subnet assignment
(e.g., 10.42.1.1) for each node, and encapsulates traffic
between nodes through a VXLAN interface (flannel.l).
This architecture not only prevents network contention
through subnet-level isolation, but also simplifies IP address
management across the cluster.

2) WEAVENET

WeaveNet [20] adopts a unique mesh network architecture for
container-to-container communications. Operating at L2/L.3,
it combines overlay networks and a routing mesh topology
that can be configured without requiring a separate data
storage infrastructure. As shown in Figure 2 (B), the core
component of WeaveNet is the Weave router running on each
node. These routers interconnect to form a network mesh and
provide a bridge interface (vethwe-bridge) on each node for
container traffic management.

In VXLAN mode, it has a notable two-tiered structure.
The vethwe-datapath and vxlan-6784 interfaces are layered
to efficiently handle packet encapsulation and decapsulation.
vxlan-6784, WeaveNet’s proprietary interface, not only
encapsulates inter-node traffic, but also integrates with
iptables rules to implement security and routing policies.
This architecture provides network encryption capabilities
and resilience to network partitioning. In addition, WeaveNet
supports efficient container name resolution through its
built-in DNS server and enables reliable packet delivery
through multiple intermediate nodes via multi-hop routing.

3) KUBE-ROUTER

Kube-router [22] operates primarily at the L3 level, using
BGP to exchange routing information between nodes and
enable direct communication. It uses IPVS (IP Virtual Server)
for network traffic processing, which eliminates the perfor-
mance overhead associated with inbound source network

VOLUME 13, 2025

Linux Bridge
(e.g., cbr0 or kube-bridge)

etho
10.42.1.2

weave (10.32.0.1) (’
vethwe-bridge
I

‘ flannel.1 '
° ' (20.42.1.0)

Root Networ e ] y Kub
OVS Module /7
Watchers
Vethe datapath
vxlan-6784

Network Stack

GoBGP

. o
172.30.1.12
.

_ VXLAN i VXLAN
[

(A) Flannel

architecture with VXLAN

BGP,
S IPVS

(C) Kube-router
architecture with BGP

[
(B) Weavenet
architecture with VXLAN

FIGURE 2. Comparison of CNI architectures: Flannel (A) with simple
VXLAN-based overlay networking, WeaveNet (B) leveraging VXLAN with
0VS for advanced packet processing, and Kube-router (C) utilizing IPVS
and BGP for efficient routing and load balancing.

address translation (SNAT) that has traditionally degraded
kube proxy performance. Although IPVS cannot handle
packet filtering and certain SNAT operations, it requires
minimal use of iptables.

As shown in Figure 2 (C), Kube-router is centered around
a single Kube-router daemon running on each node. This
daemon communicates directly with the Kubernetes API
server through watchers to detect changes in cluster state,
and updates network configurations through controllers.
The network stack provides high-performance service proxy
functionality using IPVS, while built-in GoBGP allows each
node to act as a BGP router. This integrated structure
enables efficient pod-to-pod communication without overlay
networks and optimizes overall network performance along
with pod network management through Linux Bridge.

4) CALICO

Calico [21] is a solution that provides advanced capabilities
through BGP-based routing, making it suitable for deploy-
ment in large cluster environments. As depicted in Figure 3,
the Calico architecture consists of a Calico agent running on
each node, which includes Felix, BIRD (BGP client), CNI
plugin, and IPAM plugin.

35325



IEEE Access

B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

1
_— "
Datastore CONFD Calico
(etcd) v Agent
tH— sgp —#| BIRD FELIX

userspace

kernel
ACLs/
IPTables

Node A Node B

Pod 1

[ etno ]

IPAM Plugin

CNI Plugin

Routes

FIGURE 3. Calico CNI architecture with BGP.

As the main agent, Felix configures routes for each
pod and implements network policies using IPtables rules
to control traffic flow. The BIRD daemon facilitates the
exchange of routing information between nodes via BGP,
enabling efficient routing without overlay networks. The
IPAM handles IP address allocation and management. Felix
and BIRD operate in userspace, with the actual packet
processing and routing taking place in the kernel-space
network stack. The architecture uses either etcd or the
Kubernetes API as the data store for maintaining network
policies and configuration information.

Recent architectural enhancements include support for
eBPF [34], [35], [36], which enables direct kernel-level
packet processing and provides more efficient service load
balancing by replacing kube-proxy. In addition, Calico’s
Federation [37] enables centralized network policy manage-
ment and synchronization across geographically distributed
clusters in multi-cloud environments, ensuring consistent
security policy enforcement.

5) CILIUM
Cilium [23] is a CNI that adopts eBPF to provide advanced
networking, security, and observability. As shown in Figure 4,
the architecture uses the Cilium Agent as the central
component in the user space. This agent interacts with the
CNI plugin, the Cilium CLI, and the libbpf (Go library) to
generate eBPF program source code. The resulting byte code
is then loaded into the kernel after passing the eBPF verifier.
In kernel space, loaded eBPF programs are executed at
multiple hook points, including network device-level XDP
hooks, TC ingress/egress hooks, and socket-level hooks. The
eBPF maps facilitate data exchange between the Cilium
Agent in user space and the eBPF programs in kernel space,
enabling dynamic policy updates and state management.
The Cilium Operator interfaces with the Kubernetes API to
manage resources and policies at the cluster level. In addition,
Cilium’s ClusterMesh [38] extends service namespaces
across multiple clusters to behave like a single unified cluster,
enabling seamless microservice communication and global
load balancing for high availability in multi-clouds.

6) ANTREA
Antrea [39] is based on the Open vSwitch (OVS) [39] to
provide high performance packet processing. As shown in

35326

& Node
=yl Pod Cilium Operator
“eBPF Agent

K8s API POIIFY
Repository

eBPF Program

Bytecode
libbpf
(Go Library)

Syscall

Pod

App
sendmsg() recvmsg()
userspace

kernel Syscall

Hubble
(Monitor)

(@ Cilium Agent
(Code Generation)

N ) =
eBPF Verifier = eBPF Maps

eBPFJIT eBPF Program Lty Tc
Compiler (Kernelcode) |~ T TTTTT Ingress

FIGURE 4. Cilium CNI architecture with eBPF.

-

Network Stack
(TCP/IP)

TC
Egresss

Octant Ul K8s APl

Antrea CNI

Pod 1 Pod 2
eth0 eth0

I [
vethA |—{ vethB

OVS Bridge (br-int) ZXLAN/
eneve
gwo H tun0
T T I
ensl
L= |

kube-proxy

FIGURE 5. Antrea CNI architecture with OVS.

Figure 5, Antrea is built around the Antrea Agent, which
is deployed as a daemon set on each node to manage
the OVS and handle local Pod networking requirements.
Under the supervision of the Antrea Controller, the Agent
interacts with the OVS daemon to establish OpenFlow rules
and manage the OVS configuration via the OVSDB. The
Antrea communicates with the Kubelet to configure the pod
network interfaces and connect them to the OVS bridge (br-
int), with each pod connected to the OVS bridge via veth
pairs. Communication between nodes is enabled using either
VXLAN or GENEVE tunnels carried over physical network
interfaces such as ensl.

Antrea also integrates with the Octant UI [40], which
provides visualization capabilities for network topology and
policy management. Antrea uses either etcd or Kubernetes
Custom Resource Definitions (CRD) [41] to maintain net-
work configuration information. In addition, the multi-cluster
controller [42] uses a leader-member cluster architecture
based on the ClusterSet. Leader clusters are responsible for
managing network policies and resource synchronization,
while member clusters apply these resources locally. This
architecture is enhanced by a Common Area shared repos-
itory that enables efficient resource and namespace sharing
across clusters.

B. SECURITY FEATURE COMPARISON ACROSS CNIS

This section presents an overall comparative analysis of the
major CNIs based on security features and investigates the
impact of CNI architecture selection on security features. The
analysis is summarized in Table 2.

VOLUME 13, 2025



B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

IEEE Access

TABLE 2. Comparison of security feature analysis for major CNI plugins.

CNI Network Policy Encryption Authentication Multi-tenancy Traffic Visibility
Flannel No No No No No
‘WeaveNet Yes IPsec (built-in), TLS Certificates Basic overlay isolation Weave Scope
Kube-router Yes No No Basic partitioning (namespace) No
Calico Yes WireGuard, IPsec Certificates, Tokens RBAC and hierarchical policies Flow Logs
Cilium Yes IPsec, TLS, WireGuard mTLS Identity-based (eBPF micro-segmentation) Cilium Hubble

Antrea IPsec, WireGuard

Certificates

Policy-based (namespace + OVS) Flow Exporter

1) SUPPORT FOR NETWORK POLICY

Support for network policies provides a security mechanism
for controlling inter-pod communication within clusters.
Although Flannel does not provide native policies, most other
CNIs support Kubernetes network policies [43], with some
providing advanced policy capabilities.

Notably, Cilium uses its eBPF to enforce policies directly
at the kernel level. Policy processing occurs sequentially at
multiple hook points, including XDP hooks that handle initial
packet filtering at the network device level, TC ingress/egress
hooks that handle L3/L4 policies, and socket-level hooks
that implement L7 policies. Antrea implements policy control
through a hierarchical OpenFlow pipeline structure within
the OVS. The policy rules are converted into OpenFlow
entries that form distinct tables for different policy types, with
connections tracked through the OVS conntrack module for
stateful policy enforcement.

Calico, WeaveNet, and Kube-router employ iptables-based
policy enforcement, although each implements it differently:
Calico through Felix’s structured pipeline with distinct
ingress/egress chains, WeaveNet through its mesh network’s
synchronized routing tables, and Kube-router through direct
integration with its BGP routing system. The detailed analysis
of network policies and their impact on performance can be
found in Section IV and V.

2) ENCRYPTION AND AUTHENTICATION MECHANISMS

The encryption and authentication mechanisms are indis-
pensable elements in guaranteeing the confidentiality and
integrity of network traffic in cloud-native environments.
Flannel and Kube-router’s reliance on basic Kubernetes API
server authentication reflects their focus on simplicity, which
consequently limits their ability to offer fine-grained authen-
tication policies. In contrast, other CNIs implement compre-
hensive security protocols. WeaveNet integrates IPsec within
its mesh network for peer-to-peer encryption and implements
certificate-based authentication for peer verification.

Calico combines IPsec for direct packet encryption in the
data plane with WireGuard for lightweight VPN tunneling,
supporting both certificate and token-based authentication
mechanisms. Cilium implements multi-layer encryption
using IPsec and WireGuard in its BPF-based data plane, while
also providing TLS for service-level encryption and mTLS
for service-to-service authentication with unique workload
identities. Antrea implements both [Psec and WireGuard in
its OVS-based data plane, using IPsec for tunneled node-

VOLUME 13, 2025

to-node communications and WireGuard for encrypted peer
networking, while centrally managing certificates centrally
for OVS component authentication.

Encryption and authentication mechanisms have a direct
impact on the security and efficiency of policy enforcement.
Calico’s WireGuard integration automatically encrypts traffic
allowed by L3/L4 policies, enabling unified policy and data
protection management in a single location. In particular, Cil-
ium’s mTLS implementation combines fine-grained, service-
level access control with encryption, enhancing the effec-
tiveness of L7 policies. This integrated approach strengthens
end-to-end security while reducing the complexity of policy
management.

3) SUPPORT FOR MULTI-TENANCY

In cloud-native environments, multi-tenancy is a security
requirement that ensures the isolation of multiple tenants
sharing cluster resources. To effectively implement multi-
tenancy, several isolation mechanisms are required, including
namespace separation, resource isolation, network isolation,
storage isolation, and granular access control. The level of
multi-tenancy support in a CNI can be analyzed based on the
comprehensiveness of these isolation mechanisms.

Cilium implements identity-based access control using
workload identities instead of IP addresses, leverages
Kubernetes namespaces for tenant separation, and enables
network traffic isolation through its Multi-Network. Calico
reinforces namespace isolation through RBAC-based policies
and BGP-based network segmentation and supports resource
and network isolation through a hierarchical policy model.
Antrea provides namespace-based isolation but lacks gran-
ular control over tenant resource sharing, while WeaveNet
provides only basic namespace isolation with encrypted
communications and Kube-router provides basic network
partitioning without additional tenant isolation. Flannel
lacks any multi-tenancy support, making it unsuitable for
environments that require tenant networking.

Multi-tenancy capabilities enable effective network policy
separation and enforcement. Calico’s hierarchical policy
model combines RBAC with network segmentation, allowing
systematic configuration of top-level baseline policies and
tenant-specific custom policies.

4) TRAFFIC VISIBILITY AND MONITORING CAPABILITIES

Network traffic monitoring enables network activity observa-
tion and control through packet capture, real-time analysis,
and anomaly detection. While basic CNIs such as Flannel

35327



IEEE Access

B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

and Kube-router lack self-monitoring capabilities, other CNIs
provide comprehensive monitoring solutions. Hubble [44]
integrates with Cilium to provide comprehensive visibility
into service-to-service communication patterns, thereby sup-
porting advanced policy verification and bottleneck identi-
fication through Prometheus [45]. Calico’s Flow Logs [46]
facilitate traffic analysis by integrating with tools such as
Elasticsearch [47] or Splunk [48] for rapid anomaly detection.
Furthermore, Antrea’s Flow Exporter [49] employs the
IPFIX protocol and utilizes OVS with the conntrack
module for flow capture, periodically polling network
connection states through the conntrack and integrating
with visualization tools such as the ELK Stack [50] or
Grafana [51]. WeaveNet’s WeaveScope [52] offered visual-
ization capabilities comparable to Hubble, facilitating precise
modeling of communications between deployments, stateful
sets, and external entities with real-time container network
monitoring. However, due to severe scalability issues in
large environments, development was discontinued in 2021,
and then completely stopped when Weaveworks was shut
down in February 2024. This left a void in the market
for topology-centric monitoring solutions, particularly those
seeking an alternative to resource-intensive approaches.
Traffic monitoring plays a critical role in validating and
optimizing policy operations. CNI monitoring tools provide
the visibility to detect policy violations and anomalous
traffic patterns in real-time. This goes beyond simple
monitoring and provides a foundation for measuring and
validating policy effectiveness to continuously improve
security policies. This visibility is especially critical in
complex microservice environments to quickly identify and
resolve policy configuration errors or unintended side effects.
Insight I. Our analysis reveals that essential security
features, such as encryption and authentication, are absent
in some CNIs. Surprisingly, multi-tenancy, another critical
feature for isolation, is either unsupported or only partially
implemented in existing CNIs. This suggests that CNI
contributors prioritize network functionality over security.

IV. NETWORK POLICY PROFILING IN CNI

This section presents a detailed network policy analysis
for each CNI, based on Table 3. To analyze the strengths
and limitations of each CNI’s policy features, our analysis
examines policy types, scope, supported layers, and priority.

A. EVOLUTION AND CURRENT TRENDS

The evolution of network policies has advanced from
basic network isolation to supporting complex cloud-native
architecture requirements. As shown in Figure 6, the Kuber-
netes Network Policy [43] structure consists of hierarchical
components: Metadata containing basic policy information,
Selectors using labels and Common Expression Language
(CEL) [53] for pod targeting, and Rules comprising Policy
Type, Action, Target specifications, and Traffic Rules. These
components can be combined to create diverse policy con-

35328

figurations, such as an allow-db-egress policy that restricts
egress traffic to a specific CIDR range (192.168.0.0/16) and
TCP port 80 for pods labeled with app: db.

Although the fundamental network policy model is
centered on single-cluster and constrained traffic control,
the growing intricacy of security threats has revealed
the limitations. This has necessitated an evolution toward
extended policy schemes through Custom Resource Defi-
nitions (CRD) [41], which enable a wider scope and more
precise control. For example, Calico’s IPPool [54], when
integrated with BGP peering information, ensures that traffic
can traverse is only possible through authorized routing
paths, mitigating IP spoofing attempts through precise IP
range control and routing validation. Moreover, Antrea’s
NodeStatsSummary CRD [55] provides comprehensive
monitoring of policy enforcement status at the node level for
real-time detection of anomalous traffic patterns, such as a
sudden spikes in connection attempts.

apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
metadata:

name: allow-db-egress

I

Metadata

/'| Selector

Namespace

namespace: default Ingress
spec:
podselector: / Rule A
matchLabels: | A Policy Type —
app: db //
E|
; o Terget (rom/To)
- -
: IPBlock
-ipBlack: - " Traffic Rule I—I

cidr: 192.168.0.0/16 2l

ports: /
- protocol: TCP ’ Rule B Port
port: 80 sao

I

(A) allow-db-egress Pr(')?(‘)w

FIGURE 6. The overview of the default network policy structure provided
by Kubernetes.

B. POLICY SCOPE AND LAYER-SPECIFIC RULE
CHARACTERISTICS

Network policies in container networking differ in their scope
and layer-specific rule support. Policy scope is divided into
namespace-level and cluster-wide policies. While WeaveNet
and Kube-router are limited to namespace-level Kubernetes
network policies, advanced CNIs support both Kubernetes
network policies and extend their policy scope through
custom resource definitions (CRDs). Namespace-level poli-
cies provide fine-grained control within specific namespace
boundaries, enabling independent management of security
rules. In contrast, cluster-wide policies (Calico’s GlobalNet-
workPolicy [56], Cilium’s ClusterwideNetworkPolicy [57],
and Antrea’s ClusterNetworkPolicy [58], etc.) apply uni-
formly across all namespaces, ensuring consistent security
standards across the cluster.

At Layer 3/4, CNIs extend the Kubernetes network
policy beyond IP/CIDR-based filtering and port/protocol
restrictions. Typically, CNIs extend policy controls with com-
prehensive ingress/egress port ranges and ICMP/ICMPv6
type management. Cilium network policy facilitates the

VOLUME 13, 2025



B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

IEEE Access

TABLE 3. Comparison of network policy features across major CNI plugins.

CNI Types Scope Layers L3/L4 L7 Target Actions Priority
Flannel No No No No No No No No
WeaveNet . Ingress,
Kubernetes Policy Namespace L3, L4 Egress No Pod, Namespace Allow, Deny No
Kube-router Ingress
. Kubernetes Policy, Namespace, Ingress, Pod, Namespace, Label, Allow,
Calico Calico Policy Cluster-wide L3, 14,17 Egress HTTP ServiceAccount, IPBlock Derg;sl;og, Order
Clum  KwbemeesPoliey,  Namewace, 3y, s HTRGRRC LGOS AlowDeny  No
DNS, Node, Endpoint
Antrea Ku:i:::;e;(ﬁfcl;:y’ gi:z:?;fg’e L3, L4, L7 I];g:::’ HTTP Pod, Namespace, IPBlock /lilelfe‘z’t,[;’ra‘.)s[: Tiers

definition of policies through the use of DNS-queryable
domain names for endpoints, providing IP address handling
from DNS responses analogous to CIDR-based rules.

Calico network policy implements CIDR block pattern
matching and integrates IPAM to offer policies based on
IP pools and subnets, thereby enhancing stateful proto-
col filtering mechanisms. Antrea network policy features
topology-aware policy enforcement, taking into account
physical infrastructure layouts and zone boundaries, while
supporting stateful connection tracking integrated with its
filtering.

At Layer 7, Cilium Network Policy handles DNS request
filtering itself and implements comprehensive application
layer control including HTTP (method, path, headers),
gRPC (service/method calls, metadata), and Kafka (topics,
consumer groups) communications. Antrea Network Policy
focuses primarily on HTTP traffic control through URL
filtering and method-based access rules, and integrates these
capabilities into its OpenFlow pipeline structure. While
Calico also supports Layer 7 policies, it is limited to HTTP
traffic control and is only available in the enterprise version.

C. TARGET AND ACTION SPECIFICATION
While Kubernetes policies are limited to pod and namespace
selectors, CNIs extend with sophisticated target specifica-
tions and diverse policy enforcement actions. Calico extends
beyond basic selectors through the use of advanced label
expressions using Common Expression Language (CEL),
enabling sophisticated multi-dimensional targeting with ser-
vice account selectors and complex label combinations.
Cilium implements a targeting system through endpoints
and entities. Its endpoint abstraction serves as the fun-
damental unit for policy application, while entity-based
selectors enable broader scope targeting from hosts to
external networks (via the ‘world’ entity) and cluster-wide
resources. Antrea enhances targeting flexibility through its
ClusterGroup abstraction, which consolidates selectors -
including pod, namespace, and node - into policy targets.
With respect to the mechanisms of action, Kubernetes
network policy implements a whitelist approach, permitting
only explicitly permitted traffic while blocking all others by
default. Similarly, Cilium provides explicit A1 1ow and Deny

VOLUME 13, 2025

actions, following the ‘most restrictive rule takes precedence’
principle for policy conflict resolution.

In contrast, Calico offers more granular control through
Allow, Deny, Log, and Pass actions. The Log action
enables continuous monitoring of traffic flow for security
audits and troubleshooting, while the Pa s s action terminates
policy evaluation at the current layer and moves to the
next priority layer or other network policies. If no policies
exist, traffic is allowed by default. Antrea provides A11low,
Drop,Reject, and Pass. Antrea’s Pass action, similar to
Calico’s Pass, enables hierarchical policy evaluation. The
Drop action silently discards packets, enhancing security
through opacity. The Reject action generates explicit denial
responses, such as TCP Reset (RST) or ICMP ‘administra-
tively prohibited’ messages.

kind: NetworkPolicy

Single Node

Pod A (ubuntupg,,g;éz

Pod B (ubuntu) ;bec:
podSelector:

run: server |

run: client ‘ \ matchLabels:
\ run: server
\| ingress:
(A) Basic L3/L4 Policy Test (Intra-Node) - from:
/| - podSelector:
@ Node 1 @ Node 2 / matchLabels:
/ run: client
Pod A (ubuntu Pod B (ubuntu) / ports:

- protocol: TCP

‘ run: client ‘ run: server port: 80

(B) Basic L3/L4 Policy Test (Inter-Node) (E) L3/L4 Policy (Kubernetes)

® Si

ngle Node

Pod A (busybox@,ng,m Pod B (nginx) Q
‘ run: client ‘ HTTP run: server | \
GET/

(C) Basic L7 Policy Test (Intra-Node)

Node 1

Node 2

Pod A (busybox;

run: client ‘

/
Pod A (nginx) @ /
run: server ‘ ’

kind: CiliumNetworkPolicy
spec:
endpointSelector:
matchLabels:

\ run: server

\| ingress:
- fromEndpoints:
/| - matchLabels:
/ run: client
rules:

http:

- method: "GET"

path: "/"

(D) Basic L7 Policy Test (Inter-Node) (F) L7 Policy (Cilium)

FIGURE 7. Test scenarios for enforcing L3/L4 and L7 network policies.

D. POLICY PRIORITY ANALYSIS

1) EXPERIMENTAL METHODOLOGY

The management of policy priorities is of critical importance
in resolving policy conflicts and maintaining consistent
enforcement in complex cloud-native environments. To eval-
uate policy priorities, two types of analysis were conducted.

35329



IEEE Access

B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

First, an examination of the processing order between
Kubernetes network policies and CNI policies was conducted
by applying them simultaneously and observing which policy
takes precedence.

Second, we investigated how different CNIs implement
policy precedence through their built-in priority mechanisms,
such as Calico’s order and Antrea’s priorityand tier
fields, by testing various priority configurations. For these
two analyses, we employed the Basic L7 Policy Test scenario
depicted in Figure 7 (D), wherein we deployed an Nginx
server pod and a Busybox client pod across disparate nodes
and evaluated the efficacy of HTTP GET requests between
them.

2) CNI-SPECIFIC IMPLEMENTATION CHARACTERISTICS

As illustrated in Figure 8, two pods (pod-a and pod-b) were
deployed on distinct worker nodes (192.168.184.146 and
192.168.184.147), and three pivotal test scenarios were
conducted. The experimental results obtained revealed that
when Calico’s Allow policy was applied alone (B-1), pod-to-
pod communication was successful, with pod-a successfully
downloading index.html from pod-b. Conversely, when
Kubernetes’ default deny policy was applied (B-2), commu-
nication was blocked as expected. Notably, in case (C), where
both policies were applied concurrently, the communication
remained blocked despite Calico’s allow policy. These
findings demonstrate a clear precedence of the Kubernetes
policy over the CNI-specific policy.

A architectural analysis reveals that Calico’s Felix trans-
lates policies into iptables rules in chains that are distinct from
those utilized by Kubernetes. However, these Calico-specific
chains are positioned subsequent to the Kubernetes’ ipt-
ables processing flow. Additionally, both Cilium, which
employs TCP, XDP, and eBPF maps, and Antrea, which
converts to OVS Flow Rules applied to node bridges,
operate their processing hooks or OVS pipelines after the
point where Kubernetes evaluates network policies, despite
their advanced processing capabilities. Consequently, when
packets enter the network stack, Kubernetes policies are
applied first due to the iptables processing flow, resulting
in packets being dropped before reaching any CNI-specific
processing points if traffic is blocked.

This sequential processing, while appearing as a structural
limitation, actually enables a complementary relationship
between Kubernetes and CNIs. Through this processing
approach, CNIs respect Kubernetes’ networking foundation
and add essential components for modern cloud-native
environments through extensibility, rather than replacing or
overriding the underlying infrastructure.

3) PRIORITY HIERARCHY ANALYSIS

As shown in Table 3, among the primary CNIs, only
Calico and Antrea implement an explicit priority field.
Calico implements a single-tier priority system through
its order field, where numerical values determine policy
precedence. Policies with lower order values (e.g., 500)

35330

A) Pod status:

$ kubectl get pods --show-labels -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES LABELS
pod-a 1/1 Running © 5s 192.168.184.146 calico-workerl <none> <none> run=pod-a
pod-b 1/1 Running © 5s 192.168.184.147 calico-worker2 <none> <none> run=pod-b

) B-1) Only Calico's allow policies have been applied :

$ kubectl apply -f yaml/calico-allow-pod-b.yaml
networkpolicy.projectcalico.org/allow-pod-a-to-pod-b created

kubectl exec -it pod-a -- wget 192.168.184.147
Connecting to 192.168.184.147 (192.168.184.147:80) saving to 'index.html®

index.html 100% | 615 0:00:00 ETA
'index.html' saved| Allowed
B-2) Only Kubernetes’s deny policies have been applied :

$ kubectl apply -f yaml/k8s-default-deny.yaml
networkpolicy.networking.k8s.io/default-deny created
$ kubectl exec -it pod-a -- wget 192.168.184.147

iConnecting to 192.168.184.147 (192.168.184.147:80)

“Ccommand terminated with exit code 130 Blocked

C) When Calico policies and Kubernetes policies are applied together :

$ kubectl apply -f yaml/k8s-default-deny.yaml
networkpolicy.networking.k8s.io/default-deny created

$ kubectl apply -f yaml/calico-allow-pod-b.yaml
networkpolicy.projectcalico.org/allow-pod-a-to-pod-b created
$ kubectl exec -it pod-a --

wget 192.168.184.147

onnecting to 192.168.184.147 (192.168.184.147:80)
"Ccommand terminated with exit code 130

Blocked

FIGURE 8. The results of priority testing between Kubernetes and Calico
policies.

take precedence over those with higher values (e.g., 1000).
This numerical ordering allows administrators to explicitly
define the processing sequence of network policies.

Antrea implements a hierarchical three-level priority
consisting of tier, policy, and rules. At the highest
level, the tier system comprises six preconfigured tiers:
emergency, securityops, networkops, platform, application,
and baseline, with emergency having the highest priority.
Within each tier, policies are ordered using policy
priority values ranging from 1.0 to 10000.0. rule is
employed to determine the sequence of rule application
within a single policy. At the lowest level, rules within each
policy are processed sequentially.

Our experimental analysis confirmed this hierarchical
enforcement: when a traffic-blocking policy in the securi-
tyops tier (priority 5.0) competed with a traffic-allowing
policy in the application tier (priority 10.0), the securityops
tier policy prevailed, thereby demonstrating the precedence
of tier over policy priority values. To ensure system
stability and manageability, Antrea enforces constraints by
limiting the number of user-defined tiers to 20 and restricting
unique priority values within the baseline tier to 150.
Insight II. We found that most CNI policies are built on
Kubernetes Policy, extending functionalities across various
network layers. In addition, we confirmed that all CNIs
have a processing order, which is processed after the
Kubernetes policy is developed, to support CNI-specific
policies together while reducing the likelihood of conflict
with the underlying policy. Cloud administrators should
consider these details, such as processing order and layers
for consistent policy enforcement.

V. PERFORMANCE EVALUATION

A. EXPERIMENTAL SETUP AND SCENARIO OVERVIEW

To evaluate the network policy enforcement performance of
each CNI plugin, experiments were conducted in a three-node
Kubernetes cluster (v1.30) running on a server equipped with

VOLUME 13, 2025



B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

IEEE Access

(A) Throughput (Mbps) for L3 policy enforcement testing

7500

5000

2500

Kube-router Antrea

Calico WeaveNet

DOntra #Before O Intra #After O Inter #Before O nter #After

(B) Latency (milliseconds) for L3 policy enforcement testing

300

60°0SE

@
S
o
S

200

LT

-
S b B
100 1 8 8 S 8 NG
5
a3 Brk s

N
o
w
N

9L

o
CE'SOT
£T°SOT

0S
ve'0s
1E'6v
S8°0S
L2411

WeaveNet Kube-router Antrea

DOntra #Before O Intra #After O Inter #Before Olnter #After

FIGURE 9. The results of throughput (Mbps) and latency (milliseconds)
for L3 testing pre- and post-policy enforcement across different CNis.

Intel(R) Xeon(R) Silver 4210R CPU 2.40 GHz and 256 GB
RAM. The cluster consists of one control plane node and two
worker nodes, each allocated 4 vCPUs and 8GB RAM, with
containerd serving as the container runtime. For pod configu-
rations, widely-used base images were strategically selected:
Ubuntu-based pods for L3/L4 policy testing with netperf
traffic generation, Nginx for server-side HTTP services, and
Busybox for client-side HTTP requests. Each test scenario
operates in dedicated namespaces with defined network
policies to ensure consistent and isolated environments.

As shown in Figure 7, four test scenarios were designed to
evaluate both intra-node and inter-node policy enforcement
capabilities. Scenarios (A) and (B) focus on L3/L4 policy
performance using Ubuntu-based pods with netperf traffic
generation. For L7 policy evaluation, scenarios (C) and (D)
use Nginx server pods to handle HTTP GET requests from
Busybox client pods. These scenarios control traffic using
two types of policies: (E) shows the standard Kubernetes
NetworkPolicy, which allows TCP traffic on port 80 between
labeled client and server pods for L3/L4 control, and (F)
demonstrates CNI-specific L7 policies (e.g., CiliumNet-
workPolicy) that allow HTTP GET requests to the root
path (“/”). These L7 policies are implemented to provide
consistent behavior across different CNI implementations.

The performance evaluation examines four key metrics:
network throughput, end-to-end latency, system resource
utilization (CPU and Memory) during policy enforcement,
and scalability as policy and pod complexity increase.
To ensure statistical reliability, each measurement cycle runs
at ten-second intervals for five minutes, and this process is
repeated ten times to derive the average values.

B. PERFORMANCE OVERHEAD OF LAYER 3 POLICY
PROCESSING

1) BASIC PERFORMANCE ANALYSIS OF POLICY
ENFORCEMENT

To evaluate the fundamental impact of network policies on
CNI performance, we analyzed four key metrics. Throughput
(Mbps) measures the actual data transfer capacity between

VOLUME 13, 2025

containers, which has a direct impact on application perfor-
mance. Latency (ms) reflects network responsiveness and is
critical for time-sensitive cases. CPU(%) and memory (GB)
utilization indicate the resource overhead of policy enforce-
ment, which is essential for understanding the operational
costs of each CNI. The experiments involved two tools:
netperf [59] for performance metrics and the System Activity
Report (sar) [60] for resource utilization.

As shown in Figure 9 through throughput and latency
measurements, in intra-node environments, Cilium maintains
the highest throughput at 8.6K Mbps both before and after
policy enforcement, while other CNIs show stable perfor-
mance in the 6.0K-7.0K Mbps range. However, inter-node
testing exposed significant differences. Kube-router exhib-
ited superior performance, with an 8.1K Mbps pre-policy
throughput that increased to 8.8K Mbps post-policy.

(A) Average CPU Usage (%) for L3 policy enforcement testing

Cilium Calico WeaveNet  Kube-router Antrea

Olntra #Before Olntra #After Olnter #Before Olnter #After

(B) Average MEM Usage (GB) for L3 policy enforcement testing

S188°0
£088°0
01880
66880

9vL0
V6ELD
<8¢LD
€8EL'0
€T0L°0
VA A

0v0L0
0v0L0

WeaveNet  Kube-router Antrea

Cilium Calico

Olntra #Before Olntra #After Olnter #Before Olnter #After

FIGURE 10. The results of average CPU (%) and memory (GB) usage pre-
and post-policy enforcement across different CNIs in L3 testing.

Conversely, WeaveNet’s performance dropped from 7.3K
Mbps in intra-node scenarios to 240 Mbps in inter-node
scenarios, a 97% reduction. Both Cilium and Antrea showed
a moderate decrease in throughput, reaching approximately
5.0K Mbps in inter-node environments, a 42% decrease
compared to their intra-node performance. The latency
measurements showed a similar trend, with all CNIs
maintaining consistent response times between 44 and 53 ms
in intra-node scenarios. However, in inter-node environments,
WeaveNet’s latency increased significantly to 350 ms, nearly
triple the 105-127 ms range observed for the other CNIs after
policy enforcement.

As illustrated in Figure 10, Calico’s CPU utilization
increased by 0.45 %p from 3.24% to 3.64% following policy
enforcement in inter-node scenarios, exhibiting the most sub-
stantial increase among all CNIs. In inter-node environments,
WeaveNet and Kube-router exhibited the most efficient CPU
utilization at 2.32% and 2.19%, respectively. Following
the enforcement of the policy, the results pertaining to
memory usage indicate that Calico utilizes approximately
1.08 GB in intra-node environments and 1.09 GB in inter-
node environments. In contrast, WeaveNet and Kube-router
maintain significantly lower memory footprints of approxi-
mately 0.73 GB and 0.70 GB, respectively.

35331



IEEE Access

B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

(A) Average Throughput (Mbps) under policy rule scaling (#100 to #1000)

5000

WeaveNet  Kube-router Antrea

Olntra #100 OlIntra #500 Olintra #1000 Ointer #100 O lInter #500 OInter #1000

Cilium Calico

(B) Average Latency (milliseconds) under policy rule scaling (#100 to #1000)

100

0LET' 60T
06S£'60T
0STEVZT
0680°L6
09€0°ZTT
06LL°60T

0£56°S6
OEV8'¥6

50

09EVLY
0TOT'BY
0LERIY

WeaveNet Kube-router Antrea

Olntra #100 Ointra#500 [Clintra #1000 Olinter #100 Olnter #500 O Inter #1000

Cilium Calico

FIGURE 11. The impact of policy complexity (100, 500, 1000 policies) on
throughput and latency in L3 testing.

These performance patterns reflect specific architectural
design choices of each CNI. WeaveNet’s dual-layered
VXLAN architecture requires sequential packet processing
through the vethwe-datapath and vxlan-6784 interfaces,
causing significant overhead in inter-node communication.
Calico’s BGP daemon demands higher CPU resources
due to continuous routing table maintenance and policy
rule enforcement through iptables. Cilium leverages eBPF
programs in kernel space, eliminating context switching
overhead and enabling efficient intra-node packet processing.
Kube-router’s direct BGP peering approach without overlay
encapsulation minimizes processing overhead, resulting in
superior inter-node performance.

The minimal memory growth observed during policy
enforcement is due to the efficient state management of
modern CNIs. Typically, rules are stored as compact data
structures in kernel space (e.g., eBPF maps, iptables rules),
with only policy metadata maintained in userspace memory.
This configuration allows packet processing to operate
efficiently without continuous memory allocation.

2) PERFORMANCE DEGRADATION DUE TO POLICY
COMPLEXITY

To understand the impact of increasing network policy rules
on CNI performance, we scaled policy rules from 100 to 500,
and finally to 1,000 rules. By isolating policy complexity as
the sole variable, we measured the changes in throughput,
latency, CPU usage, and memory consumption in both
intra-node and inter-node environments. The experiment
maintained a 1:1 pod communication pattern while increasing
the number of port ranges between them.

As shown in Figure 11, in throughput measurements,
Cilium’s intra-node performance dropped only 2.2% from
9.0K Mbps at 100 rules to 8.8K Mbps at 1000 rules.
Similarly, Kube-router demonstrated stable inter-node per-
formance, maintaining approximately 8.2K Mbps across
all policy scales. However, Antrea exhibited significant
performance degradation, with intra-node throughput drop-
ping by 58% from 2.6K Mbps to 1.2K Mbps as rules
increased from 100 to 1000. The latency measurements

35332

showed corresponding trends, with Cilium maintaining stable
response times around 43ms in intra-node scenarios across
all policy scales. In contrast, WeaveNet showed the highest
latency increase of 245% in inter-node communication, rising
from 50.39ms at 100 rules to 122.26ms at 1000 rules.

(A) Average CPU Usage (%) under policy rule scaling (#100 to #1000)

WeaveNet  Kube-router Antrea

Olintra #100 OlIntra #500 O intra #1000 Ointer #100 Olinter #500 O Inter #1000

Cilium Calico

(B) Average MEM Usage (GB) under policy rule scaling (#100 to #1000)

6ZvL0
6TILD
£€88L°0
vpSL0
889L°0
626L°0

WeaveNet Kube-router Antrea

Olntra #100 Olintra#500 Ointra #1000 Olnter #100 Olnter #500 O Inter #1000

Cilium Calico

FIGURE 12. The impact of policy complexity (100, 500, 1000 policies) on
CPU and memory usage in L3 testing.

As demonstrated in Figure 12, Calico showed the highest
CPU sensitivity to policy scaling, with usage increasing
from 3.80% at 100 rules to 3.89% at 1000 rules in inter-
node environments, representing a 2.4% increase. Antrea
followed a similar pattern, showing a 13.6% increase from
3.67% to 4.17%. In terms of memory consumption, Calico
consistently maintained the highest usage, reaching 1.18GB
at 1000 rules, while WeaveNet and Kube-router remained
below 0.8GB even at maximum policy complexity. Notably,
Cilium’s memory usage increased from 1.03GB to 1.07GB
when scaling from 100 to 1000 rules.

An analysis of the policy scaling results revealed that
Cilium’s throughput and latency showed performance decline
due to accumulated overhead from eBPF map lookups and
program execution in large policy sets. Antrea’s significant
throughput decline stems from increased overhead in Open
vSwitch flow table management, where each packet requires
sequential verification against an expanding number of
flow entries. WeaveNet’s rising latency with policy scaling
signifies that its VXLAN overlay becomes a bottleneck when
packets must traverse multiple network abstractions while
checking against expanded rule sets.

Concurrently, Calico’s increased CPU utilization pattern
reflects the escalating complexity of rule chain processing,
as each packet must be checked against an expanding rule
list. In contrast, Kube-router’s IPVS-based hash processing
approach maintains consistent performance regardless of the
number of rules because it avoids the linear scaling problems
associated with traditional chain-based packet processing.

3) PERFORMANCE IMPACT OF NETWORK POLICY UNDER
CONCURRENT CONNECTION SCALING

To analyze how concurrent pod connections affect network
policy performance in inter-node environments, we evaluated
performance variations by increasing the number of client

VOLUME 13, 2025



B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

IEEE Access

(A) Throughput (Mbps) under pod connection scaling (#50 to #200)

3000

1500

Cilium Calico WeaveNet  Kube-router Antrea

OBefore #50 O Before #100 [MBefore #200 O After #50 O After #100 O After #200

(B) Latency (milliseconds) under pod connection scaling (#50 to #200)

5000

2500

WeaveNet  Kube-router Antrea

Cilium Calico

OBefore #50 O Before #100 [ Before #200 O After #50 O After #100 O After #200

FIGURE 13. The impact of policy enforcement under increasing
concurrent connections (50 to 200 pods) across different CNIs.

pods under a single policy. The scenario depicted in
Figure 7 (B) was utilized to conduct the experiment, wherein
the number of client pods accessing the server pod was
incrementally scaled from 50 to 200. The throughput and
latency changes before and after applying the policy are
shown in Figure 13.

The throughput measurements revealed that before policy
enforcement, Cilium’s performance decreased by 64% from
2.2K Mbps at 50 pods to 0.8K Mbps at 200 pods. After policy
enforcement, similar degradation of 70% was observed.
WeaveNet exhibited the most severe throughput reduction,
declining by 88% from 1.9K Mbps to 0.2K Mbps before
policy enforcement and 89% after policy enforcement.
Notably, Antrea showed the highest initial throughput of
3.1K Mbps at 50 pods both before and after policy
enforcement, but experienced substantial degradation of 59%
and 79% respectively when scaling to 200 pods. In con-
trast, Kube-router maintained relatively stable performance
until 100 pods with minimal difference between pre and
post-policy states (approximately 1.9K Mbps), but showed
significant degradation of 68% when scaled to 200 pods.

(A) Throughput (Requests per seconds) for L7 policy enforcement testing

10000

LL'1696

5000 ; S
0

Cilium Antrea
Olntra #Before OIntra #After Olnter #Before O Inter #After

87'8E00T

614°5889

0Z'6689

€676
0676
TLL599
L8°TT9!

(B) Latency (milliseconds) for L7 policy enforcement testing

1000

500

96'6

YISt
L6°0T
T6'LT

Cilium Antrea

Ointra #Before DOintra #After Ointra #Before2 Ointer #After

FIGURE 14. The comparison of L7 policy processing overhead between
Cilium and Antrea.

Latency measurements demonstrated that before policy
enforcement, Antrea showed the most dramatic latency
increase of 1,410% from 896ms at 50 pods to 13.5K ms at
200 pods. After policy enforcement, WeaveNet exhibited the
highest relative latency increase of 321% from 1.1K ms to

VOLUME 13, 2025

4. 7K ms when scaling from 50 to 200 pods. Interestingly,
Cilium maintained the most consistent latency characteristics
after policy enforcement, with the smallest relative increase
of 236% from 719ms to 2.4K ms between 50 and 100 pods,
although this advantage diminished at 200 pods with a
final latency of 5.8K ms. Calico and Kube-router showed
similar latency patterns, both experiencing approximately
300% increases when scaling from 50 to 200 pods under
policy enforcement.

Beyond the above measures, we observed variations in
session stability as pod counts increased. All CNIs had stable
connectivity up to 100 pods, but once this threshold was
crossed, we saw significant differences. Cilium demonstrated
remarkable connection stability, maintaining approximately
183 successful connections out of 200 attempted connections
even after policy enforcement, although connection establish-
ment times increased slightly.

In stark contrast, WeaveNet’s stability deteriorated sig-
nificantly, dropping to about 114 successful connections
out of 200 before policy enforcement and further declin-
ing to 86 after policy enforcement. This instability was
manifested by frequent connection reset events during
VXLAN tunnel establishment. In particular, Calico and
Antrea exhibited unexpected behavior at 200 pods, where
initial policy synchronization phases resulted in complete
connection failures across multiple test sets. These CNIs
required considerable time over ten minute to stabilize. This
behavior revealed underlying limitations in their connection
tracking mechanisms and policy synchronization processes,
particularly as their respective tracking tables approached
capacity limits.

C. PERFORMANCE OVERHEAD OF LAYER 7 POLICY
PROCESSING
To evaluate the performance impact of L7 policies, we con-
ducted experiments using (C) and (D) shown in Figure 7,
which represent intra-node and inter-node environments
respectively. Performance measurements focused on two
key metrics: throughput measured in requests per second
(RPS) and latency, measured in milliseconds. Tests were con-
ducted using Apache Benchmark (ab) [61], a tool designed
specifically for HTTP server benchmarking, by generating
100 concurrent connections over a 20-second period. The
results comparing performance before and after L7 policy
deployment for Cilium and Antrea are shown in Figure 14.
The results demonstrated that Cilium experienced a
significant degradation within the node, with throughput
declining from 6.8K RPS to 94 RPS and latency increasing
from 6.9 ms to 1.0K ms. This considerable decline can be
attributed to the logic of Cilium’s L7 policy processing. While
Cilium demonstrates superior performance in kernel-level
packet processing through the use of eBPF for L3/L4 policies,
the enforcement of L7 policies necessitates the redirection of
packets to a userspace proxy for the purpose of deep packet
inspection of application layer protocols (such as HTTP

35333



IEEE Access

B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

and DNS). This processing causes significant overhead due
to context switching between the kernel and userspace
and additional memory copies of packet data, as packets
that would normally be processed completely within the
kernel must now cross the kernel-userspace boundary for L7
inspection.

However, Antrea has shown relatively stable performance
even after policy enforcement. In intra-node communica-
tion, throughput decreased from 10K RPS to 6.6K RPS,
accompanied by a slight increase in latency, from 9.9 ms
to 15.1 ms. The relatively favorable performance can
be attributed to Antrea’s application-aware engine for L7
policy processing. While Antrea’s flow rules are primarily
designed to handle L3/L4 traffic, for the enforcement of L7
policies, it integrates with Suricata [62] for the filtering of
HTTP traffic. The TrafficControl API selectively redirects
HTTP traffic to Suricata for application-layer inspection,
supporting fine-grained filtering based on specific HTTP
URIs and methods. Antrea still requires userspace switching
for Suricata processing, obviously, but because it specializes
in HTTP filtering only, it has less overhead than the Cilium
approach, which supports multiple L7 protocols.

Insight III. The most critical layer in our experiments
is L7, as few CNIs demonstrate adequate performance
at this level. Cloud administrators must carefully select
and deploy CNIs when prioritizing security enforcement
at L7, where many cloud-targeted attacks, such as APTs
and lateral movement, commonly occur.

VI. RELATED WORK

In this section, we review recent CNI research in
performance-oriented studies and security-oriented analyses,
as summarized in Table 4.

A. PERFORMANCE-ORIENTED RESEARCH FOR CNI
Recent research on CNIs has primarily focused on evaluating
fundamental performance characteristics in various deploy-
ment scenarios. Kang et al. [63] conducted a comprehensive
analysis of Flannel, WeaveNet, and Kube-router in edge com-
puting environments, focusing on DDS (Data Distribution
Service) applications’ performance under different network
conditions. Their evaluation metrics included throughput,
latency, and resource utilization, though security aspects were
limited to basic encryption overhead analysis.

Sekigawa et al. [64] examined CNI performance in
telecom, evaluating Flannel, Calico, Cilium, and Kube-OVN
with emphasis on latency-sensitive metrics and packet
processing efficiency. While they addressed the impact
of overlay versus underlay networking approaches, their
security analysis remained peripheral. Daki¢ et al. [13]
presented an extensive performance evaluation of Antrea,
Flannel, Calico, and Cilium in high-performance computing
and Al workloads. Their study particularly focused on the
impact of network tuning parameters such as MTU sizes

35334

and packet configurations, though it did not address security
implications or policy enforcement mechanisms.

These studies have provided valuable insights into basic
network capabilities of CNIs, but demonstrate a critical
limitation: the lack of comprehensive security analysis, par-
ticularly in policy processing and enforcement capabilities.
While these studies thoroughly evaluate basic performance
metrics, they do not address how architectural characteristics
affect security features and policy processing, which are
increasingly crucial in modern cloud environments.

Our research addresses these issues by first analyzing
the relationship between CNI security features and policy
implementations, and then examining their architectural
connections across different security and policy configu-
rations. We also evaluate the performance implications of
these relationships. This comprehensive approach provides
a thorough understanding of CNI security features, policy
implementations, and their architectural characteristics in
cloud-native environments, with a particular focus on policy
processing.

B. SECURITY-ORIENTED RESEARCH IN KUBERNETES
Prior research explicitly addressing the security features and
network policy aspects of CNIs has been more limited com-
pared to performance-focused studies. Qi et al. [65] provided
an early analysis of CNI security features, evaluating basic
encryption capabilities and policy enforcement mechanisms
across various plugins. Their follow-up study [10] expanded
this analysis to include more detailed examination of
eBPF-based security features and policy processing over-
head, though primarily focusing on L3/L4 implementations.
Budigiri et al. [12] conducted a focused investigation of
eBPF-based network policies in Kubernetes, analyzing both
security implications and performance characteristics of
Calico and Cilium. While their study provided valuable
insights into eBPF-based policy enforcement, it was limited
to L3/L4 policies and did not address the broader spectrum of
security features available in modern CNIs.

Recent research has expanded beyond CNI security
analysis to address the challenges of policy management
and verification. Lee and Nam [15] introduced Kunerva,
which leverages network logs to automatically discover
minimal policy sets, integrating with Kubernetes Gatekeeper
for policy validation. In the context of microservices, Li et
al. [17] developed AutoArmor, focusing on automated
generation of inter-service access control policies through
code-based analysis of service interactions.

Moreover, recent studies are considering Al-based
approaches like Jacobsetal. [18], which uses natural
language processing for intent-based network manage-
ment. Lietal. [66] proposed Kano, a framework for
efficient verification of cloud-native network policies
using simulation-based validation and learned models to
ensure policy correctness and security compliance. In this
way, interest is growing in utilizing machine learning,

VOLUME 13, 2025



B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

IEEE Access

TABLE 4. Comparison of CNI research approaches.

References Environment Focus Analyzed Security Features Policy Analysis Policy-related Performance Metrics
Layer Performance
Kang et al. [63] Kubernetes Performance L3, L4 IPSec Overhead None None Throughput, Latency,
(Edge Cloud) Comparison CPU
Sekigawa et al. [64] Kubernetes Performance L3 Overlay/Underlay None None Latency, Packet Loss
(Telecom) Comparison
Dakic¢ et al. [13] Kubernetes Performance Tuning L3, L4 None None None Throughput, Latency
(HPC + Al) Analysis
Qi et al. [65] Kubernetes Design and L3, L4 Encryption, Netfilter, Limited Pod Startup,
Performance Analysis Limited Monitoring iptables Throughput, Latency
Qi et al. [10] Kubernetes Design and L3, L4 Encryption, iptables, eBPF Limited Latency, Startup,
Performance Analysis Monitoring Scalability
Budigiri et al. [12] Kubernetes eBPF-based Policy L3, L4 eBPF, WireGuard eBPF policies Yes Latency, Resources
(5G Edge) Evaluation
This Work Kubernetes Comprehensive L3, L4, L7 Encryption, Network Policy Yes Throughput, Latency,
(Cloud-native) Analysis (Design, Multi-tenancy, comparison, Resources, Scalability
Security, Policy) Monitoring priority

natural language techniques, and even Large Language
Models (LLMs) to automate and streamline network policy
enforcement.

The emergence of these studies demonstrates growing
interest in security policy management, yet existing analytical
studies have two key limitations. First, they either briefly
mention policy support or lack detailed analysis of policy
mechanisms. Second, when such analysis exists, it primarily
focuses on L3/L4 implementation technologies like eBPF
and iptables, failing to examine the comprehensive network
policies provided by modern CNIs.

This research addresses these gaps by providing an
in-depth analysis of policy implementation mechanisms and
processing methods across all network layers (L3/L4/L7).
Our study examines previously unexplored aspects of CNI
policy features, including policy priority systems, L7 protocol
handling. This comprehensive analysis of policy establishes
a foundation for future research in policy automation and
verification in cloud-native environments.

VIl. DISCUSSION

The experimental results of this study demonstrate that CNI
selection is a complex decision-making process that goes
beyond simple performance or functionality comparisons,
requiring a comprehensive consideration of security require-
ments and operational environment characteristics.

A. SECURITY, PERFORMANCE, AND SCALABILITY
TRADE-OFFS
In cloud-native environments, balancing security, perfor-
mance, and scalability is critical when selecting a CNIL
Each organization must carefully evaluate ‘What is the
necessary level of security, and what is the acceptable range of
performance degradation?.” Our analysis reveals the intricate
trade-offs among these elements.

Regarding the relationship between advanced security fea-
tures and performance, as observed in L7 policy processing,
the more sophisticated security features are applied, the more

VOLUME 13, 2025

complex the packet inspection becomes, inevitably leading
to processing overhead. The difference in L7 implementation
between Cilium and Antrea particularly illustrates this
trade-off. While Antrea secured efficiency through HTTP
protocol-specific processing, Cilium takes a generic approach
to support various L7 protocols, resulting in relatively
significant performance degradation.

There was also a clear trade-off between policy scalability
and processing performance. The eBPF-based Cilium main-
tained stable performance even as the number of policies
increased through kernel-level optimization. In contrast, the
OVS-based Antrea experienced a sharp drop in performance
due to accumulated flow table search overhead as policy
complexity increased. This demonstrates that the policy
processing architecture has a direct impact on scalability.

Differences in concurrent connection scalability were
also noticeable between the CNI architectures. iptables-
based CNIs experienced dramatic performance degradation
as concurrent connections increased due to the capacity
limitations of the connection tracking table. While the
Kube router using IPVS maintained stable performance
up to 100 pods, it experienced performance degradation
beyond 200 pods due to connection tracking limitations.
These differences suggest that the efficiency of connection
management mechanisms is a critical consideration in large-
scale environments.

These trade-off patterns suggest that three key elements
must be considered when selecting a CNI: the balance
between comprehensiveness of security features and per-
formance, processing efficiency with policy scaling, and
stability in handling large numbers of connections. These
elements are closely interrelated, and improving one will
inevitably require compromising the others. In particular,
as more advanced security features are applied, processing
performance decreases, and as greater scalability is pur-
sued, security feature limitations follow. Selection therefore
requires careful consideration of the complementary relation-
ship between these three elements.

35335



IEEE Access

B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

B. PRACTICAL GUIDELINES FOR CNI SELECTION

Flannel was included in the baseline analysis of this study,
but excluded from the performance evaluation. While Flannel
provides only basic network connectivity and lacks security
features or policy support, it is often used as the default CNI
in small clusters that start their Kubernetes with a minimal
environment. This serves as an important reference point for
understanding functional differences when transitioning to
other CNIs for advanced security features.

For throughput-sensitive microservice environments, Cil-
ium may be the optimal choice. It maintains a high
throughput of 8.9K Mbps at L3/L4 levels, with particularly
excellent performance in single-node environments. How-
ever, performance can drop to 94Mbps when L7 policies
are applied, so it is advisable to selectively apply L7
security only to specific critical services. For environments
with predominantly HTTP-based applications, Antrea can
be considered. With HTTP-specific L7 policy processing,
it maintains a high throughput of 6.6K Mbps. However,
Antrea’s performance degradation due to sequential OVS
flow table scans as policy size increases must be considered.

For complex microservice architectures that require gran-
ular traffic analysis, Cilium’s Hubble provides valuable
traffic analysis that can detect subtle security anomalies
in microservice communications. However, these advanced
monitoring features can generate CPU overhead, so storage
capacity for monitoring data and log management strategies
must be carefully considered.

In selecting CNIs for multi-tenancy environments, four
criteria warrant consideration. Firstly, the level of isolation
must be evaluated in order to ascertain whether tenant traffic
is completely segregated or potentially exposed. Secondly,
the support for inter-tenant encryption must be verified,
which is of particular importance in environments that
handle sensitive data. Finally, the support of authentication
and authorization must be examined in order to ensure
compatibility with the relevant policies, whether those are
RBAC or identity-based approaches. In accordance with the
aforementioned criteria, environments requiring high-level
isolation and granular policy control are optimally served by
Cilium or Calico. In addition, scenarios that require basic
isolation may find Antrea or WeaveNet to be sufficient.

If you need to choose a CNI based on granular network
security control requirements, each CNI’s policy offer
advantages. For basic security isolation, Kubernetes Network
Policy provides essential L3/L4 controls with namespace and
pod selectors, suitable for environments with straightforward
needs. For environments needing various protocol-level
traffic control, Cilium Network Policy provides extensive
coverage across HTTP, gRPC, and Kafka, along with
endpoint targeting. Where infrastructure-aware security con-
trols are crucial, Calico Network Policy combines IPAM
integration with flexible CIDR pattern matching, enabling
sophisticated subnet and IP pool-based rules. Additionally,
Calico and Antrea provide diverse action types, enabling
detailed security monitoring and staged policy rollouts.

35336

In environments with high policy management complexity,
policy prioritization systems should be considered. Calico’s
single-tier approach is appropriate for medium policy man-
agement, while Antrea’s three-tier hierarchical system is
appropriate for large deployments with more complex policy
requirements. In environments that require a large number
of concurrent connections, connection stability must be
carefully considered. Cilium maintained a connection success
rate of approximately 90% at 200 concurrent connections,
while other CNIs showed significant connection instability.
Therefore, Cilium may be a better choice in environments that
require a high number of concurrent connections.

In resource-constrained environments, WeaveNet or
Kube-router may be reasonable alternatives. WeaveNet
provides a few security features, but shows significant
performance degradation as the number of policies and
pods increases, making it suitable for simple environments.
Kube-router, while more basic in functionality, maintains
stable performance by leveraging IPVS technology, making
it effective in high-traffic environments despite its simplicity.

Finally, organizations considering a move to multi-cloud
environments should choose platform-neutral CNIs to ensure
workload mobility and consistent application of security
policies. In this context, Cilium with its ClusterMesh feature
or Calico with its Federation feature would be appropriate
choices as they provide unified policy management and seam-
less service connectivity across different cloud platforms
while maintaining consistent security controls.

As a result, we recommend that the default CNIs from
major cloud providers are not always the best choice in
all situations. While the AWS VPC CNI, Azure CNI, and
Google Cloud VPC-native are optimized for their respective
platforms, combining or replacing them with alternative CNIs
may be more appropriate depending on an organization’s spe-
cific security requirements or operational patterns. Therefore,
it is advisable to carefully analyze and consider which CNI
and policy configuration best suits your needs.

VIil. CONCLUSION

In this study, we present an in-depth analysis of network
policy mechanisms in Kubernetes CNIs, focusing particularly
on the intricate relationships between architectural design
choices, security policy features, and performance implica-
tions. While earlier research primarily focused on isolated
performance metrics, our study uniquely demonstrates how
architectural decisions—from Cilium’s eBPF implementa-
tion to Antrea’s OVS pipeline and Calico’s BGP routing—
fundamentally influence policy processing capabilities and
enforcement patterns. Through both qualitative and quanti-
tative analysis, we establish clear correlations between these
three aspects, providing a comprehensive understanding of
their interdependencies.

This comprehensive approach revealed critical insights
into policy processing mechanisms and their perfor-
mance implications in complex environments. Notably,
we found that eBPF-based solutions experience significant

VOLUME 13, 2025



B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

IEEE Access

performance degradation during L7 policy enforcement
due to kernel-userspace transitions, while overlay network
CNIs face connection stability challenges under high policy
complexity. We believe our findings provide essential
foundations for both practitioners selecting CNIs and
researchers advancing container network security.

Several limitations in our current study inform potential
research directions. First, our evaluation environment could
be expanded to include physical network infrastructure to
validate performance impacts under real-world conditions,
particularly examining phenomena like packet delays and
losses. Second, our analysis could be extended to examine
CNI behavior and policy consistency during failure sce-
narios and network interruptions. Third, exploring policy
enforcement consistency across hybrid and multi-cloud
environments would provide valuable insights for modern
distributed architectures.

In addition, future research extending from this work
includes: (1) leveraging machine learning techniques for
dynamic policy optimization based on traffic patterns and
threat detection; (2) developing automated approaches for
policy generation and verification that can handle complex
microservice interactions while maintaining performance;
and (3) investigating novel approaches to achieve both
comprehensive L7 security and high performance.

REFERENCES

[1] S. Deng, H. Zhao, B. Huang, C. Zhang, F. Chen, Y. Deng, J. Yin,
S. Dustdar, and A. Y. Zomaya, ““Cloud-native computing: A survey from
the perspective of services,” Proc. IEEE, vol. 112, no. 1, pp. 12-46,
Jan. 2023.

[2] L. Patan, “Leveraging cloud-native architecture for scalable and resilient
enterprise applications: A comprehensive analysis,” Int. J. Comput. Eng.
Technol. (IJCET), vol. 15, no. 5, pp. 583-591, 2024.

[3] M. K. Sasubilli and R. Venkateswarlu, “Cloud computing security
challenges, threats and vulnerabilities,” in Proc. 6th Int. Conf. Inventive
Comput. Technol. (ICICT), Jan. 2021, pp. 476—480.

[4] R. Bundela, N. Dhanda, and K. K. Gupta, “Identification and analysis of
security issues in cloud computing,” in Proc. 2nd Int. Conf. Disruptive
Technol. (ICDT), Mar. 2024, pp. 1685-1690.

[5] Algosec. (2024). The 2024 State of Network Security Report Reveals
a Shift Towards Multi-cloud Environments, With a 47% Increase
in Sd-wan and 25% Uptick in Sase Adoption. [Online]. Available:
https://www.algosec.com/press-release/the-2024-state-of-network-
security-report

[6] (2024). The Container Network Interface.
https://www.cni.dev/

[7]1 Kubernetes. (2024). Kubernetes. [Online]. Available: https://kubernetes.io/

[8] N. Kapocius, “Overview of kubernetes cni plugins performance,”
Mokslas—Lietuvos ateitis/Science—Future Lithuania, vol. 12, 2020.

[9] M. S.I. Shamim, F. A. Bhuiyan, and A. Rahman, “XI commandments of
kubernetes security: A systematization of knowledge related to kubernetes
security practices,” in Proc. IEEE Secure Develop. (SecDev), Sep. 2020,
pp. 58-64.

[10] S. Qi, S. G. Kulkarni, and K. K. Ramakrishnan, “Assessing container
network interface plugins: Functionality, performance, and scalability,”
IEEE Trans. Netw. Service Manage., vol. 18, no. 1, pp.656-671,
Mar. 2021.

[11] S. Bohm and G. Wirtz, “Profiling lightweight container platforms:
MicroK8s and K3s in comparison to Kubernetes,” in Proc. ZEUS,
Jan. 2021, pp. 65-73.

[12] G. Budigiri, C. Baumann, J. T. Miihlberg, E. Truyen, and W. Joosen,
“Network policies in kubernetes: Performance evaluation and security
analysis,” in Proc. Joint Eur. Conf. Netw. Commun. 6G Summit
(EuCNC/6G Summit), vol. 2021, Jun. 2021, pp. 407—412.

[Online].  Available:

VOLUME 13, 2025

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]
(24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

V. Dakid, J. RedZepagic¢, M. Basic¢, and L. Zgrablic’, “Performance and
latency efficiency evaluation of kubernetes container network interfaces for
built-in and custom tuned profiles,” Electronics, vol. 13, no. 19, p. 3972,
Oct. 2024.

K. Dzeparoska, J. Lin, A. Tizghadam, and A. Leon-Garcia, “LLM-based
policy generation for intent-based management of applications,” in Proc.
19th Int. Conf. Netw. Service Manage. (CNSM), Oct. 2023, pp. 1-7.

S. Lee and J. Nam, “Kunerva: Automated network policy discovery
framework for containers,” IEEE Access, vol. 11, pp. 95616-95631, 2023.
S.Xu, Q. Zhou, H. Huang, X. Jia, H. Du, Y. Chen, and Y. Xie, “Log2Policy:
An approach to generate fine-grained access control rules for microservices
from scratch,” in Proc. Annu. Comput. Secur. Appl. Conf., Dec. 2023,
pp. 229-240.

X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen, ‘“Automatic policy
generation for inter-service access control of microservices,” in Proc. 30th
USENIX Secur. Symp. (USENIX Secur.), 2021, pp. 3971-3988.

A. S. Jacobs, R. J. Pfitscher, R. H. Ribeiro, R. A. Ferreira, L. Z. Granville,
W. Willinger, and S. G.Rao, “Hey, lumi! Using natural language for
intent-based network management,” in Proc. USENIX Annu. Tech. Conf.
(USENIX ATC 21), 2021, pp. 625-639.

Flannel. (2024). Flannel is a Network Fabric for Containers, Designed for
Kubernetes. [Online]. Available: https://github.com/flannel-io/flannel
Weave. (2024). Weave Scope—Troubleshooting & Monitoring for Docker
& Kubernetes. [Online]. Available: https://github.com/rajch/weave
Tigera. (2024). Project Calico. [Online]. Available: https://www.tigera.
io/project-calico/

CloudNativeLabs. (2024). Kube-router, a Turnkey Solution for Kubernetes
Networking. [Online]. Available: https://github.com/cloudnativelabs/kube-
router

Cilium. (2024). Cilium—Ebpf-based Networking, Observability, Security.
[Online]. Available: https://cilium.io/

Antrea. (2024). Antrea—Kubernetes Networking Based on Open Vswitch.
[Online]. Available: https://github.com/antrea-io/antrea

A. Bhardwaj and C. R. Krishna, “Virtualization in cloud computing:
Moving from hypervisor to containerization—A survey,” Arabian J. Sci.
Eng., vol. 46, no. 9, pp. 8585-8601, Sep. 2021.

CNCFE. (2024). CNCF Annual Survey—Cloud Native 2023: The
Undisputed Infrastructure of Global Technology. [Online]. Available:
https://www.cncf.io/reports/cncf-annual-survey-2023/

Fortinet. (2024). 2024 Cloud Security Report. [Online]. Available:
https://global.fortinet.com/Ip-en-2024-cloud-report?utm_source=Social&
utm_medium=Blog&utm_campaign=Cloud-NAMER-U.S.&utm_content
=AR-2024cloudsecreport-G&utm_term=Blog&lsci=701Hr0000011kAD
TAY &UID=ftnt-4032-225332

RedHat. (2024). The State of Kubernetes Security Report: 2024 Edition.
[Online]. Available: https://www.redhat.com/en/engage/state-kubernetes-
security-report-2024

Sysdig. (2024). 2024 Cloud-native Security and Usage Report. [Online].
Available: https://sysdig.com/2024-cloud-native-security-and-usage-
report/

T. Muhammad, “Overlay network technologies in SDN: Evaluating
performance and scalability of VXLAN and GENEVE,” Int. J. Comput.
Sci. Technol., vol. 5, no. 1, pp. 39-75, 2021.

A. Mehdizadeha, K. Suinggia, M. Mohammadpoorb, and H. Haruna,
“Virtual local area network (VLAN): Segmentation and security,” in Proc.
3rd Int. Conf. Comput. Technol. Inf. Manage. (ICCTIM), vol. 78, 2017,
p. 89.

M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “Virtual extensible local area network
(VXLAN): A framework for overlaying virtualized layer 2 networks over
layer 3 networks,” Tech. Rep., 2014.

H. Liu, Y. Luo, B. Chen, and Y. Yang, ‘“‘Performance evaluation
of container networking technology,” in Proc. IEEE 3rd Int. Conf.
Inf. Technol., Big Data Artif. Intell. (ICIBA), vol. 3, May 2023,
pp. 815-818.

L. Song and J. Li, “EBPF: Pioneering kernel programmability and
system observability—Past, present, and future insights,” in Proc. 3rd
Int. Conf. Artif. Intell. Comput. Inf. Technol. (AICIT), Sep. 2024,
pp. 1-10.

H. Sharaf, I. Ahmad, and T. Dimitriou, “Extended Berkeley
packet filter: An application perspective,” IEEE Access, vol. 10,
pp. 126370126393, 2022.

35337



IEEE Access

B. Kim et al.: Exploring Security Enhancements in Kubernetes CNI

[36]

[37]

[38]
[39]
[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]
[48]
[49]

[50]

[51]

[52]

[53]
[54]
[55]
[56]
[57]
[58]

[59]

[60]

M. A. M. Vieira, M. S. Castanho, R. D. G. Pacifico, E. R. S. Santos,
E. P. M. C. Jinior, and L. F. M. Vieira, “Fast packet processing with eBPF
and XDP: Concepts, code, challenges, and applications,” ACM Comput.
Surveys, vol. 53, no. 1, pp. 1-36, Jan. 2021.

Tigera. (2024). Calico Cloud Documentation—Federation and Multi-
cluster Networking. [Online]. Available: https://docs.tigera.io/calico-
cloud/multicluster/

Cilium. (2024). Cilium—Setting Up Cluster Mesh. [Online]. Available:
https://docs.cilium.io/en/stable/network/clustermesh/clustermesh/

L. Foundation. (2024). Production Quality, Multilayer Open Virtual
Switch. [Online]. Available: https://www.openvswitch.org/

Octant. (2024). Visualize Your Kubernetes Workloads. [Online]. Available:
https://octant.dev/

Kubernetes. (2024). Kubernetes —Custom Resources. [Online].
Available: https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/

Antrea. (2024). Antrea Multi-cluster User Guide. [Online]. Available:
https://antrea.io/docs/v1.7.2/docs/multicluster/user-guide/

(2024). Network Policies. [Online]. Available: https://kubernetes.io/
docs/concepts/services-networking/network-policies/

Cilium. (2024). Hubble—Network, Service & Security Observability
for Kubernetes Using Ebpf. [Online]. Available: https://github.com/
cilium/hubble

Prometheus. (2024). Prometheus—From Metrics to Insight. [Online].
Auvailable: https://prometheus.io/

Tigera.  (2024).  Calico  Cloud
Data  Types.  [Online].  Available:
cloud/visibility/elastic/flow/datatypes
Elastic. (2024). Elasticsearch. [Online].
elastic.co/elasticsearch

CISCO. (2024). Splunk—Fortune Favors the Resilient. [Online]. Available:
https://www.splunk.com/

Antrea. (2024). Network Flow Visibility in Antrea. [Online]. Available:
https://antrea.io/docs/v1.0.0/docs/network-flow-visibility/

Elastic. (2024). Elastic Stack—Meet the Search Platform that
Helps You Search, Solve, and Succeed. [Online]. Available:
https://www.elastic.co/elasticsearch

G. Labs. (2024). Grafana: The Open Observability Platform. [Online].
Available: https://grafana.com/

Weave. (2024). Weave Scope—-Monitoring, Visualisation & Manage-
ment for Docker & Kubernetes. [Online]. Available: https://github.com/
weaveworks/scope

(2024). Common Expression Language in Kubernetes. [Online]. Available:
https://kubernetes.io/docs/reference/using-api/cel/

Tigera. (2024). Ip Pool—Calico Documentation—Tigera. [Online]. Avail-
able: https://docs.tigera.io/calico/latest/reference/resources/ippool
Antrea.  (2024). Antrea APl Reference. [Online]. Available:
https://antrea.io/docs/main/docs/api-reference/

Tigera. (2024). Global Network Policy. [Online]. Available: https://
docs.tigera.io/calico/latest/reference/resources/globalnetworkpolicy
Cilium. (2024). Ciliumnetworkpolicy. [Online]. Available:
https://docs.cilium.io/en/stable/network/kubernetes/policy/

Antrea. (2024). Antrea Network Policy Crds. [Online]. Available:
https://antrea.io/docs/main/docs/antrea-network-policy/

0. Olimov, G. Artikova, and M. Xatamova, “Iperf to determine network
speed and functionality,” Web Technol., Multidimensional Res. J., vol. 2,
no. 3, pp. 94-101, 2024.

R. Hat. (2024). 2.5.4.4. the Sar Command. [Online]. Available: https://
docs.redhat.com/ko/documentation/red_hat_enterprise_linux/4/html/intro
duction_to_system_administration/s3-resource-tools-sar-sar#s3-resource-
tools-sar-sar

Documentation—Flow  Log
https://docs.tigera.io/calico-

Available:  https://www.

35338

[61]

[62]

[63]

[64]

[65]

[66]

APACHE. (2024). Ab—Apache Http Server Benchmarking Tool. [Online].
Available: https://httpd.apache.org/docs/2.4/en/programs/ab.html
Suricata. (2024). Suricata—Observe. Protect. Adapt. [Online]. Available:
https://suricata.io/

Z. Kang, K. An, A. Gokhale, and P. Pazandak, “A comprehensive
performance evaluation of different kubernetes CNI plugins for edge-based
and containerized publish/subscribe applications,” in Proc. IEEE Int. Conf.
Cloud Eng. (IC2E), Oct. 2021, pp. 31-42.

S. Sekigawa, C. Sasaki, and A. Tagami, “Toward a cloud-native telecom
infrastructure: Analysis and evaluations of kubernetes networking,” in
Proc. IEEE Globecom Workshops (GC Wkshps), Dec. 2022, pp. 838-843.
S. Qi, S. G. Kulkarni, and K. K. Ramakrishnan, “Understanding container
network interface plugins: Design considerations and performance,” in
Proc. IEEE Int. Symp. Local Metrop. Area Netw. (LANMAN, Jul. 2020,
pp. 1-6.

Y. Li, X. Hu, C. Jia, K. Wang, and J. Li, “Kano: Efficient cloud native
network policy verification,” IEEE Trans. Netw. Service Manage., vol. 20,
no. 3, pp. 3747-3764, Mar. 2022.

BOM KIM is currently pursuing the M.S.
degree with the Department of Computer Sci-
ence and Engineering, Incheon National Univer-
sity. Her research focuses on the automation of
intent-driven security policy generation and vali-
dation for advanced cloud-native environments.

JINWOO KIM received the B.S. degree in com-
puter science and engineering from Chungnam
National University, the M.S. degree from the
Graduate School of Information Security, KAIST,
and the Ph.D. degree from the School of Electrical
Engineering, KAIST. He is currently an Assistant
Professor with the School of Software, Kwang-
woon University, Seoul, South Korea. His research
interests include investigating security issues with
software-defined networks and cloud systems.

SEUNGSOO LEE received the B.S. degree in
computer science from Soongsil University, the
M.S. degree in information security from KAIST,
and the Ph.D. degree in information security from
KAIST, in 2020. He is currently an Assistant Pro-
fessor with the Department of Computer Science
and Engineering, Incheon National University. His
research interests include developing secure and
robust cloud/network systems against potential
threats.

VOLUME 13, 2025



