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ABSTRACT Serverless environments are rapidly emerging as the new paradigm for cloud computing
due to their automatic scalability, cost efficiency, and ease of operation. However, IAM-based privilege
management and event-driven execution mechanisms can introduce security vulnerabilities. In particular,
complex inter-functional call relationships expose systems to attacks such as privilege abuse and event call
condition exploitation. These attacks often occur dynamically at runtime, making them difficult to address
with static defenses. Existing static analysis methods attempt to mitigate these risks, but are inherently
limited in capturing dynamic attacks that occur at runtime. In this paper, we propose BAMBDA, a dynamic
security framework for serverless environments that prevents privilege abuse and chained function call
attacks. BAMBDA performs real-time function call verification through centralized logging and automated
code injection based on application-specific log groups. Specifically, we introduce a multi-step verification
process that distinguishes between direct calls, event-driven calls, and API calls, effectively preventing
unauthorized attacks without requiring additional security configurations from developers. Experiments
conducted in AWS Lambda environments demonstrate that BAMBDA effectively defends against privilege
abuse and chained function call attacks, achieving practical deployment with minimal performance overhead
of 8.12% under warm start conditions.

INDEX TERMS Serverless, cloud computing, access control.

I. INTRODUCTION
As cloud services continue to evolve, serverless computing
has emerged as an event-driven paradigm that bridges the gap
between the infrastructure management overhead of Platform
as a Service (PaaS) and the limited flexibility of Software as a
Service (SaaS). Also known as Function as a Service (FaaS),
this model allows developers to focus on implementing
business logic by structuring applications into independent
functional units. According to a recent Datadog survey [1],
70% of AWS (Amazon Web Services) users and 60% of
Google Cloud users have adopted at least one serverless
solution. This widespread adoption is primarily driven by
the automated execution and resource allocation managed
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by cloud service providers, which significantly reduces
operational complexity. In addition, serverless computing
dynamically scales resources in response to request traffic,
ensuring that users only pay for the resources they consume,
a key benefit highlighted in previous research [2], [3], [4], [5],
[6], [7], [8], [9].

While the automated resource management of serverless
computing improves operational efficiency, it relies on
fine-grained access control between functions and resources.
Identity and Access Management (IAM) serves as the
primary security mechanism for managing these permis-
sions. However, misconfigured IAM settings can result
in security risks, such as unauthorized access through
permission abuse or unexpected cost increases due to
excessive resource consumption. Moreover, the complex
inter-function call relationships in serverless environments
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can expose applications to vulnerabilities, includingDenial of
Service (DoS) [10] and Denial of Wallet (DoW) [11] attacks.
According to the 2020 DivvyCloud report [12], improper
IAM configurations have resulted in an estimated $5 trillion
in financial losses for enterprises. Similarly, Google Man-
diant’s 2024 analysis [13] indicates that 30.3% of potential
cloud security vulnerabilities stem from misconfigured IAM
policies, making it one of the most prevalent security issues.
This underscores the importance of enforcing the principle of
least privilege in IAM configurations, as well as the need for a
robust security mechanism to continuously monitor function
workloads in real time, enabling the immediate detection of
unauthorized resource access caused by permission abuse and
malicious data injection during function invocations.

However, practical countermeasures to address these secu-
rity challenges in serverless environments remain limited.
While AWS offers IAM Access Analyzer [14] to verify
excessive IAM permissions before deployment, it lacks
mechanisms to detect and block dynamic security threats
during runtime. Existing studies [15], [16], [17], [18], [19],
[20], [21] have proposed methods such as analyzing function
code and IAM policies to derive configurations aligned with
the principle of least privilege or visualizing function call
relationships as graphs to detect abnormal access patterns.

Although these approaches help proactively identify
potential vulnerabilities, they have critical limitations in
dynamic serverless environments. First, they cannot detect
attacks that exploit legitimate permissions across mul-
tiple functions in complex combinations. Second, they
fail to capture runtime-specific execution contexts like
event-triggered function chains that only emerge during
operation. Third, most existing research lacks automated
security policy management, rendering it incompatible with
the core principle of serverless computing, which aims to
minimize user intervention. Therefore, dynamic, runtime-
aware security verification mechanisms are essential to
address the security gaps that static analysis alone cannot
cover.

In this paper, we propose BAMBDA, a real-time security
verification framework for serverless environments. BAMBDA

continuously monitors function workflows to detect and
block abnormal invocations in real time, ensuring a secure
execution environment through a log-based, multi-stage
verification mechanism. It minimizes developer intervention
by automating code injection during function reconstruction,
maintaining operational efficiency. Furthermore, our system
accurately detects and prevents function executions caused
by improper permission configurations while logging all
security events for continuous security management. Our
evaluation demonstrates that BAMBDA was successfully
applied without errors during function reconstruction and
redeployment, maintaining full compatibility with AWS
Lambda [22]. Moreover, it effectively detected and blocked
various unauthorized attack scenarios while incurring only a
minimal performance overhead of 8.12% under warm start
conditions.

In summary, our main contributions are as follows:
• We introduce BAMBDA, the first access control verifi-
cation framework to leverage centralized logging for
dynamically detecting and blocking real-time security
threats in serverless computing environments.

• We propose an automated code reconfiguration process
that analyzes the structure of serverless functions and
inserts security verification code, allowing developers
to apply the framework on the fly without additional
security settings or code modifications.

• We demonstrate that BAMBDA effectively prevents
permission abuse and chained function call attacks
in AWS serverless environments by distinguishing
function call conditions and applying type-specific
verification processes.

The remainder of this paper is organized as follows: In
Section II, we introduce the relevant background knowledge
and outline the problem statement. Section III reviews related
work and existing frameworks, highlighting their limitations.
In Section IV, we describe the system design and overall
workflow of BAMBDA. Next, automated function reconstruc-
tion, multi-stage verification, and real-time security monitor-
ing are discussed in detail in Section V. Section VI presents
the functional correctness and performance evaluation of
BAMBDA. Finally, Section VII discusses the limitations and
future directions of BAMBDA, and Section VIII concludes the
paper by summarizing the research findings.

II. BACKGROUND AND PROBLEM STATEMENTS
A. SERVERLESS COMPUTING
Serverless computing is an event-driven computing model
in which cloud service providers (CSPs) such as AWS
Lambda, Google Cloud Functions [23], and Azure Func-
tions [24] dynamically manage the infrastructure required
for application execution. Users define and deploy busi-
ness logic as stateless function units, with each function
executing independently without maintaining state. Unlike
traditional server-based environments, where servers must
be provisioned in advance to ensure predictable costs
and performance, serverless environments dynamically allo-
cate resources on demand, executing functions only when
required and automatically releasing resources when done.

Generally, the structure of serverless functions shares
core components across different platforms. The Handler
serves as the entry point of the function, containing the
main logic responsible for receiving and processing event
data. The Runtime defines the language-specific execution
environment, supporting languages such as Node.js, Python,
and Java. The Event specifies the event source that triggers
the function’s execution. Configuration details, such as
database connection information or API keys, can be
externally injected via environment variables, which manage
these parameters. Lastly, the Policy defines the resources and
permissions accessible to the function. These components
are typically specified in template files using YAML or

VOLUME 13, 2025 90897



C. Shin et al.: BAMBDA: A Real-Time Verification Framework for Serverless Computing

FIGURE 1. General workflow of a serverless function execution.

JSON formats, simplifying the configuration of the function’s
deployment and execution environment.

Figure 1 illustrates the basic workflow of serverless
computing. When a user sends a request to a specific API
endpoint, the request is transmitted to the API gateway
(or event router) (1). The gateway invokes the appropriate
function based on predefined routing rules (2). The function is
instantiated as a container or virtual machine (VM), processes
the input, and, if necessary, accesses external storage or
a database for data operations (3). Upon completion, the
result is returned to the user via the gateway, allowing
the user to retrieve the response without managing server
configurations or scalability concerns (4). After a predefined
period of inactivity, the container is deactivated (5). The cloud
provider handles infrastructure operations such as resource
provisioning, container orchestration, function isolation, and
scalability, enabling developers to focus solely on application
logic.

Each serverless function executes within an independent
container, and the platform manages the container lifecycle
by distinguishing between two states: cold start and warm
start. A cold start occurs when a new container is initialized,
requiring runtime environment configuration and introducing
latency. In contrast, a warm start reuses a previously allocated
container, enabling faster execution by eliminating initial-
ization overhead. The serverless platform handles function
concurrency through auto-scaling, dynamically provisioning
or reclaiming containers based on function call patterns and
idle periods.

B. SERVERLESS FUNCTION INVOCATION AND IAM
Synchronous invocation, a fundamental method for calling
serverless functions, involves a client sending a request and
waiting for a response. As illustrated in Figure 2, when
an HTTP request is received through the API Gateway,
it is routed to a Lambda function, which verifies IAM
authorization while executing its logic. If the request is
authorized, the function processes the request using a handler
within a specific runtime environment, such as Node.js.
During the execution, the function may access external
resources, such as a database (i.e., TestDB), if required. Upon
completion, the result is immediately returned to the client via
the API Gateway. Synchronous invocation is commonly used
in web applications that require real-time responses, such as
user authentication and data retrieval.

FIGURE 2. The example of IAM role permission validation in the lambda
serverless function.

In contrast, asynchronous invocation immediately
acknowledges a request without waiting for the function
execution to complete. This method is used in scenarios
where an immediate response is unnecessary, such as data
processing or notification transmission. For example, when
an event occurs, such as a file upload to AWS S3 or the
publication of an SNS message, the service triggers an
AWS Lambda function, which can subsequently forward the
execution result to another service. Finally, stream-based
invocation is used for continuous data processing, such as
real-time analytics or log processing.

Each invocation method requires a distinct permission
management mechanism, with fine-grained access control
applied according to the principle of least privilege. For
synchronous invocations, the API Gateway must have
permission to invoke the Lambda function. In asynchronous
invocations, the event source (e.g., S3, SNS) triggers the
function using a role with Lambda execution permissions.
For stream-based invocations, read permissions to the stream
source are required, along with write permissions to store the
processed data if necessary.

Identity and Access Management (IAM) is a rep-
resentative authorization control mechanism in serverless
environments. As illustrated in Figure 2, IAM authorization
policies are defined in a structured format and consist of three
main components: Effect, Action, and Resource. The
Effect specifies whether a permission is allowed or denied,
while theAction defines the operations that can be performed,
such as dynamodb:Scan. The Resource indicates the name
of the accessible resource. IAM policies are associated with
roles, which are then assigned to functions. When a function
is executed, it obtains temporary security credentials through
the assigned role, enabling access to the required cloud
services.

C. PROBLEM STATEMENTS
In serverless computing, IAM policies serve as the core
security mechanism for controlling access between functions
and resources. However, the dynamic nature of serverless
environments, including function event chaining and complex
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FIGURE 3. The three scenarios of serverless function abuse. Functions
1 and 2 are normal serverless functions, while functions A, B, and C are
malicious ones.

function call relationships, can create vulnerabilities to
unauthorized attacks. As illustrated in Figure 3, this study
assumes the presence of malicious functions within an
AWS Lambda application and identifies three key security
challenges by analyzing common unauthorized IAM attack
patterns.

C1) Overprivileged API Permissions. Serverless func-
tions are granted permissions to interact with other AWS
services through IAM policies. However, for development
convenience, excessive permissions are often assigned using
wildcards(*) [25]. Figure 3(A) illustrates an unauthorized
access scenario resulting from such permission abuse. In this
scenario, malicious Function A lacks direct access to DB-A.
However, due to the granted lambda:InvokeFunction
wildcard(*) permission, it can invoke any Lambda function.
An attacker can exploit this by first calling Function A (A1),
which then indirectly invokes Function 1, ultimately allowing
a POST request to DB-A (A2). This unauthorized access can
lead to data leakage or tampering. While some cloud security
services attempt to mitigate such risks, they primarily rely
on static analysis, which is insufficient for real-time threat
detection in dynamic serverless environments and incurs
significant costs.

C2) Risk of Event Chaining Exploits. Serverless
functions can be linked through event chaining, where one
function automatically triggers another when a specific
event occurs. However, insufficient verification of execution
conditions between the event-generating function and the
event-handling function makes this mechanism vulnerable
to malicious event trigger attacks. Figure 3(B) illustrates
a vulnerability exploitation scenario involving database
manipulation events. In this case, when Function B registers
new data in DB-C, Function 2 is automatically invoked to
process additional information. An attacker can exploit this
chaining relationship by repeatedly sending excessive data
requests through Function B (B1). Since each request triggers
Function 2 without any event validation mechanism (B2), this
leads to uncontrolled chain calls. Such an attack can result in
excessive resource consumption, increased operational costs,
and potential damage to database integrity (B3). Moreover,
because this attack directly exploits legitimate event chaining

mechanisms, it is difficult to detect using standard IAM
policies.

C3) Unrestricted Direct Function Invocation. In addi-
tion to IAM policies, security mechanisms such as API
Gateway and VPCs are used to control access to serverless
functions. However, these mechanisms often fail to account
for the context in which a function is directly invoked.
Figure 3(C) illustrates an attack scenario [26] that exploits
this limitation. Serverless functions use shared external IP
addresses provided by cloud vendors when communicating
with external services. To exploit this, an attacker invokes
Function C (C1) directly, disguising the Origin and Referer
fields in the HTTP header to mimic legitimate web page
requests. Function C then sends multiple malicious requests
to the external service. As a result, the external service detects
a high volume of suspicious requests originating from a
specific public IP and blocks the address (C2). This results
in a denial-of-service (DoS) attack that prevents legitimate
users sharing the same public IP from accessing the service.

Addressing C1 (Overprivileged API Permissions) using
IAM requires analyzing the workflow of serverless functions
within the application and configuring IAM policies for each
function according to the principle of least privilege. How-
ever, this process involves extensive user intervention and
significant time investment. Without automation, applying
such policies at scale is impractical. Furthermore, since IAM
primarily serves as an access control mechanism, it does
not verify the necessity or validity of function call events.
Consequently, C2 cannot be fully resolved using IAM alone.
Lastly, C3 cannot be mitigated solely through IAM due to the
inherent infrastructure and architectural constraints imposed
by cloud vendors.

Threat Model and Assumptions. Based on the security
challenges identified above, we define a threat model that
outlines attacker capabilities and limitations. In this model,
we consider an attacker who has compromised at least
one serverless function within the application. The attacker
possesses the following capabilities: (1) ability to modify the
source code of the compromised function to embed malicious
logic, (2) exploitation of overprivileged IAM permissions
to access unauthorized resources through function chaining
(exploiting C1), (3) generation of malformed events to
trigger uncontrolled execution chains (exploiting C2), and
(4) crafting of spoofed requests with manipulated headers
to exploit IP-based vulnerabilities (exploiting C3). However,
the attacker operates under specific limitations: they cannot
modify IAM policies directly, alter other deployed functions,
or compromise the cloud infrastructure.

The attack surface in our model encompasses interfunction
invocation paths via AWS Lambda APIs, event-driven
triggers through services like DynamoDB streams, API
Gateway endpoints, and shared cloud resources such as
databases and external services. We assume the AWS control
plane and core IAM services themselves remain trustworthy,
focusing instead on the misuse of legitimate permissions
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TABLE 1. Comparison of related work on serverless security framework.

and services. BAMBDA specifically targets unauthorized
access patterns occurring within these components, while
recognizing that physical infrastructure compromises, supply
chain attacks, and direct AWS account compromises remain
outside our scope. Given these assumptions about the threat
landscape, effectively addressing these security challenges
requires advanced dynamic analysis techniques and policy
enforcement mechanisms.

III. RELATED WORK
In this section, we review recent research in serverless
security, focusing on static analysis and dynamic verification
approaches as summarized in Table 1.

A. STATIC ANALYSIS FOR IAM AND SERVERLESS
With the increasing security threats caused by permission
misconfigurations in serverless functions, research on static
analysis of IAM policies [18], [27], [28] and source
code analysis of function logic [29] has gained significant
attention. Grasp [18] uses static analysis of IAM policies to
visualize the allowed call paths between serverless functions
as a graph. By identifying all possible interaction paths,
it enables the detection of potential threat vectors in advance.
SlsDetector [27] utilizes large language models (LLMs)
to analyze the configuration files of serverless functions,
automatically generating and verifying IAM policies that
adhere to the principle of least privilege. DAuth [28] enhances
security by issuing access tokens to clients and managing
function execution authentication through a dedicated autho-
rization server, effectively preventing unauthorized users
from accessing sensitive data.

Growlithe [29] analyzes function source code to visually
represent the data flow graph. By applying permission label-
ing to each function based on this graph, it regulates access
flow and prevents the execution of functions that violate
permission constraints. SecLambda [19] performs permission
analysis on function code to identify accessible functions and
resources. It then constructs a graph representation of these

relationships, detecting and blocking exceptional function
flows and anomalous requests in real time. In addition to
these research efforts, cloud vendor security services also
provide IAMpolicy analysis. For example, AWS IAMAccess
Analyzer [14] performs static analysis of IAM policies to
identify overly permissive configurations and issue warnings
to developers.

However, as shown in Table 1, while some existing tools
provide invocation type analysis or function flow analy-
sis, static analysis-based approaches have a fundamental
limitation: they cannot capture the complex function call
relationships that occur at runtime in dynamic serverless
environments. In serverless architectures, functions are
triggered by various events and execution contexts, making
it difficult to detect and mitigate real-time attacks using
static analysis alone. To address this limitation, most
static analysis tools require developers to manually define
detailed permission settings and execution constraints for
each function. However, this approach imposes a significant
operational burden on developers, making it difficult to
effectively manage security at scale, particularly due to the
lack of automation in these systems.

Unlike previous studies, BAMBDA addresses the limitations
of existing tools by allowing users to comprehensively mon-
itor both function calls and event-level behavior in real time,
without additional configuration, based on static analysis.
Specifically, BAMBDA performs static analysis of function
code to identify resource access patterns and interfunction
call relationships. Based on this analysis, it automatically
inserts the necessary logging code at appropriate places in the
existing code without affecting its functionality.

During execution, it tracks the complete workflow of all
functions through centralized logging, effectively detecting
dynamic threats such as permission abuse or abnormal
event chains that cannot be mitigated by IAM policies
or traditional static analysis alone. This approach reveals
critical security insights that remain hidden in traditional
monitoring systems, enabling organizations to proactively
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identify potential vulnerabilities and respond to threats before
they can be exploited, thereby strengthening their serverless
security posture.

B. DYNAMIC VERIFICATION FOR SERVERLESS
In addition to static analysis, runtime workflow verification
research has been proposed to address the dynamic character-
istics of serverless environments [30], [31], [32]. WAM [30]
dynamically inserts tokens and roles into request headers
during workflow execution to verify interfunction call
relationships, enforcing role-based access control (RBAC)
policies to prevent unauthorized access. ALASTOR [31]
generates a provenance graph by tracking system calls
and network traffic of serverless functions in real time,
enabling the detection and blocking of malicious activities.
SMART [32] constructs an event graph based on interaction
logs between functions and resources to detect anomalous
function calls in real time.

From a data flow control research perspective, SCIFFS [16]
applies labeling to both functions and data to regulate the flow
of sensitive information, ensuring policy-based data security
even in multi-tenant environments. Trapeze [21] prevents
leakage of sensitive data by employing dynamic information
flow control techniques and security shims, and verifies the
integrity of data transmission between functions within a
sandboxed environment. Kalium [17] detects anomalies in
data flow by leveraging a control flow graph generated by
manual tagging and tracing.

While these methods are effective at detecting attacks
based on data flow, they have a fundamental limitation: they
are highly dependent on the accuracy of the labeling or
tagging. As a result, they are susceptible to false positives and
over-detection due to missing or incorrectly assigned tags or
tokens in complex workflow environments.

In addition, as shown in Table 1, most dynamic verification
approaches lack multi-layered verification and automation
capabilities. Verifying only function connection relationships
makes it difficult to detect unauthorized attacks or abnormal
event chains disguised as normal workflows. This is because
dynamic features such as event triggers and chain calls are not
fully incorporated into the analysis. In particular, graph-based
analysis struggles to accurately capture the execution order
and call context of functions. Finally, as system complexity
increases, the likelihood of missing actual attack patterns
also increases due to the lack of specialized verification for
different invocation types.

By contrast, BAMBDA introduces a deep verification mech-
anism for each function call type (i.e., API, event, and direct
invocation), enabling precise analysis of execution context
and event flow while automatically applying customized
verification procedures. By specializing verification for each
call type, BAMBDA examines detailed execution contexts,
including the function’s caller information, request headers,
event payloads, and execution timing. This allows for a
more effective distinction between normal and abnormal
call patterns. Compared to existing labeling- or token-based

verification methods, this approach provides a more sophisti-
cated response to complex attack patterns while significantly
reducing false positives and over-detection.

IV. BAMBDA OVERVIEWS
This section outlines the design considerations underlying
BAMBDA and provides a comprehensive overview of its
system architecture. In short, the system enhances the
security of serverless environments by integrating real-time
function call validation with automated code injection.

A. DESIGN REQUIREMENTS
This study is based on the hypothesis that IAM policy-based
authorization management alone is insufficient to fully
ensure dynamic workflow security in serverless computing
environments. Therefore, verifying invocation conditions at
the time of function execution is essential. Given the complex
interfunction invocation relationships and event-driven exe-
cution of serverless environments, integrating IAM policies
with dynamic function execution verification is expected to
more effectively mitigate unauthorized attacks. To address
the challenges discussed in Section II-C and validate this
hypothesis, this study proposes the following three key design
requirements.

R1: Centralized Function Workflow Tracking. A cen-
tralized monitoring system should be implemented to track
and manage the workflow of all serverless functions. This
system should create a unified log group for each application
to comprehensively record the call information of distributed
functions. Additionally, it should log function call data on a
per-user basis and differentiate duplicate calls by assigning a
unique identifier to each function. This mechanism enables
real-time tracking of chained function executions, ensuring
precise monitoring and analysis of serverless workflows.

R2: Automated Verification Code Injection. An auto-
mated code reconstruction mechanism should be imple-
mented to analyze serverless function code and seamlessly
integrate security verification code. Specifically, the system
should automatically analyze each function’s structure and
call path to identify optimal insertion points, enabling the
verification of request sources and behavior patterns without
disrupting the function’s original execution. This mechanism
should apply a consistent level of security verification across
all functions without manual intervention. Additionally, the
modified function code should be automatically redeployed
to the serverless environment, ensuring that security enhance-
ments take effect immediately.

R3: Real-time Verification by Invocation Type. A
sophisticated verification mechanism should be implemented
to accurately detect and block hidden threats based on the
type of serverless function call. For direct calls made by func-
tions with excessive permissions, the system should verify
the function’s existence and the scope of its permissions.
For indirect function calls, the system should analyze the
request’s source and contextual validity to identify abnormal
call patterns or disguised requests. Finally, for chained calls
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FIGURE 4. Overall architecture of BAMBDA with four key components: (i) Inspector, (ii) Code Injector, (iii) Logger, and (iv) Invocation Verifier. The
workflow is divided into two phases: function reconstruction and runtime verification.

triggered by event chaining, the system should verify both the
event source and data validity to effectively prevent malicious
invocations.

B. SYSTEM ARCHITECTURE
As illustrated in Figure 4, the framework comprises four
main components: Inspector, Code Injector, Logger, and
Invocation Verifier. It operates in two distinct phases: the
function restructuring phase and the runtime verification
phase. This integrated approach enhances security by
enabling continuous monitoring and validation of function
execution.

The Inspector analyzes function code to identify key
entities and determine security verification requirements.
It first examines the input function code for resource entities,
such as databases or storage services. Next, it extracts critical
information, including event trigger types, function entry
points, and resource access patterns from both serverless
functions and their configuration files. Based on this
analysis, the Inspector assesses the required level of security
verification for each function and automatically configures an
allow list by identifying interfunction call relationships.

The Code Injector automatically inserts three types of
code based on the Inspector’s analysis, ensuring enhanced
security while preserving the function’s original logic. First,
it injects logging code to record execution logs whenever
a function is called. Second, for functions that interact
with external resources, it adds verification code to validate
access permissions before allowing resource interactions.
Third, it integrates identification-passing code, enabling the
calling function to include its identification information
in the event payload, thereby preserving the call origin.
These modifications ensure comprehensive function tracking
and secure resource access without altering the function’s
intended functionality.

The Logger creates an independent log group for each
serverless application, enabling centralized management of
all execution-time events. It integrates execution data from
distributed functions using the Workflow Log Stream, pro-
viding a unified view of function interactions. Specifically,
it conducts real-time analysis and verification based on all
events and resource access records throughout the function’s

execution. The analysis results are then stored in the Result
Log Stream for further evaluation and security enforcement.

The Invocation Verifier manages independently operating
verification codes, each designed to perform specialized
verification based on the call type. For calls that exploit
excessive permissions, it verifies the caller’s authority and
intent to regulate access. For direct impersonation attempts
via public IPs, it validates the request’s source and context
to detect unauthorized access. Additionally, for chained calls
triggered by event chaining, verification is performed based
on the event’s data structure and call pattern. The results of
all verification processes are recorded and managed within
independent log streams for each verification code in the log
group, ensuring comprehensive monitoring and analysis.

Workflow. BAMBDA processes user-provided serverless
function code in two stages: function reconstruction and
runtime verification. First, all input functions are analyzed by
the Inspector, which identifies resource entities and examines
call relationships to configure an allow list. After the analysis
is complete, the Code Injector inserts the required security
verification code into the function. The modified function is
then deployed and prepared for execution.

During the runtime verification phase, the Logger records
all processes from function start to event call at the entry
point. These logs are stored in the log group to support
the subsequent verification phase. If a function does not
interact with external resources, its original logic is executed
immediately after logging. However, for functions that
access resources, the Invocation Verifier performs runtime
verification. This process validates the execution context
by analyzing the source and type of the function call
and assessing resource access permissions based on the
configured allow list. The function executes its original logic
only if the call is deemed valid; otherwise, execution is
immediately blocked if a security issue is detected.

V. BAMBDA SYSTEM DETAILS
This section explains how BAMBDA implements central-
ized function workflow monitoring, automated function
restructuring, and call type-specific validation in AWS
Lambda [22] to meet the design requirements outlined in
Section §IV-A.
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FIGURE 5. The example of automatic function restructuring performed by
the Inspector and Code Injector.

A. CENTRALIZED FUNCTION WORKFLOW MONITORING
In AWS Lambda, logs are created and recorded separately for
each function, resulting in distributed data that is challenging
to analyze. To address this, BAMBDA leverages log collection
and analysis services such as AWS CloudWatch [33] to
establish a centralized logging system. Specifically, it creates
an independent log group for each serverless application,
enabling unified management of invocation data across all
functions. For example, when a serverless application named
Test-App is deployed, the system generates a dedicated log
group called Test-App-Log-Group, where invocation records
from all associated functions are aggregated and centrally
managed.

Next, a Workflow Log Stream is created for each function
within its respective log group to track the entire lifecycle
of the function call. All events from the start to the
end of each function execution are sequentially recorded,
along with detailed information about resource access. For
example, when a function interacts with services from the
same cloud vendor, the log captures basic execution details,
including call time and method type (e.g., POST, GET).
If the function accesses a database, additional details such
as query execution time, the number of affected records, and
total operation time are recorded. For calls involving external
services, communication-related data, such as HTTP header
values and request/response times, are logged.

In addition to basic tracing, our system enhances function
call tracking by embedding caller identification information
(e.g., function name and request ID) into the event payload,
which is then passed to the callee. For calls involving external
services, a security token is also included. This approach
enables cross-referencing of function executions, allowing
the system to trace links between the caller and callee by
recording request IDs within the Workflow Log Stream. For
instance, when one function invokes another, the request ID
from the caller’s payload is logged alongside the callee’s

execution details, providing full visibility into the execution
flow of chained calls.

B. AUTOMATED FUNCTION RECONSTRUCTION
A key limitation of AWS Lambda’s default logging mech-
anism is that logs are recorded only after the function has
fully terminated, which may result in missed critical events
during execution. To address this limitation, our system
automatically identifies key verification points and inserts
additional security code while preserving the function’s
original logic. This approach enables real-time tracking and
verification of the entire execution process, ensuring that
critical security events are captured as they occur.

Figure 5 illustrates the function reconstruction process.
First, the system identifies resource entities by analyzing
service object declarations (e.g., new aws.DynamoDB()) in
the handler.js file and corresponding method calls (e.g.,
dynamodb.putItem) within the AWS SDK. Resource enti-
ties include external service calls such as requests.post(),
https.request(), and fetch(), as well as AWS services like
DynamoDB, S3, SQS, and SNS. For functions that interact
with external services, a security token is embedded within
the API call payload in the front-end code during the
reconstruction step. This token provides essential verification
data, allowing the system to distinguish between legitimate
and malicious requests during the request validation phase,
particularly in API Gateway environments. Finally, the
system analyzes function invocation paths specified in the
events field of the serverless.yml file (e.g., http, stream)
to configure an allow list. For Step Functions involving
chained executions, the policy constructs an allow list based
on the states:* entity, ensuring secure function-to-function
communication.

Based on this analysis, three core code insertions are
applied to each function. First, logging code is inserted
into all functions to record essential execution details,
including the function name, request ID, and call time at
the start of execution. Second, for functions that interact
with resource entities, additional verification code is injected
to validate execution appropriateness each time a function
call or event occurs. Third, these functions also include
code to append their own identification information (e.g.,
request ID, function name) to the event payload, enabling
call relationship tracking across functions. Because the
verification logic interacts with external services such as
DynamoDB and CloudWatch Logs, this may introduce
latency depending on the complexity of the function’s
structure. To address this, we designed the verification
mechanism to perform these interactions concurrently during
runtime, minimizing performance impact by overlapping
network-bound operations.

As depicted in Figure 5(B), all injected code is placed
before the function’s original logic. To achieve this, BAMBDA

identifies entry points in the function code, such as mod-
ule.exports and function() declarations, and locates the return
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FIGURE 6. The example of the extended IAM role permission for
verification.

statement to determine the complete function structure.
BAMBDA rewrites the function by constructing its abstract
syntax tree (AST) and injecting instrumentation blocks—
including logging and verification logic—before the first
executable statement. This AST-based rewriting ensures that
all runtime checks are executed prior to business logic while
preserving the function’s semantics, scope, and control flow.
Based on this structural analysis, all security-related code
is inserted at the beginning of the function, ensuring that
logging and verification are executed before the original
business logic.

Extended IAM Role Permission. The security mech-
anism of BAMBDA extends IAM policies, as illustrated in
Figure 6, to grant controlled access for service interactions.
First, access to AWS CloudWatch is essential for real-time
monitoring. Permissions such as logs:CreateLogStream (to
create log streams) and logs:PutLogEvents (to record log
events) are granted to enable centralized management of
function call information. Additionally, access is granted
to both the source service (which invokes the function)
and the destination service (which is executed) to facilitate
function call verification. For direct function calls, the
Verifier Log Group must confirm whether the function is
invoked by a valid source function, which requires the
logs:FilterLogEvents permission. For event-driven function
executions, access to the source service is necessary to
evaluate event reliability. Similarly, for functions triggered
by external service calls, the input data should be compared
and analyzed against the expected data type of the destination
service to ensure data integrity, while also requiring access to
the destination service.

C. INVOCATION TYPE-SPECIFIC RUNTIME VERIFICATION
BAMBDA deploys automated security verification code for
each function, ensuring immediate security validation based
on the allow list whenever a function call or event occurs.
For direct function calls, verification begins by confirming
the existence of the invoked AWS Lambda function. This
is achieved by comparing the function name and request
ID from the received payload with real-time records in

Algorithm 1 Type-Aware Function Invocation Verifica-
tion
Input: Invocation Event E
Output: 0 or -1

1 record_current_event()
2 invoke_type← get_invocation_type(E)
3 if invoke_type = Direct then
4 allow_list← get_allow_list()
5 invoking_func← get_invoking_func(E)
6 exist_invocation← check_existence(invoking_func)
7 if exist_invocation = FALSE then
8 return-1

9 if invoking_func /∈ allow_list then
10 return-1

11 if invoke_type = Event then
12 event_data← get_event_data(E)
13 is_allowed← check_event_auth(event_data)
14 if is_allowed = FALSE then
15 return-1

16 if invoke_type = API then
17 request_data← get_request_data(E)
18 security_token← get_security_token(request_data)
19 if security_token = NULL then
20 return-1

21 is_allowed← check_request_auth(request_data)
22 if is_allowed = FALSE then
23 return-1

24 return 0

the Workflow Log Stream to verify actual execution.
Additionally, real-time logs are analyzed within a one-second
verification window to account for delays caused by function
initialization and container provisioning. This threshold
helps distinguish between normal function execution and
intentional retry attempts. Once the function’s existence is
confirmed, the system assesses the validity of the function
call by comparing the function name in the payload with
the allow list. If the names do not match, the call is
classified as an unauthorized attack and is immediately
blocked.

Figure 7 illustrates the verification process when
function Y directly invokes function X. When
function X is called (1), a call event is gener-
ated, triggering the verification code (2). The sys-
tem first identifies the call as a direct invocation
(3) and verifies the function’s existence by check-
ing the function name (function Y) and request
ID (ksi23bas-4cz3-mzal-flv2-1fsxzmfusds)
against real-time execution records (4). Next, it determines
whether function Y is included in the allow list
for invoking function X (5). Since function Y is
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FIGURE 7. The steps for verifying function invocation using the Invocation Verifier, illustrating type-specific verification processes for direct
calls, event triggers, and API requests.

explicitly listed, the verification results are sent to the Verifier
(6), and the function call is approved. If an unauthorized
function had attempted to invoke function X, the request
would have been immediately blocked.

For the event-based function calls, verification focuses
on analyzing the data structure and occurrence pattern of
the event. The verification code first accesses the source
resource to confirm that the event actually occurred. For
example, in a DynamoDB stream event, the system verifies
event data by checking the key structure of the original table
and the data types of each field. Additionally, by monitoring
the frequency of consecutive event occurrences, the system
detects excessive updates in DynamoDB or unnecessary
chained Lambda function calls. If suspicious patterns are
identified, corresponding function calls are temporarily
restricted to prevent potential misuse.

For the direct calls to external services, verification
analyzes the origin and context of requests made from public
IPs. The verification code examines HTTP header fields to
ensure that the Origin and Referer values are consistent with
legitimate web page requests. It also evaluates the frequency
and pattern of requests originating from the same IP within a
short time frame to identify potential anomalies. For requests
to external services, the system verifies the security token
embedded in the request payload, helping detect anomalous
or spoofed requests. This approach ensures the authenticity
of requests passing through the API Gateway, as the absence
of a security token or a malformed structure may indicate
spoofing attempts. Through multi-layered verification, the
system proactively blocks malicious API calls and mitigates
denial-of-service (DoS) attacks via public IPs.

The detailed invocation verification steps are explained
in Algorithm 1. The verification process begins when a
function call event is received; the system first records the
function call event (line 1) and identifies the invocation type
by analyzing the event payload or HTTP header information
(line 2). Based on the identified invocation type, a tailored
verification process is executed. When the invocation type is
direct (line 3), the system first retrieves the corresponding
allow list (line 4-5). Then, it verifies the caller function’s
existence via real-timeWorkflowLog Stream records (line 6).
If the existence is confirmed, the system checks whether
the caller is authorized by the allow list before granting or
denying access to resources (lines 7-10).

For event-based invocations (line 11), the system fetches
the originating item, verifies its conformity with the source
schema (lines 12-13), and monitors invocation patterns to
detect abnormal behaviors (lines 14-15). If any discrepancies
or anomalies are found, the event is flagged and access
is restricted. For external service requests (line 16), the
system examines the embedded security token (line 17)
and compares the payload structure against the expected
schema to determine legitimacy (lines 18-20), thus verifying
the authentication status of the request (lines 21-23). If all
verification steps are successfully passed, function execution
is allowed (line 24); otherwise, access is immediately blocked
if any issues are detected during the verification process.

VI. EVALUATION
This section evaluates the security effectiveness and per-
formance impact of BAMBDA in a real-world serverless
environment. We evaluate the system’s ability to detect and
prevent unauthorized function invocations and measure the
associated runtime overhead and cost impact.

A. IMPLEMENTATION
We implemented BAMBDA as a prototype for detecting and
blocking unauthorized serverless function calls within the
AWS platform. Our implementation is based on Node.js [34]
and YAML. We deploy our solution on AWS Lambda
and manage the serverless infrastructure using Serverless
Framework v4.25. For centralized workflow monitoring,
we use AWS CloudWatch to create a unified log group.
The verification mechanisms are implemented using the
AWS SDK library, which also manages all interactions with
AWS services when deploying functions with verification
code. We have implemented differentiated verification logic
for each call type, with all verification results recorded in
centralized log streams to provide comprehensive audit trails
and support post-analysis.

B. TEST ENVIRONMENTS
The experiments were conducted in the ap-northeast-2 region
of AWS Lambda. The AWS Lambda environment was
configured with 128MB of memory allocation, and since
AWS Lambda allocates CPU power in proportion to the
amount of memory configured, we were provided with
Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz processors.
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FIGURE 8. The testbed overview of the ‘Hello Retail!’ real application,
comprising 7 serverless functions with integrated BAMBDA framework.

The maximum execution timeout for Lambda functions was
set to the default of 3 seconds, and Node.js 20.x was used
as the runtime for all deployed functions. During testing,
we used the AWS CLI to invoke Lambda functions and test
API Gateway endpoints.

Figure 8 illustrates the structure of our test application,
Hello Retail! [35], with BAMBDA attached to the appli-
cation. This application consists of seven independently
deployed serverless functions built with Node.js, including
step functions that automate function workflow connections.
Hello Retail! provides e-commerce services such as product
registration, search, and checkout. The application’s archi-
tecture features complex interfunction call relationships and
database interactions with DynamoDB, making it an ideal
for comprehensive evaluation of direct function invocation,
event-chained invocation, and external API requests via API
Gateway.

We implemented three attack scenarios aligned with the
threat model (C1-C3). In C1, the ‘categories’ function is
modified to embed a call to ‘eventWriter’ function, enabling
indirect privilege escalation and unauthorized data insertion.
In C2, malformed data is written to Products DB via
‘eventWriter’ function, triggering process without validation
and causing incorrect execution. In C3, a spoofed API request
is sent to Products DB with manipulated headers, resulting in
unauthorized access through API Gateway. These scenarios
demonstrate how attackers can exploit legitimate invocation
paths to compromise function workflows.

C. EFFECTIVENESS OF INVOCATION TYPE-SPECIFIC
VERIFICATION
Based on the three attack scenarios described in the previous
section (C1-C3), we evaluated the ability of BAMBDA to detect
and block unauthorized function invocations in real-world
AWS serverless environments. To conduct a comprehensive
assessment, we designed and implemented three attack sce-
narios that exploit different vulnerabilities in AWS Lambda
functions and evaluated the ability to detect and prevent such
attacks. Figure 9 shows the implementation and results of the
attack scenarios we successfully executed in practice. In the
direct invocation attack(A-1), we exploited excessive IAM
permissions by injecting malicious code into the ‘categories’

FIGURE 9. The results of preventing an unauthorized attack that exploits
direct function invocations.

function. As shown in the code snippet, we created a
malicious function named malicious within the ‘categories’
function that enabled the ‘categories’ function to invoke
the ‘eventWriter’ function without proper authorization
checks. When executed via the AWS CLI(A-2), this attack
successfully returned a status 200 and added an unauthorized
entry to the CategoriesDB, confirming that ‘‘unauthorized
access’’ was indeed arbitrarily added to the CategoriesDB
and demonstrating the vulnerability of traditional IAM
permission models.

For the event chaining attack (B), we executed a command
to invoke the ‘eventWriter’ function with malformed data
by injecting anomalous entries into the Products DB. This
event triggered the automatic invocation of the ‘process’
function, andwe confirmed that the invocationwas successful
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FIGURE 10. The results of unauthorized attacks using event function
invocations.

without proper validation, potentially forcing functions to
process malicious data. In the API Invocation attack (C),
we sent a spoofed HTTP request with a malicious custom
header to the API Gateway endpoint connected to the
‘products’ function. This attack also resulted in ‘‘access
permitted’’ with no blocking, demonstrating how attackers
can exploit weaknesses in the security of API Gateway
by manipulating request parameters and headers, allowing
unauthorized access to sensitive data or function execution.
To defend against these successful attacks, we attached
BAMBDA into the application, with the verification results
indicated in Figure 10.

1) DIRECT INVOCATION
As shown in Figure 10(A), when the ‘categories’ function
attempts to invoke the ‘eventWriter’ function, the verification
code first logs ‘‘lambda is invoked by ‘categories’ function’’
to the Log group and executes logging and verification in
parallel. It then searches for logs related to the ‘categories’
function with a specific timestamp and extracts the function’s
log stream name and function name. The verification code
compares the extracted function name to the permitted
list authorized to invoke ‘eventWriter’ function. Since the
‘categories’ function is only designed for GET operations and
is not in the permitted list for invoking ‘eventWriter’ function
(which performs POST operations), the verification code
identifies this as an unauthorized flow and issues an ‘‘Access
denied’’ decision. Access is immediately denied before any
database operations can occur, effectively preventing the
privilege abuse attack.

2) EVENT CHAINING INVOCATION
As depicted in Figure 10(B), when the ‘eventWriter’ function
triggers an event that activates the ‘process’ function, the
verification code first records ‘‘Event invoke at Products
DB by ‘eventWriter’ function’’. The system then performs
a schema validation by comparing the structure of the newly
inserted item with the expected Products DB table schema.
The verification code checks each key field: verifying that
id is a string type, brand matches the expected string type,
category is formatted correctly, and so on. In this case, the
system detects that the key name is missing from the table
schema, thereby catching a potential data integrity problem.
This results in an ‘‘Access denied’’ decision, preventing the
‘process’ function from executing with potentially malicious
data and ensuring that it cannot be used as a trigger
mechanism for further exploit chains.

3) API INVOCATION
As illustrated in Figure 10(C), when a suspicious request
reaches the ‘products’ function, the verification code logs
‘‘Invocation from account ID: 12345678912’’. The system
then initiates a comprehensive verification of both the
request headers and the data payload. First, it checks for
the presence of a security token that should be included
in legitimate requests. The verification code analyzes the
request data structure, examining the path (’/products’),
the HTTP method (‘GET’), and the headers, including the
suspicious custom header containing ‘malicious’ values.
During this analysis, the system detects ‘‘No security token
in data’’ and immediately denies access to the function.
This security measure effectively prevents attackers from
exploiting shared IP vulnerabilities by ensuring that all
requests contain proper authentication tokens and originate
from legitimate sources.

D. PERFORMANCE OVERHEADS
In this experiment, we quantitatively evaluate the impact
of integrating BAMBDA on the execution performance of
serverless functions. We evaluated all seven functions of
the target application by measuring them under both cold
start [36] and warm start [37] conditions using the AWS
CLI [38]. For the cold start measurements, we executed each
function 50 times, while for the warm start measurements,
we executed each function 100 consecutive times and
calculated the average execution time.

As shown in Figure 11(A), the cold start duration increases
by approximately 4-58 ms for all functions. Notably,
‘categories’ function shows the smallest absolute increase
of only about 4.23 ms, which is roughly 0.58% over its
baseline. In contrast, the ‘eventWriter’ function incurs the
largest overhead, with an increase in execution time of
57.67 ms (8.28%), primarily due to its frequent interactions
with external services. These results suggest that, under cold
start conditions, the overall overhead is more influenced by
the inherent provisioning time of serverless containers than
by the initialization of the injected verification logic.
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FIGURE 11. The results of duration normalization across the applications.

TABLE 2. Notations and units of cost model.

The result for warm starts is shown in Figure 11(B).
Among all functions, the ‘process’ function shows the
smallest overhead, increasing by approximately 3.38 ms
(11.32%), while the ‘report’ function shows the largest
increase of 30.11 ms (36.55%). These results suggest that
the verification of direct invocations or databasemanipulation
functions (e.g., ‘assign’) may involve additional interactions
with external services, thus incurring more overhead.

The findings show that in cold starts, due to function initial-
ization and container provisioning, latency is generally higher
compared to warm starts. Overall, using BAMBDA results in
approximately 4.02% overhead for cold starts and 20.97%
for warm starts. Especially, functions of the Direct Invocation
type that require more complex interactions with external
services tend to have higher overhead; however, given the
trade-off between improving security and performance, this
level of overhead is considered acceptable. While the relative
percentagesmay appear somewhat high, the absolute increase
is in the tens of milliseconds range, suggesting that the impact
on user experience is negligible in real-world. Furthermore,
the verification logic is function-specific and does not depend
on the total number of deployed functions or the application’s
overall scale, thereby ensuring that the system remains
scalable even as the workload increases.

E. ADDITIONAL COST OVERHEADS
We analyzed the cost implications of applying BAMBDA to
AWS Lambda environments. Figure 12 illustrates the costs
based on latency measurements taken in Section VI-D under
warm start conditions. AWS Lambda costs are determined by

three key factors: function execution time, allocated memory,
and invocation frequency. The implementation of BAMBDA

introduces additional costs compared to standard function
execution due to its security validation mechanisms and
centralized logging in CloudWatch. AWS Lambda costs are
proportional to both request-based charges and execution
time, with AWS Lambda charging $0.2 USD per million
requests and calculating execution costs at $0.00001333USD
per second for 1 GB of memory. Table 2 defines the relevant
variables, with the total Lambda cost calculated using the
following equations:

Ccomp =

(
Msize

1024

)
× Dms × CGB-ms (a)

Ctotal = Cinv + Ccomp (b)

Figure 12 shows the changes in total costs for AWS
Lambda functions. Our analysis showed that the ‘assign’
function experienced the highest cost increase at 21.24%,
while the ‘categories’ and ‘process’ functions experienced
increases of 17.7% and 7.5%, respectively. This significant
variation in cost impact is due to differences in how each call
method interacts with our security validation layer. Functions
withmore complex security validation requirements naturally
incur higher additional execution times, resulting in propor-
tionally higher costs. Across all functions tested, we observed
an average cost increase of 20.17%.

Ultimately, while our approach increases costs compared
to a baseline with no security measures, the costs associated
with security breaches in serverless environments can far
outweigh these operational increases. Also, for organizations
with limited security budgets that need to make a reasonable
compromise, BAMBDA enables teams to maintain an adequate
security posture with minimal additional effort by supporting
function call validation while maintaining operational bal-
ance.

VII. LIMITATION AND DISCUSSION
Aswith other research, the current system is subject to several
limitations that require further research. In this section,
we undertake a review of these constraints and propose a
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FIGURE 12. Additional compute costs for functions from each invocation
type with and without the BAMBDA applied.

number of improvements with the aim of extending the
capabilities of BAMBDA across various dimensions.

A. EXTENSIBILITY IN PROGRAMMING LANGUAGES AND
CLOUD PLATFORMS
AWS Lambda supports various serverless runtime environ-
ments, including Node.js [34], Python [39], and Java [40].
However, the current implementation of BAMBDA operates
exclusively with Node.js functions within the Serverless
Framework, leveraging code reconstruction and multi-stage
verification. This limitation presents two key challenges.

First, the restricted support for programming languages
may hinder the scalability and security consistency of our
system in heterogeneous serverless environments. Address-
ing this issue requires developing a universal verification
mechanism that functions across diverse programming lan-
guages. Our approach involves designing separate adapters or
a shared validation component that accommodates different
language-specific runtime structures. As future work, we plan
to enhance BAMBDA with LLM-based behavior modeling,
least-privilege policy extraction, and real-time detection of
inappropriate behaviors, along with broader compatibility
across programming languages and cloud platforms, enabling
adaptive verification and wider applicability.

Second, cloud platform dependency presents another
limitation. While our system is designed for seamless
integration with AWS Lambda, it is not currently compatible
with other cloud providers such as Google Cloud Functions
or Azure Functions. Given the increasing prevalence of multi-
cloud deployments, we also plan to support other vendors in
the future. However, achieving cross-platform compatibility
is non-trivial due to fundamental differences in runtime
execution models, event dispatch mechanisms, and logging
APIs across platforms. These differences make it difficult
to reuse our current implementation as-is and would require
substantial redesign of the verification logic. Expanding
BAMBDA into a multi-cloud environment requires establishing
a standardized execution environment and a unified interface
across serverless platforms. This extension will enable our
system to provide security verification capabilities without
being restricted to a specific cloud provider.

B. SERVICE-BASED INVOCATION VERIFICATION
AWS Lambda enables event-driven function execution by
integrating with various AWS services, such as S3 [41],
SQS [42], and SNS [43]. However, BAMBDA currently
enforces security verification and policy enforcement only for

events triggered by DynamoDB, S3, and API Gateway. This
limitation restricts its functional scalability and compatibility,
as AWS Lambda can be invoked by numerous other service
events that our system does not yet support. To address
this, we plan to expand our system’s validation scope
by developing service-specific verification mechanisms that
process and validate events from a broader range of AWS
services.

Additionally, our system currently performs security veri-
fication on a single-event basis, limiting its ability to analyze
multi-service event chains. Beyond single-event verification,
establishing a mechanism for securing inter-service event
chains is essential. For instance, consider a scenario where
an object uploaded to S3 triggers an SNS notification, which
subsequently invokes a Lambda function. In this case, our
system verifies the SNS-triggered event but does not analyze
the preceding S3 event, creating a security gap. To address
this, we propose leveraging distributed tracing techniques to
track event flows across multiple AWS services and assess
security states at each transition point. Specifically, we aim
to implement an event-labeling mechanism that enables our
system to systematically verify the integrity and security of
multi-service event chains, ensuring comprehensive security
enforcement.

C. POISONED DATA VALIDATION
BAMBDA performs data validation using a schema comparison
approach. While effective in verifying data format and
structure, this method has inherent limitations in assessing
data integrity and semantic validity. To overcome these
limitations, additional validation mechanisms are required.
We propose two major enhancements to improve the
robustness of data validation. First, we plan to incorporate
content-based validation, which not only ensures structural
conformity but also evaluates the validity of actual data
values. This will enable the system to detect and block
falsified or manipulated data.

Second, we intend to implement a cross-referencing
validation mechanism that compares incoming data against
pre-existing records in a database or external trusted sources.
This approach will enhance data reliability and effectively
mitigate attacks that exploit disguised or misleading data.
By integrating these enhancements, our system aims to
strengthen data integrity verification, providing a more com-
prehensive defense against data tampering and unauthorized
modifications in serverless computing environments.

D. OPERATIONAL RISKS OF AUTOMATED CODE
INJECTION
BAMBDA is designed to automatically inject security veri-
fication logic at the entry point of each function without
interfering with the original business logic. However, the
injection process itself expands the security surface, thus
requiring careful consideration from management, opera-
tional, and compliance perspectives. While our experiments
did not encounter such issues, external conditions such as
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log collection failures or invocation delays may affect the
entire function flow through the injected module. Moreover,
in highly regulated environments, the mere fact that deployed
code is modified without explicit developer approval may
raise concerns about deployment transparency.

BAMBDA also relies on a centralized logging system
to trace and verify inter-function invocation relationships.
This is a critical element for real-time security decision-
making; however, in high-traffic environments, the logging
infrastructure may become a bottleneck. In our implemen-
tation, we created independent log streams in CloudWatch
to minimize performance impact, but in environments with
extremely high invocation volumes, log collection delays or
processing limitations may still arise. Nevertheless, due to
the nature of serverless architectures—where each function
scales and executes independently—the logging load tends to
distribute proportionally across the application. Furthermore,
cloud-native logging services such as AWS CloudWatch are
designed to meet such scalability demands.

To mitigate these risks, we suggest applying formal
verification to the injected logic and incorporating optional
developer approval workflows in the CI/CD pipeline. There is
also the potential that the injected module itself could become
a target of attack. If the module is compromised, the entire
application could be affected. Therefore, we recommend
executing the verificationmodule under a least-privilege IAM
role and restricting any external network access.

E. QUANTITATIVE EVALUATION OF VERIFICATION
ROBUSTNESS
BAMBDA is structurally designed for secure operation, but
quantitative evaluation of the verification logic’s detection
accuracy may also be important. Since BAMBDA generates
execution logs at every function invocation and verifies call
relationships based on them, the likelihood of false positives
is extremely low. In particular, because the system only
blocks unauthorized invocations and automatically allows
those listed in the allow list, no false positives were observed
during our experiments.

However, in exceptional cases—such as missing security
tokens in external requests or temporary delays in log
transmission—there is a possibility of false negatives. These
are not due to logical flaws in BAMBDA itself, but rather
stem from cloud vendor-dependent execution conditions,
such as delayed log delivery or non-standard event structures.
Nevertheless, to quantitatively analyze even these rare
possibilities, we plan to evaluate detection precision using
diverse datasets that include both benign and anomalous
scenarios. Metrics such as precision, recall, and F1-score will
be used in future work.

Additionally, the system’s resilience to potential evasion
tactics—such as an attacker attempting to bypass security
verification—is another critical aspect of evaluation. For
example, attacks may attempt to forge caller information or
mimic authorized call paths to evade detection. Currently,
BAMBDA is designed to effectively prevent such bypass

attempts by leveraging a log-based tracking mechanism
that traces inter-function relationships. However, we plan to
quantitatively evaluate its resilience through tests involving a
wide range of evasion scenarios in future research.

VIII. CONCLUSION
In this paper, we proposed BAMBDA, a dynamic framework
for detecting and blocking unauthorized attacks that exploit
serverless function invocation conditions and IAM config-
urations in real-world serverless computing environments.
Specifically, our system not only prevents abnormal access
attempts via indirect function invocation but also records
blocked function workflows, enabling developers to proac-
tively mitigate potential security vulnerabilities. Through
comprehensive attack scenario testing, we demonstrated that
our system effectively detects and blocks all attack attempts
while maintaining reasonable performance overhead. These
results confirm that our system provides significant security
benefits while serving as a practical reference for strengthen-
ing serverless security. Furthermore, our system offers new
insights into security management in environments where
dynamic verification based on invocation conditions remains
challenging.
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