
KUBETEUS: An Intelligent Network Policy
Generation Framework for Containers

Bom Kim, Hyeonjun Park, Seungsoo Lee
Incheon National University, Republic of Korea
{zxx0313, isc10093, seungsoo}@inu.ac.kr

Abstract—Containers have become the standard for delivering
cloud-native services by taking advantage of their scalability,
portability, and resource efficiency. However, particularly in
network policies, they have also become major targets for various
security attacks that exploit misconfigurations and vulnerabili-
ties. Especially in complex cloud-native environments, manually
managing network policies is prone to errors, and existing
studies that automate policy generation often have limitations
in accuracy. In this paper, we present KUBETEUS, a highly
automated, intelligent network policy generation framework. Our
system operates in an intent-driven manner, enhanced by natural
language processing (NLP) and fine-tuned Large Language Mod-
els (LLMs), enabling the generation of network policies without
needing to understand complex configurations. Furthermore, our
system devises a multi-stage validation process to fundamentally
prevent misconfigurations in network policy enforcement. The
evaluation of KUBETEUS demonstrates its effectiveness, with the
most improved fine-tuned LLM achieving a 360% increase in
BLEU score and a 233% increase in ROUGE-2 score compared
to the baseline model. We believe that the approach presented
in this paper is applicable to the wide range of container-native
policy platforms in used today, and that its broader adoption will
help address more complex security policy generation concerns.

Index Terms—Cloud-native Architecture, Container Network,
Intent-based Network Policy, LLM-based Policy Generation

I. INTRODUCTION

With the rapid advancement of cloud computing technol-
ogy, the cloud market is experiencing unprecedented growth.
According to reports released by Gartner and Flexera in
2023 and 2024, consumer spending on the public cloud is
expected to reach $678.8 billion, with approximately 89% of
enterprises adopting multi-cloud strategies and 51% having
already fully migrated to cloud infrastructure [1]–[3]. This
acceleration in cloud adoption is accompanied by an explosive
increase in the use of cloud-native technologies. Cloud-native
applications, which are based on microservice architectures,
contrast with traditional monolithic architectures, leveraging
the flexibility and efficiency of container technology. Notably,
the emergence of container orchestration platforms, such as
Kubernetes [4], has further facilitated the efficient management
of these complex container-based microservices.

However, this evolution is accompanied by new security
challenges, particularly cyberattacks targeting incorrect set-
tings or security vulnerabilities. For example, the 2023 Toyota
data breach revealed that human error led to cloud config-
uration errors that exposed the data of about 2.15 million

* Corresponding author: Prof. Seungsoo Lee (seungsoo@inu.ac.kr)

customers over a period of 10 years [5]. According to Red
Hat’s 2024 State of Cloud Security Report [6], 42% of
respondents identified security as the biggest concern in their
container and Kubernetes, with misconfiguration being a major
security risk factor. Managing these configurations, including
network security policies, in a dynamically changing cloud-
native environment is a significant challenge. In a microser-
vice architecture environment, network configurations change
frequently, and interactions between services are complex,
making it impractical to manually configure and manage
numerous network policies individually. Furthermore, manual
management fails to ensure policy consistency and real-time
responsiveness, and minor mistakes, such as typos or missing
settings, can compromise the security of the entire system.

To address these challenges, various studies [7]–[12] have
been proposed to automate network policy management in
cloud-native environments. These studies primarily focus on
methods for automatically generating network policies through
log-based analysis and static analysis. However, these ap-
proaches have several significant limitations. First, log-based
analysis methods generate policies based on past network
activities, which may not be adequate for new types of traffic
or unexpected situations. Second, static analysis-based ap-
proaches can help to understand the structure and intended be-
havior of applications but struggle to reflect dynamic changes,
particularly due to the complexity and frequent updates of mi-
croservice architectures. Recently, intent-based access control
(IBAC) approaches [13]–[18] which express users’ intents in
natural language and convert them into network policies, have
been proposed. However, these methods are not well-suited for
cloud-native environments characterized by frequent changes
and require significant user intervention.

In this work, we propose an intelligent framework, KUBE-
TEUS, for the automatic generation of network policies tai-
lored specifically for cloud-native environments. KUBETEUS
achieves intelligence by going beyond simple automation:
it comprehends security requirements through Natural Lan-
guage Processing (NLP) and Large Language Models (LLMs),
while continuously adapting to and validating against real-
time cluster states. Since fine-tuning is essential for the LLM
to specialize in network policy generation, we provide an
automatic guide function for LLM fine-tuning and hyper-
parameter optimization. Additionally, we devise an enhanced
mechanism for the intent prompt, which is fed into the fine-
tuned LLMs for the generation of network policies. Our system

is not tightly coupled with any specific container network
interface (CNI) and supports the network policy grammar and
functions of various CNIs. Finally, it includes multi-step pre-
validation processes that detect and block incorrect policy
configurations before enforcing the network policy.

In the evaluation, KUBETEUS demonstrated high perfor-
mance with an F1 score of approximately 97% for entity
classification in intent prompts. Moreover, the fine-tuned LLM
showed significant improvements in generating network secu-
rity policies across various container network interface (CNI)
environments, with BLEU scores increasing up to 360% and
ROUGE-2 scores up to 233% compared to the baseline model.
These results clearly indicate the potential of KUBETEUS as
a reliable tool for generating network policies in real-world
cloud-native environments.

This paper makes the following contributions:
• We present the design and implementation of a new

network policy generation framework, KUBETEUS, capa-
ble of intelligently generating network policies in cloud-
native environments.

• We present an entity classification model for prompt
enhancement and an automation for fine-tuning LLMs,
thereby allowing users to generate policies without un-
derstanding the detailed policy architectures.

• We present a multi-step validation process for network
policies that prevents incorrect policies from being en-
forced in the cluster.

• We evaluate KUBETEUS by analyzing various metrics
against the proposed classification model and fine-tuned
LLMs. Our evaluation demonstrates the effectiveness of
KUBETEUS in generating network policies and detecting
misconfigurations.

II. BACKGROUND AND PROBLEM STATEMENTS

A. Background

Containerization. The containers are a lightweight vir-
tualization technology designed to overcome the limitations
of virtual machines (VMs), by making them quick to start,
resource-efficient, and portable. The containers offer consis-
tent execution across different environments by packaging
applications and dependencies into a single unit. By leverag-
ing these benefits, container-based microservice architecture
(MSA) [19] has become a core paradigm in modern cloud-
native application development. MSA divides applications
into independently deployable services, each handling specific
business functions with enhanced scalability and maintainabil-
ity. However, managing numerous microservices introduces
operational complexity, which necessitates orchestration. Ku-
bernetes, the de facto standard for container orchestration, uses
a group of containers, known as pods, as the smallest resource
unit and manages tasks such as scheduling, load balancing,
service discovery, and rolling updates for these pods.

Intent-based Access Control using LLMs. The intent-
based access control (IBAC) [20] is a promising mechanism
that determines access rights by comprehensively analyzing

kind: NetworkPolicy
spec:

endpointSelector:
matchLabels:

role: metrics
ingress:
- fromEndpoints:

- matchLabels:
svc: logging

- toPorts:
- ports:

port: "8080"
protocol: TCP

svc=logging

logstash

Ingress
8080/TCP

kind: NetworkPolicy
spec:

endpointSelector:
matchLabels:

app: webapp
egress:
- toEndpoints:

- matchLabels:
svc: logging

- toPorts:
- ports:

port: "443"
protocol: TCP

role=metrics

grafana

app=webapp

nginx

Egress
443/TCP

(A) ingress-netpol (B) egress-netpol

Fig. 1: The examples of two different types of network policy
enforcement scenarios.

user behavior, the context of the request, and the impact on
system resources. Notably, the adoption of natural language
processing (NLP) and large language models (LLMs) in the
implementation of IBAC holds significant potential. While
LLMs can accurately interpret user intentions through ad-
vanced natural language processing derived from extensive
training, their large number of parameters leads to high compu-
tational costs and processing delays [21]. To address these lim-
itations, smaller-scale LLMs (sLLMs) have been proposed as
a more resource-efficient alternative. Unlike traditional small
language models (sLMs), which rely on simpler architectures
optimized for specific tasks, sLLMs maintain the architectures
and extensive pretraining benefits of full-scale LLMs while
reducing parameter counts [22]. The performance of sLLMs
can be further enhanced through fine-tuning, a process that
involves additional training of a pre-trained model to specialize
it for specific tasks or domains.

Network Policy in Cloud-native Environments. The
network policies define communication rules between re-
sources within the Kubernetes cluster, enhancing security
through network isolation. Each container network interface
(CNI) [23] implements these policies with unique structures
and functions, supporting different levels of network access
control [24]. Network policies use selectors to identify target
resources, and rules to define traffic permissions through
ingress and egress specifications, determining whether to allow
or block network traffic. Figure 1 shows two enforcement
scenarios. In (A), an ingress policy controls inbound traffic
to pods labeled ‘role: metrics’ by allowing TCP traffic on port
8080 from endpoints labeled ‘svc: logging’, enabling secure
metrics collection in monitoring systems where log aggre-
gators need to forward metrics to visualization dashboards.
In (B), an egress policy governs outbound traffic from pods
labeled ‘app: webapp’ to port 443 over TCP, allowing secure
log submission from web applications to logging services.
Beyond basic IP and label-based traffic control, these poli-
cies support advanced features such as HTTP path control
and DNS filtering, enabling comprehensive network security
management in cloud-native environments.

B. Problem Statements

Generating network policies in cloud-native environments
encounters multiple challenges, stemming from the intricate

and dynamic characteristics of microservice architectures. This
section explores three critical challenges in ensuring effective
network policy management.

C1: Insufficient Understanding of the Dynamic Nature
of Container-Based Microservices. The current systems for
generating network policies have limitations, particularly in
reflecting the context of dynamic microservice environments.
A representative method is the log-based approach [8], [11],
which relies on historical network logs to generate policies.
This approach struggles to continuously reflect the real-time
relationships and communication patterns among frequently
changing services. Similarly, a policy generation methodology
based on static analysis of container source code [12] fails to
account for the complexity and dynamic nature of microser-
vice architectures. Consequently, these systems generally rely
on predefined templates or rule-based approaches, lacking a
comprehensive understanding of the broader container-based
microservice ecosystem.

C2: Limitations in Supporting Heterogeneous Container
Network Interfaces. Generating and managing consistent net-
work policies in a container-based microservice environment
with diverse Container Network Interfaces (CNIs) is a signif-
icant challenge. Each CNI has its own unique network policy
structure and functions, requiring network administrators to
understand and configure policies for each individually [24],
[25]. This significantly increases the complexity of overall
policy management and makes it difficult to maintain a con-
sistent network security posture. Current automated policy
generation systems are often closely integrated with a specific
CNI. Consequently, significant administrator intervention is
required to adapt these policies for compatibility with other
CNIs. In complex applications comprising tens or hundreds
of microservices, such continuous manual adjustments by the
administrators hinder the swift and accurate application of
policies and even increase the likelihood of human error.

C3: Risks of Misconfiguration in Network Policy Gener-
ation. In a microservice architecture comprising numerous
containers, complex dependencies and frequent updates be-
tween services can lead to misconfigurations [26]. However,
most automated network policy generation systems primarily
focus on creating policies without verifying their correctness.
Furthermore, the validity of existing network policies can be
compromised instantly due to manual interventions by network
administrators. Incorrectly configured network policies may
either block necessary communication between services or
permit unauthorized access, potentially causing serious secu-
rity vulnerabilities or service disruptions. Unfortunately, due to
the dynamic nature of microservices, detecting and correcting
policy misconfigurations promptly is highly challenging.

III. KUBETEUS DESIGN

This section provides an overview of the design consid-
erations that motivated the development of KUBETEUS and
describes its system architecture. Succinctly, our system lever-
ages natural language processing (NLP) techniques to intelli-
gently and automatically generate network policies tailored for

cloud-native environments, which are characterized by their
dynamic and complex nature.

A. Design Considerations

1) Advanced Intelligent Policy Generation. First, it should
accurately recognize user intentions and simultaneously un-
derstand the cluster states in real time to intelligently generate
network policies. Additionally, it should provide a highly
automated interface that analyzes service relationships within
the cluster using only the configuration files, minimizing
user intervention. Thus, we adopt natural language processing
technologies, such as large language models (LLMs) and
prompt engineering, to interpret the security requirements of
the users, and convert them into specific network policies.

2) Support for Diverse Container Network Interfaces. Sec-
ond, it should support the various Container Network Inter-
faces (CNIs), including the default Kubernetes network policy,
without being dependent on any specific CNI. To achieve this,
the system should automatically recognize the unique char-
acteristics and functions of each CNI and generate network
policies optimized for the cluster environment. Additionally,
we provide a methodology for maintaining consistency by
automatically detecting CNI changes and distributing corre-
sponding network policies, taking into account the dynamic
nature of container and microservice environments. This ap-
proach enables users to create and manage network policies
consistently without the need to manually configure complex
settings for each CNI employed.

3) Multi-step Policy Validation. Third, it should include a
mechanism to verify whether the generated network policy is
suitable for the actual cluster environment and does not lead to
critical misconfigurations. For this, the system employs the fol-
lowing multi-step validation process. First at all, it checks the
syntactic correctness of the network policy itself, verifies the
existence and status of the resources (e.g., containers) in the
cluster to which the policy applies, and ensures that the policy
details match the resources affected. And then, if a problem is
identified during this validation process, the system provides a
detailed error report and a correction plan to facilitate problem
resolution. This ensures that only correctly generated network
policies are enforced, thereby preventing the conflicts that
could arise from incorrect policy configurations.

B. System Architecture and Workflow

This section presents the overall architecture and workflow
of KUBETEUS. As illustrated in Figure 2, our system com-
prises five key components: fine-tuning automator, prompt pro-
cessor, policy processor, policy validator, and policy enforcer.
The system operates in two phases to meet the above design
considerations as follows.

First, the automatic fine-tuning phase is designed to au-
tomate the complex fine-tuning process for the LLMs and
ensure compatibility with upcoming newer LLMs, with the
fine-tuning automator playing a central role. The fine-tuning
automator analyzes the configuration file containing fine-
tuning parameters provided by the network administrator. If

Fig. 2: Overall architecture and its workflow of KUBETEUS with five key components: (i) fine-tuning automator, (ii) prompt
processor, (iii) policy processor, (iv) policy validator, and (v) policy enforcer. Additionally, our system includes two operational
phases: automatic fine-tuning and policy enforcement.

specific parameters are not specified by the administrator, it
automatically extracts optimized hyperparameters using Op-
tuna [27], which efficiently identifies the optimal parame-
ter combination through the advanced algorithms such as
Bayesian optimization. The dataset required for the fine-tuning
process can utilize the basic dataset provided by our system
or the administrator’s own dataset. Based on the analyzed
parameters and the dataset, AutoTrain [28] is utilized to
automatically fine-tune a specific LLM. The fine-tuned model
is then used to generate network policies that reflect the
administrator’s intent and the real-time state of the cluster.

Second, the policy enforcement phase automates the entire
process of network policy generation, with a primary focus on
refining the prompt used in the generation process. This phase
can be initiated either by direct user input (user mode) or based
on resource configuration files (config mode) such as pod in
the cluster. In the user mode, the user provides the policy intent
in natural language without needing to understand complex
policy syntax, and then the prompt processor, equipped with
an entity classifier based on Bidirectional Encoder Represen-
tations from Transformers (BERT [29]), as shown in Fig-
ure 3, identifies the necessary entities from the input sentence.
Conversely, in config mode, the prompt generator collects
resource information, such as pods, deployments, and services,
across all namespaces in the cluster. The detailed information,
including metadata, specifications, and status of each resource,
is extracted during this process. The initial prompt is then
automatically generated using a predefined template that cor-
responds to each resource type. This initial prompt, generated
in both modes, is enhanced by the prompt enhancer, which
queries the Kubernetes API for real-time cluster information,
infers relationships between the resources, and incorporates
this data into the prompt, transforming it into a systematic,
cluster-specific prompt. The enhanced prompt is then passed
to the policy generator within the policy processor, which
interprets the intent using a pre-fine-tuned LLM and generates
the network policies optimized for the cluster’s current state.
The generated policies are then converted into the formats
compatible with each CNI by the policy converter.

The generated policy is validated by the policy validator
before being enforced in the cluster, following a three-step

process. The custom resource definition (CRD [30]) validator
serves as the first line of defense, checking the structural
integrity of the policy itself by validating its structure against
the schema defined in the policy CRD. Then, the resource
validator verifies the existence and status of the resources in
the cluster to which the policy will be applied. Finally, the
property validator ensures the policy is accurately applied to
the intended resources by verifying that the policy details
align with the affected resources. If a validation failure is
detected, an error is logged, and a correction plan is provided
based on its cause. The network policies that pass validation
are enforced in the cluster via the Kubernetes API by the
policy enforcer. The enforcer monitors the results of the policy
application and ensures accurate enforcement through a retry
mechanism when necessary.

IV. KUBETEUS SYSTEM DETAILS

A. Generative AI-Based Model Learning

The key function of KUBETEUS is to accurately identify
the user intention and generate an appropriate network policy
based on it. For this, our system utilizes the advanced natural
language processing techniques that combine the named entity
recognition (NER) and the large language models (LLMs).

Dataset Construction and Preprocessing. Since existing
general language model datasets do not adequately reflect
the specialized structure and terminology of network policies
for the cloud-native environments, we developed a custom
dataset to train the learning model on various network policy
structures and grammars from diverse CNIs. For this, we
collected actual network policies from open sources, enabling
the model to learn real-world network policy patterns. Addi-
tionally, we significantly expanded this initial dataset using
data augmentation techniques to enhance the generalization
ability of the model and adaptability to various scenarios.

For the specific dataset construction and preprocessing
process, we first crawled the network policies from Kuber-
netes [4], Cilium [31], and Calico [32] CNIs from open-source
platforms such as GitHub to construct the initial dataset. As
shown in Table I, a total of 857 original network policies
were collected and parsed based on their policy structures to
separate them into selectors and rules. During this process,

TABLE I: The summary of the datasets for network policies
(policy) and intent prompts (intent).

Type Format #Origin #Train #Test #Total Size(MB)
Policy json 857 132,899 33,225 166,124 187.3
Intent csv 857 40,048 10,012 50,060 93.2

TABLE II: The summary of LLMs fine-tuned for policy
generation.

Name #Size #Params

Meta/Meta-Llama-3-8B-Instruct [34] 16GB 8.03B
DeepSeek/deepseek-coder-7b-instruct-v1.5 [35] 14GB 6.91B
MistralAI/Mistral-7B-Instruct-v0.2 [36] 15GB 7.24B
Google/codegemma-7b-it [37] 17GB 8.54B
Meta/codeLlama-7b-Instruct-hf [38] 14GB 6.74B

we removed the duplicate elements to ensure data uniqueness.
Next, we applied shuffling and combination techniques to the
refined data to increase the dataset size. By independently
managing selectors and rules during this process, we ensured
the semantic validity of combined policies while avoiding
redundancy. This approach resulted in 166,124 network policy
samples. These samples used a special token to distinguish
input and output pairs (intent prompt, policy output), and we
randomly selected 50,060 intent prompts to train the classifier
model. Subsequently, we assigned labels corresponding to 13
entity types (Figure 3) to these intent prompt samples using
the BIESO tagging system [33] in NER. This labeling task
was performed through a combination of manual review and
automated scripts.

Domain-Specific NER. To generate accurate network poli-
cies, it is crucial to identify policy-related entities in the
intent prompts. Therefore, we devised a BERT-based named
entity recognition (NER) model, as shown in Figure 3. This
model is specialized for the network policy domain and
can effectively identify the policy-related entities that general
NER models could miss. The model architecture consists
of a BERT embedding layer and a custom classifier layer.
The BERT embedding layer utilizes a pre-trained BERT-base
model (110M parameters), with the weights frozen to prevent
overfitting and enhance learning efficiency while leveraging
the robust language understanding capabilities of the BERT.
The custom classifier layer is designed with a linear-tanh
structure, comprising five layers (as shown in Figure 3),
which can effectively model the complex relationships be-
tween various entities. The model is trained to identify 13
entity classes optimized for the network policies, such as
POLICY, LABEL, POD NAME, and NAMESPACE. These
domain-specific entities, not covered in general NER systems,
significantly improve the accuracy of prompt calibration and
the network policy generation processes.

Automatic LLM Fine-tuning. The intent prompt is refined
through the NER process described above and then trans-
formed into a network policy using an LLM. The perfor-
mance of the LLM can be improved by fine-tuning, and we
propose an automated optimization process to enhance this

Input (Intent Prompts)

Output (Entities)

Entity Classification Model

BERT
(Frozen, for embedding)

Custom Classifier
Linear[0]
Tanh[1]

Linear[2]
Tanh[3]

Linear[4]

ExampleEntity TagNumber

network policyPOLICY1

app: nginx1LABEL2

nginx1 podPOD_NAME3

kube-systemNAMESPACE4

allow, deny, … ACTION5

ingress, egressTRAFFIC_DIRECTION6

192.168.0.0/16CIDR7

80, 443PORT8

TCP, UDP, ICMPPROTOCOL9

endpointsENDPOINT10

/api/v1HTTP_PATH11

GET, POSTHTTP_METHOD12

example.comFQDN13

Fig. 3: The design of the entity classification model for
network policy-specialized NER.

fine-tuning efficiently. For this, we utilize LoRA (Low-Rank
Adaptation) [39]. The LoRA was selected because, rather
than updating the entire model’s weights, it learns only a
small subset of parameters using low-rank decomposition,
thereby only partially updating the parameters. Building on
this efficient parameter update strategy, we use Optuna [27] for
automatic hyperparameter tuning of learning rate, batch size,
and LoRA-specific parameters. Our approach introduces rank-
8 matrices into the core layers of the model (e.g., attention lay-
ers, feedforward layers), enabling effective fine-tuning while
limiting the overall increase in model size to approximately
0.1-0.2% [40]. The learning process is further enhanced by the
Adam optimizer with gradient clipping (maximum norm 1.0)
and weight decay (0.01) for stability and efficiency.

This automated fine-tuning process was applied to five
LLMs, as listed in Table II. These models are open text-
to-text, decoder-specific generative models with 6-8 billion
parameters, chosen to reduce computational cost and process-
ing delays while maintaining the performance of large-scale
LLMs. Despite using a smaller number of parameters, these
models demonstrate high performance and generate high-
quality responses to intent prompts related to the network
policies. As a result of the automated fine-tuning, we ef-
fectively specialize the model for network policy generation,
updating only about 0.5% of the overall model parameters.
This approach enables rapid adaptation and expansion when
adopting new LLMs.

B. Customized Prompt Engineering

KUBETEUS achieves accurate network policy generation by
elaborately enhancing the intent prompt, which is then input
into the fine-tuned LLM described above. This process in-
volves accurately understanding the intent prompt and refining
it by incorporating the real-time status of the cluster and the
specifics of various CNIs.

Figure 4 illustrates how our system refines the initial intent
prompt. First, the key entities are extracted from the initial
intent prompt using the previously developed domain-specific
NER model (A). In this example, the entities critical to the
network policy, such as ‘nginx1’ (POD NAME), ‘incoming’
(DIRECTION), and ‘endpoint’ (ENDPOINT), are accurately

Fig. 4: The example procedure for generating a network policy, from prompt enhancement to the use of fine-tuned LLMs. The
entities in blue solid lines are reconfigured to entities in red dotted lines.

identified from the initial prompt. Next, the real-time status of
the cluster is considered based on the extracted entities. This
is achieved by querying detailed information about the related
resources through the Kubernetes API, such as the label of the
‘nginx1’ pod (svc=webapp) and associated service informa-
tion. This step also includes inferring the relationships between
these resources. By synthesizing the analyzed information, the
initial intent prompt is refined into an enhanced intent prompt
that is specific and clear (B). This enhanced intent prompt is
then input into the fine-tuned LLM to generate the final policy
(C). The fine-tuned LLM accurately configures each field of
the policy based on the detailed intent prompt. For instance,
DIRECTION is used to determine whether the rule is ingress
or egress, and LABEL is mapped to the ‘endpointSelector’,
which specifies the resource to which the policy applies.

Various CNIs employed in a cluster have their own network
policy grammar and functions, complicating the generation
of network policies. To address this issue, our system auto-
matically detects the CNI currently installed in the cluster
via the Kubernetes API first. This detection is achieved by
querying the cluster configuration or checking for the existence
of specific CNI-related custom resources. For instance, if the
Calico CNI is installed, the presence of the ‘caliconetworkpoli-
cies’ CRD can be verified. Next, during the intent prompt
parsing step, the system identifies the CNI-specific keywords
included in the prompt. For example, the term ‘endpoint’ is a
Cilium-style network policy. However, if the currently installed
CNI is Calico, the prompt enhancer automatically converts
the term to the Calico equivalent, ‘podSelector.’ As a result,
the fine-tuned LLM generates a network policy that adheres
to the Calico grammar and structure based on this enhanced
intent prompt. This approach allows users to generate correct
network policies without needing to know the syntax of a
specific CNI or when using terminology different from the
CNI currently installed on the cluster. Furthermore, when the
CNI used in the cluster transitions to a different CNI, the
system automatically converts the existing network policies to
align with the new CNI while preserving their original intent.

C. Multi-Step Policy Validation

KUBETEUS implements a three-step validation procedure
to ensure the safety of network policy enforcement: custom
resource definition (CRD) validation, resource validation, and

property validation. This procedure is applied not only to
policies generated by our system but also to those written
by administrators, ensuring thorough validation of all the
network policies. In addition, any issues identified at each step
are immediately logged, and administrators are provided with
clear error messages and suggested corrections.

The first step, the CRD validation, checks the grammatical
correctness and structural integrity of the policy. As shown in
Figure 5, it verifies the existence and format of the required
fields in the Network Policy, such as ‘kind’, ‘metadata’, and
‘spec’, and ensures that the structure of the ‘podSelector’ and
‘egress’ rules complies with the Kubernetes CRD schema.
Upon passing the CRD validation, the resource validation
then verifies in real-time whether the Kubernetes resources
referenced by the policy actually exist via the Kubernetes API.
For instance, as shown in Figure 5, it verifies whether a pod
with the label ‘app: httpd’ is present in the cluster. Finally,
the property validation thoroughly checks whether the detailed
properties of the network policy align with the actual cluster
environment. This includes verifying whether the specified
port is correctly listening for the corresponding service and
ensuring the protocol (TCP/UDP) is set correctly. It also
checks the validity of IP ranges specified in the policy and
ensures they accurately target the intended network segment.
For example, as depicted in Figure 5, the port 4443 specified
in ‘Misconfiguration.yaml’ does not match the actual port
from the targeted pod, leading to an error being detected and
the policy not being enforced. Subsequently, the correlation
between the error log information and the properties of the
actual resource is calculated to suggest the correct listening
port information.

V. EVALUATION

A. Implementation

We have implemented an instance of KUBETEUS using a
combination of Go and Python to verify its feasibility and
effectiveness. Currently supported policies include Kubernetes
Network Policy [41], Cilium Network Policy [42], and Calico
Network Policy [43], covering both Layer 3-4 and Layer 7.
To enhance the initial intent prompt, we developed an entity
classification model based on BERT [29] and RoBERTa [44].
In addition, the five LLMs shown in Table II, which were

kind: NetworkPolicy
metadata:

name: egress-net-pol
spec:
podSelector:
matchLabels:
app: httpd

egress:
- to:

- podSelector:
- matchLabels:

db: postgresql
toPorts:
- ports:

- port: "4433"
protocol: TCP

Name: httpd
Namespace: default
Labels: app=httpd
Containers:

Image: httpd:latest
Port: 443/TCP

Pod(httpd) Information

Policy Validator
CRD Validator

Resource Validator

Property Validator

htttpd

app=httpd

Misconfiguration.yaml

Fig. 5: The example of property validation for detecting the
misconfigured policy.

used to generate the network policies, were fine-tuned in
advance. In summary, to support the design features described
in Section III-A, we implemented a fine-tuning automator, a
prompt processor, a policy processor, a policy validator, and
a policy enforcer, in approximately 4,500 lines of code.

B. Evaluation Environments

We evaluated KUBETEUS using a high-performance server
setup with an NVIDIA Hopper H100 80GB PCIe for fine-
tuning LLMs, an AMD EPYC 9224 CPU, 256GB RAM,
and a 2TB SSD for setting up the microservice environ-
ment. The Kubernetes cluster consisted of one master node
and two worker nodes, each hosted on three Ubuntu 22.04
virtual machines. For the container-related configuration, we
used containerd [45] as the container runtime and selected
Cilium [31] and Calico [32] as the target CNIs to provide
inter-container communication. We evaluated to generate three
types of network policies: Kubernetes Network Policy, Cilium
Network Policy, and Calico Network Policy. KUBETEUS was
deployed on the master node, while the test applications were
distributed across the two worker nodes.

We tested three cloud-native applications with different
scales and functionalities: Online Boutique [46], consisting of
11 independently deployed and managed services, provides
e-commerce demos such as product search, cart addition,
and purchase completion. Bookinfo [47], a demo with 4
services, offers book information lookup functionality. Martian
Bank [48], a financial services demo with 6 services, includes
account management and transaction execution features. These
applications were selected as they exemplify diverse archi-
tectural patterns in production environments, from simple
service-to-service communications to complex architectures
with various backend dependencies and frontend interactions,
ensuring comprehensive coverage of real-world microservice
deployment scenarios. This setup enabled a comprehensive
evaluation of the network policy generation, validation, and
enforcement processes under conditions similar to real-world
microservice environments.

C. Functional Correctness

Prompt Enhancement Processing. To evaluate the prompt
engineering capabilities of KUBETEUS, we analyzed the pro-
cess of creating a network policy that permits traffic between

Intent received. {"Intent": "Create a policy that allows outbound traffic from
dashboard-9fc54cc8c-57r44 pod."}

Cluster information. {"Target.Info": {"name":"dashboard-9fc54cc8c-57r44",
"namespace":"default","labels":{"app":"dashboard"},
"containerPorts":"<none>", "protocol":"TCP","Related.svc":"atm-locator",
"Related.Env":[{"Port":"<none>", "svc.selector": {"app":"atm-locator"}

Prompts finalized. {"Prompts": ["Create a CiliumNetworkPolicy that allows
outbound traffic from the dashboard-9fc54cc8c-57r44 pod labeled 'app:
dashboard' to the atm-locator-57dfdf4ff7-wrhwj pod labeled 'app: atm-locator'.

Intent prompt NER. {"Intent.Entity":[{"text":"policy","type":"POLICY"},
{"text":"outbound","type":"TRAFFIC_DIRECTION"},{"text":"allows","type":"ACTION"},
{"text":"dashboard-9fc54cc8c-57r44", "type":"POD_NAME"}]}

(A) The logs showing the intent prompt enhancement process

dashboard-9fc54cc8c-57r44:56204 (ID:34483) -->
atm-locator-57dfdf4ff7-wrhwj:44227 (ID:61217) to-endpoint FORWARDED (TCP Flags:SYN)

(B) The network logs showing the generated policy functions as intended

2) Information gathering:

3) Intent prompt enhancement:

1) Initial intent prompt recognition:

Information inference. {"Pod.Info": {"name":"atm-locator-57dfdf4ff7-wrhwj"
, "namespace":"default", "labels":{"app":"atm-locator"}

Fig. 6: The results of enhanced prompting (A) and network
log from correct policy enforcement (B).

specific pods. For well-defined microservices, such as Martian
Bank [48], it is assumed that detailed metadata and labels are
provided during service deployment. This process comprises
three stages. First, in the initial intent prompt recognition,
our system receives the policy requirements as the initial
prompt from the user or through the automatic config mode.
Second, during the information gathering stage, the system
collects and analyzes detailed information about the relevant
pods via the Kubernetes API. Third, in the intent prompt
enhancement stage, the initial prompt is refined based on
the collected information. Figure 6 illustrates the prompt
engineering process and its results following the initial prompt
generation. Starting with simple initial information, the system
gathers and analyzes detailed data about relevant pods through
the Kubernetes API. For example, as shown in Figure 6 (A)-
2, our system identifies that the app: dashboard pod
is related to the app: atm-locator pod. Consequently,
the enhanced prompt includes important details not speci-
fied in the initial prompt, such as the specification of the
CiliumNetworkPolicy type, accurate pod labels, and
specific traffic flow directions. The accuracy of this enhanced
prompt is verified through actual network logs shown in
Figure 6 (B). The traffic patterns recorded in the logs precisely
match the pod relationships specified in the enhanced prompt.
This demonstrates that KUBETEUS’s prompt engineering ca-
pability effectively generates accurate and detailed network
policies in complex microservice environments.

CRD, Resource and Property Validation. This evaluation
assesses the ability of our system to validate the CRD,
resource, and property aspects of network policies. Figure 7 il-
lustrates the test scenarios and results of the validation process.
The top of Figure 7 presents information about the ‘details’
and ‘productpage’ pods in the ‘bookinfo’ namespace, both
serving on port 9080/TCP. Based on this, Figure 7 (A) shows
a valid network policy with correct labels, ports, and proto-
cols, while (B) depicts an incorrectly configured policy with
unsupported fields, non-existent pods, and incorrect attributes.

kind: NetworkPolicy
metadata:
name: egress-product
namespace: bookinfo
spec:
selector: app ==
'productpage'
egress:
- action: Allow
protocol: TCP
source:
selector:

app == 'details'
destination:
ports:
- 9080

(A) Valid.yaml

~ Step 2: Check for the existence of resource
~ Identified a misconfiguration in Policy {"ValidationErrors": [{"error":"no
matching pods found in [namespace bookinfo] with labels [app=productpagee]."

(C-2) Invalid labels

Name: details-v1-..
Namespace: bookinfo
Labels: app=details
Containers:
details:
Port: 9080/TCP
State: Running

Pod(productpage) Info.

Name: productpage-v1-..
Namespace: bookinfo
Labels: app=productpage
Containers:
productpage:
Port: 9080/TCP
State: Running

kind: NetworkPolicy
metadata:
name: egress-product
namespace: bookinfo

spec:
selector: app ==
'productpagee'
egress:
- action: Allow
protocol: TCP
source:
endpointSelector:

app =='details'
destination:
ports:
- 9081

~ Step 1: Check for the Policy CRD
~ Identified a misconfiguration in Policy {"ValidationErrors": [{"error":
"Field [endpointSelector] is not recognized in [calico.networkpolicies].

(C-1) Invalid policy CRD (Calico Network Policy)

~ Step 3: Check for the existence of property
~ Identified a misconfiguration in Policy {"ValidationErrors": [{"error":"no
containers found in [namespace bookinfo] with labels[app: productpage]
listening on the [port 9081] with [protocol TCP]. Any need for [port 9080]?

(C-3) Invalid listening ports

(B) Misconfiguration.yamlPod(details) Info.

C-1

C-3

C-2

Fig. 7: The results of policy validation scenarios: valid (A),
misconfigured (B), and the detection logs (C).

When attempting to enforce network policy (B), our system
successfully detects a structural policy schema error during the
CRD validation stage, specifically identifying the use of the
unsupported field ‘endpointSelector’ (C-1). The system also
identifies a misspelled resource label value intended for the
policy (‘productpagee’ instead of ‘productpage’), indicating
that the resource does not exist within the cluster (C-2). Lastly,
the system detects that port number 9081 specified in the
port property of the policy does not correspond to the port
serviced by the ‘productpage’ pod (C-3). Errors identified
at each stage are immediately reported to the administrator
via logs, enabling rapid identification and correction of these
issues. These results demonstrate that our system effectively
prevents potential errors before policy enforcement through
multi-layered policy validation, ensuring accurate network
security policy management in the microservice environments.

D. Performance

Classification Model Performance. In this evaluation, we
tested the performance of the entity classifier by assessing
its accuracy in correctly identifying key entities from intent
prompts. As shown in Table I, 20% of the total intent samples
were randomly selected and used as the test dataset. Each
test dataset entry consisted of an intent prompt text and its
corresponding list of entity tag pairs. Using this test set,
we compared the performance of models based on BERT
and RoBERTa. During the evaluation process, each model
predicted entity tags for the given intent prompts, and these
predictions were compared against the actual labels (ground
truth) included in the test set. Through this comparison, we cal-
culated each model’s accuracy, precision, recall, and F1 score,
as presented in Table III. The BERT-based classification model
achieved 97.1% accuracy, 97.4% precision, 97.2% recall, and

TABLE III: The summary of entity classifier performance with
metrics: Accuracy, Precision, Recall, and F1 Score.

Model Accuracy Precision Recall F1-score

BERT 0.971 0.974 0.972 0.973Entity
Classifier RoBERTa 0.961 0.968 0.961 0.965

a 97.3% F1 score. The RoBERTa model showed similarly
high performance, albeit slightly lower than BERT. Both
models demonstrated F1 scores exceeding 97%, indicating a
balance between precision and recall. The remaining 3% of
cases typically involve ambiguous entities (e.g., service names
mistaken for pod names) and non-standard format specifi-
cations (e.g., port ranges, CIDR blocks), which KUBETEUS
addresses through automated rule-based pattern analysis to
complement the model’s classification. These results suggest
that KUBETEUS can accurately identify crucial entities in
network policies, such as pod names, IPs, and port numbers.

Fine-tuned LLM Performance. To evaluate the accu-
racy of network policies generated based on enhanced in-
tent prompts, we compared the performance of base models
and fine-tuned models using BLEU, METEOR, ROUGE-1,
ROUGE-2, ROUGE-L, and chrF++ metrics. Given that even
minor syntactic errors in network policies expressed in YAML
can invalidate the entire configuration, accurate generation
requires not only correct structure but also precise alignment
with intended rules, comprehensive component coverage, and
exact field naming. To assess these aspects, we used BLEU for
syntactic conformity, METEOR for semantic alignment and
intent preservation of policy rules, ROUGE metrics for policy
component coverage, and chrF++ for character-level accuracy
in field naming. The results are summarized in Table IV.
This assessment aimed to evaluate the effectiveness of fine-
tuning in enhancing the ability to generate network policies.
All the tested models demonstrated significant performance
improvements following the fine-tuning process provided by
our system. Among the models, the deepseek coder 7b model
exhibited the highest performance post-fine-tuning, with its
BLEU score increasing by approximately 46% (from 0.52
to 0.76) and its ROUGE-1 score improving by 22% (from
0.71 to 0.87). The codegemma 7b model showed similar
enhancements. These results indicate that fine-tuning has ef-
fectively specialized the models for network policy generation
tasks. On average, we observed performance improvements of
about 70% in BLEU scores, 25% in ROUGE-1 scores, and
15% in chrF++ scores. These substantial improvements in
BLEU and ROUGE scores highlight the enhanced accuracy
and completeness of the generated policies for diverse CNI
environments. In conclusion, these evaluation results demon-
strate the potential of our system as a reliable network security
policy enforcement tool across various CNI environments.

VI. RELATED WORK

Intent-Based Network Management. Due to the increas-
ing complexity of network management, research on intent-
based network management has been actively pursued [17],

TABLE IV: The summary of the fine-tuned LLMs performance with metrics: BLEU, METEOR, ROUGE-1, ROUGE-2,
ROUGE-L, and chrF++.

Type Model Name BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L chrF++

Baseline
Model

Deepseek-coder-7b-instruct-v1.5 0.52 0.79 0.71 0.57 0.69 0.80
Meta-Llama-3-8B-Instruct 0.19 0.36 0.53 0.27 0.44 0.44
codegemma-7b-it 0.49 0.75 0.72 0.59 0.70 0.80
Mistral-7B-Instruct-v0.2 0.10 0.37 0.34 0.15 0.29 0.47
CodeLlama-7b-Instruct-hf 0.28 0.53 0.58 0.33 0.47 0.64

Fine-tuning
Model

Deepseek-coder-7b-instruct-v1.5 0.76 0.81 0.87 0.78 0.83 0.87
Meta-Llama-3-8B-Instruct 0.41 0.60 0.66 0.59 0.64 0.68
codegemma-7b-it 0.72 0.82 0.85 0.80 0.84 0.87
Mistral-7B-Instruct-v0.2 0.46 0.55 0.57 0.50 0.54 0.65
CodeLlama-7b-Instruct-hf 0.31 0.54 0.59 0.34 0.48 0.65

[18]. Jacobs et al. [18] proposed a system that translates natural
language intents into an intermediate language form, which
is then converted into network configurations. The system
uses machine learning and operator feedback to verify if the
translated intent aligns with the operator’s goals, and ensures
accurate compilation and deployment in the network. Collet
et al. [17] proposed an approach to automatically learn and
deploy predictive models tailored to network management
objectives. Research utilizing LLMs [14], [16] is also gaining
attention. Dzeparoska et al. [16] employed few-shot learning
with LLMs to incrementally decompose intents and automate
application management through policy-based abstraction. Van
Tu et al. [14] applied in-context learning with LLMs to intent-
based configuration in NFV environments. This approach
allows intent translation tasks to be performed without re-
training the LLM, enabling learning using JSON templates.
However, these studies are not well suited to the specific nature
of container-based microservices (e.g., frequent updates) and
require considerable effort in formulating the intent.

Advanced Network Policy Generation. Recently, sev-
eral studies on automated policy generation in containerized
environments have also been conducted [8], [11], [12]. Li
et al. [12] developed a system that automatically generates
access control policies by analyzing interactions between
microservices using a static analysis-based request extraction
mechanism. Xu et al. [8] proposed a method to automat-
ically generate authorization policies based on access logs
by using a log-based topology graph generation mechanism,
a machine learning-based attribute mining method, and a
traffic management-based policy upgrade mechanism. Lee et
al. [11] introduced an automated network policy discovery
framework that generates a minimal set of network security
policies using network logs. Additionally, research focusing
on policy verification has been proposed [49]–[51]. Li et al.
[49], [50] presented a system that efficiently verifies cloud-
native network policies at runtime through fast, complete, and
incremental verification using a bit matrix model, including an
intent-based verification language. Kang et al. [51] introduced
a method for the automatic verification of container network
policies using a novel graph structure representing policies.
Moreover, open-source tools are being developed to manage
policies [52]–[54]. Otterize [52] declaratively defines intended
access policies and automatically converts them into network

and Kafka policies. Open Policy Agent (OPA) [53] enables
policy-based access control and verification across various en-
vironments, including cloud-native environments. GateKeeper
[54] utilizes OPA to validate requests in Kubernetes clusters
and block unauthorized access attempts. However, these works
primarily focus on past data to generate network policies,
making it challenging to reflect nuanced policy intentions.

Unlike previous works, KUBETEUS is an LLM-based net-
work policy generation framework offering an end-to-end
approach tailored for cloud-native environments. Notably, our
system employs advanced prompt engineering with a special-
ized NER model, optimizing LLM efficiency for network pol-
icy domains. This automated approach minimizes user inter-
vention and reduces human error while enhancing efficiency.
By automating LLM improvements, KUBETEUS adapts to
evolving cloud environments, enabling efficient network policy
management, particularly in generating container-aware poli-
cies through real-time resource relationship inference.

VII. CONCLUSION

This paper presents an automated software framework, KU-
BETEUS, for generating network policies in real-world cloud-
native environments. This study is the first to integrate sophis-
ticated prompt engineering with fine-tuned LLMs specialized
for complex cloud-native settings, distinguishing it from exist-
ing log-based or static analysis methods. Additionally, beyond
policy generation, our system includes a multi-step validation
process to prevent misconfigurations in advance. KUBETEUS
has demonstrated impressive results in both entity classifica-
tion and policy generation. The automated fine-tuning process
for LLMs significantly improved model performance across
all metrics in policy generation, demonstrating its ability to
produce accurate and relevant network policies. This research
provides a valuable reference implementation for intent-based
security policy generation and suggests a new direction for
security policy management in cloud-native environments.

The authors have made their code publicly accessible at [55]
and their data at [56].

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) funded by the Korean Government
(MSIT) under Grant 2022R1C1C1006093.

REFERENCES

[1] Gartner, “Gartner Forecasts Worldwide Public Cloud End-User
Spending to Reach $679 Billion in 2024,” https://www.gartner.com/
en/newsroom/press-releases/11-13-2023-gartner-forecasts-worldwide-
public-cloud-end-user-spending-to-reach-679-billion-in-20240, 2023.

[2] Flexera, “2024 state of the cloud report,” https://info.flexera.com/CM-
REPORT-State-of-the-Cloud?lead source=Organic%20Search, 2024.

[3] ——, “Cloud computing trends: Flexera 2024 state of the cloud report,”
https://www.flexera.com/blog/cloud/cloud-computing-trends-flexera-
2024-state-of-the-cloud-report/, 2024.

[4] Kubernetes, https://kubernetes.io/, 2024.
[5] T. Asia, “Data breaches at Toyota: the company once again warns cus-

tomers of a breach,” https://techwireasia.com/2023/12/how-has-toyota-
suffered-so-many-data-breaches/, 2023.

[6] R. Hat, “The state of Kubernetes security report: 2024 edition,” https:
//www.redhat.com/en/engage/state-kubernetes-security-report-2024,
2024.

[7] H. Sun, Q. Huang, J. Sun, W. Wang, J. Li, F. Li, Y. Bao, X. Yao,
and G. Zhang, “{AutoSketch}: Automatic {Sketch-Oriented} compiler
for query-driven network telemetry,” in 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24), 2024, pp.
1551–1572.

[8] S. Xu, Q. Zhou, H. Huang, X. Jia, H. Du, Y. Chen, and Y. Xie,
“Log2policy: An approach to generate fine-grained access control rules
for microservices from scratch,” in Proceedings of the 39th Annual
Computer Security Applications Conference, 2023, pp. 229–240.

[9] A. Collet, A. Bazco-Nogueras, A. Banchs, and M. Fiore, “Automan-
ager: a meta-learning model for network management from intertwined
forecasts,” in IEEE INFOCOM 2023-IEEE Conference on Computer
Communications. IEEE, 2023, pp. 1–10.

[10] S. Sheng, K. Che, A. Mi, and X. Wan, “Network security mechanism
optimization strategy in cloud native scenario,” in 2023 6th International
Conference on Electronics Technology (ICET). IEEE, 2023, pp. 614–
618.

[11] S. Lee and J. Nam, “Kunerva: Automated network policy discovery
framework for containers,” IEEE Access, 2023.

[12] X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen, “Automatic policy
generation for {Inter-Service} access control of microservices,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 3971–
3988.

[13] A. Fuad, A. H. Ahmed, M. A. Riegler, and T. Čičić, “An intent-based
networks framework based on large language models,” in 2024 IEEE
10th International Conference on Network Softwarization (NetSoft).
IEEE, 2024, pp. 7–12.

[14] N. Van Tu, J.-H. Yoo, and J. W.-K. Hong, “Towards intent-based config-
uration for network function virtualization using in-context learning in
large language models,” in NOMS 2024-2024 IEEE Network Operations
and Management Symposium. IEEE, 2024, pp. 1–8.

[15] J. Kim, B. E. Ujcich, and D. J. Tian, “Intender: Fuzzing {Intent-Based}
networking with {Intent-State} transition guidance,” in 32nd USENIX
Security Symposium (USENIX Security 23), 2023, pp. 4463–4480.

[16] K. Dzeparoska, J. Lin, A. Tizghadam, and A. Leon-Garcia, “Llm-based
policy generation for intent-based management of applications,” in 2023
19th International Conference on Network and Service Management
(CNSM). IEEE, 2023, pp. 1–7.

[17] A. Collet, A. Banchs, and M. Fiore, “Lossleap: Learning to predict for
intent-based networking,” in IEEE INFOCOM 2022-IEEE Conference
on Computer Communications. IEEE, 2022, pp. 2138–2147.

[18] A. S. Jacobs, R. J. Pfitscher, R. H. Ribeiro, R. A. Ferreira, L. Z.
Granville, W. Willinger, and S. G. Rao, “Hey, lumi! using natural
language for {intent-based} network management,” in 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021, pp. 625–639.

[19] V. Singh and S. K. Peddoju, “Container-based microservice architecture
for cloud applications,” in 2017 International Conference on Computing,
Communication and Automation (ICCCA). IEEE, 2017, pp. 847–852.

[20] A. Almehmadi and K. El-Khatib, “On the possibility of insider threat
prevention using intent-based access control (ibac),” IEEE Systems
Journal, vol. 11, no. 2, pp. 373–384, 2015.

[21] T. Ding, T. Chen, H. Zhu, J. Jiang, Y. Zhong, J. Zhou, G. Wang, Z. Zhu,
I. Zharkov, and L. Liang, “The efficiency spectrum of large language
models: An algorithmic survey,” arXiv preprint arXiv:2312.00678, 2023.

[22] S. Ryu, H. Do, Y. Kim, G. G. Lee, and J. Ok, “Key-element-
informed sllm tuning for document summarization,” arXiv preprint
arXiv:2406.04625, 2024.

[23] Container Network Interface, https://www.cni.dev/, 2024.
[24] S. Qi, S. G. Kulkarni, and K. Ramakrishnan, “Assessing container

network interface plugins: Functionality, performance, and scalability,”
IEEE Transactions on Network and Service Management, vol. 18, no. 1,
pp. 656–671, 2020.

[25] G. Budigiri, C. Baumann, J. T. Mühlberg, E. Truyen, and W. Joosen,
“Network policies in kubernetes: Performance evaluation and secu-
rity analysis,” in 2021 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit). IEEE, 2021,
pp. 407–412.

[26] R. K. Jayalath, H. Ahmad, D. Goel, M. S. Syed, and F. Ullah,
“Microservice vulnerability analysis: A literature review with empirical
insights,” IEEE Access, 2024.

[27] Optuna - A hyperparameter optimization framework, https://optuna.org/,
2022.

[28] AutoTrain, https://huggingface.co/autotrain, 2024.
[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[30] Extend the Kubernetes API with CustomResourceDefinitions,
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/
custom-resource-definitions/, 2024.

[31] Cilium, https://cilium.io/, 2024.
[32] Project Calico, http, 2024.
[33] J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for

named entity recognition,” IEEE transactions on knowledge and data
engineering, vol. 34, no. 1, pp. 50–70, 2020.

[34] meta-llama/Meta-Llama-3-8B-Instruct, https://huggingface.co/meta-
llama/Meta-Llama-3-8B-Instruct, 2024.

[35] deepseek-ai/deepseek-coder-7b-instruct-v1.5, https://huggingface.co/
deepseek-ai/deepseek-coder-7b-instruct-v1.5, 2024.

[36] mistralai/Mistral-7B-Instruct-v0.2, https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2, 2024.

[37] google/codegemma-7b-it, https://huggingface.co/google/codegemma-
7b-it, 2024.

[38] codellama/CodeLlama-7b-Instruct-hf, https://huggingface.co/codellama/
CodeLlama-7b-Instruct-hf, 2024.

[39] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
arXiv preprint arXiv:2106.09685, 2021.

[40] Y. Wang, S. Agarwal, S. Mukherjee, X. Liu, J. Gao, A. H. Awadallah,
and J. Gao, “Adamix: Mixture-of-adaptations for parameter-efficient
model tuning,” arXiv preprint arXiv:2205.12410, 2022.

[41] Network Policies, https://kubernetes.io/docs/concepts/services-
networking/network-policies/, 2024.

[42] Cilium Network Policy, https://docs.cilium.io/en/latest/security/policy/,
2024.

[43] Calico Network Policy, https://docs.tigera.io/calico/latest/network-
policy/get-started/calico-policy/calico-network-policy, 2024.

[44] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[45] containerd - An open and reliable container runtime, https://github.com/
containerd/containerd, 2024.

[46] Online Boutique, https://github.com/GoogleCloudPlatform/
microservices-demo, 2024.

[47] Bookinfo Application, https://istio.io/latest/docs/examples/bookinfo/,
2024.

[48] Martian Bank, https://github.com/cisco-open/martian-bank-demo, 2024.
[49] Y. Li, C. Jia, X. Hu, and J. Li, “Kano: Efficient container network

policy verification,” in 2020 IEEE Symposium on High-Performance
Interconnects (HOTI). IEEE, 2020, pp. 63–70.

[50] Y. Li, X. Hu, C. Jia, K. Wang, and J. Li, “Kano: Efficient cloud native
network policy verification,” IEEE Transactions on Network and Service
Management, 2022.

[51] H. Kang and S. Shin, “Verikube: Automatic and efficient verification for
container network policies,” IEICE TRANSACTIONS on Information
and Systems, vol. 105, no. 12, pp. 2131–2134, 2022.

[52] Otterize, https://otterize.com/, 2024.
[53] Open Policy Agent, https://www.openpolicyagent.org/, 2024.
[54] GateKeeper, https://github.com/open-policy-agent/gatekeeper, 2024.
[55] KubeTeus, https://github.com/cclab-inu/KubeTeus, 2024.
[56] KubeTeus Dataset, https://huggingface.co/datasets/cclabinu/kubeteus,

2024.

https://www.gartner.com/en/newsroom/press-releases/11-13-2023-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-679-billion-in-20240
https://www.gartner.com/en/newsroom/press-releases/11-13-2023-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-679-billion-in-20240
https://www.gartner.com/en/newsroom/press-releases/11-13-2023-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-679-billion-in-20240
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Organic%20Search
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Organic%20Search
https://www.flexera.com/blog/cloud/cloud-computing-trends-flexera-2024-state-of-the-cloud-report/
https://www.flexera.com/blog/cloud/cloud-computing-trends-flexera-2024-state-of-the-cloud-report/
https://kubernetes.io/
https://techwireasia.com/2023/12/how-has-toyota-suffered-so-many-data-breaches/
https://techwireasia.com/2023/12/how-has-toyota-suffered-so-many-data-breaches/
https://www.redhat.com/en/engage/state-kubernetes-security-report-2024
https://www.redhat.com/en/engage/state-kubernetes-security-report-2024
https://www.cni.dev/
https://optuna.org/
https://huggingface.co/autotrain
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://cilium.io/
http
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5
https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/google/codegemma-7b-it
https://huggingface.co/google/codegemma-7b-it
https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://docs.cilium.io/en/latest/security/policy/
https://docs.tigera.io/calico/latest/network-policy/get-started/calico-policy/calico-network-policy
https://docs.tigera.io/calico/latest/network-policy/get-started/calico-policy/calico-network-policy
https://github.com/containerd/containerd
https://github.com/containerd/containerd
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://istio.io/latest/docs/examples/bookinfo/
https://github.com/cisco-open/martian-bank-demo
https://otterize.com/
https://www.openpolicyagent.org/
https://github.com/open-policy-agent/gatekeeper
https://github.com/cclab-inu/KubeTeus
https://huggingface.co/datasets/cclabinu/kubeteus

	Introduction
	Background and Problem Statements
	Background
	Problem Statements

	KubeTeus Design
	Design Considerations
	System Architecture and Workflow

	KubeTeus System Details
	Generative AI-Based Model Learning
	Customized Prompt Engineering
	Multi-Step Policy Validation

	Evaluation
	Implementation
	Evaluation Environments
	Functional Correctness
	Performance

	Related Work
	Conclusion
	References

