
BOM KIM, YUJUNG CHIO, SEUNGSOO LEE*

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INCHEON NATIONAL UNIVERSITY

Kunerva+: An Intelligent Security Policy
Generation Framework for Containers

2024/06/20 @ 한국정보보호학회하계학술대회 (CISC-S’ 24)

https://cclab-inu.com

OUTLINE

2

1 Problem Statements

2 Related Work

3 Kunerva+ Design

4 Evaluation - Performance, Use Case

5 Conclusion and Future Work

https://cclab-inu.com

PROBLEM STATEMENTS

3

Cloud Infrastructure Automation

CI/CD

Containers

MicroServices

DevOps

Immutable
Infrastructure

Cloud Native
Apps

• Increased complexity of security management
• Frequent Creation and Deletion of Containers
• Dynamic Network Configuration Changes
• Increased risk of security vulnerabilities

https://cclab-inu.com

• Limitations of Passive Security Policy Management

PROBLEM STATEMENTS

4

Lack of response to real-
time security needs

Time-consuming and
error-prone

manual management

Difficulty in ensuring
consistency and accuracy

Ineffective security policy
configuration

Misconfiguration

Security Policy

Requires expert-level
knowledge

Gaps between security
requirements and actual

policies

https://cclab-inu.com

RELATED WORK

• Jacobs et al. (LUMI) [1] proposed using natural language to express network management
intent with Nile.

• But this approach utilizes an intermediate form of policy, rather than using natural language
verbatim, and is primarily focused on network configuration.

• Li et al. (AUTOARMOR) [2] developed an automatic policy generation method for inter-
service access control in microservices.

• Although this method effectively handles static analysis and policy updates,
it is not comprehensive enough to integrate both network and system security policies in
cloud-native environments.

[1] Jacobs, Arthur S., et al. "Hey, lumi! using natural language for {intent-based} network management." 2021 USENIX Annual Technical Conference (USENIX ATC 21). 2021.
[2] Li, Xing, et al. "Automatic policy generation for {Inter-Service} access control of microservices."30th USENIX Security Symposium (USENIX Security 21). 2021.

5

https://cclab-inu.com

• Aim to enhance the efficiency of security management in cloud-native
by automatically generating and validating network and system security policies
based on natural language input.

1. Accurate interpretation of natural language input: Be able to accurately analyze natural
language input from users and translate it into security policies.
2. Validate and enforce automated policies: Automate the process of validating and enforcing
the generated security policies.

Kunerva+ DESIGN: Architecture

6

1 2

3

4

5

6

7

https://cclab-inu.com

Kunerva+ DESIGN: Policy Creation

• Use BERT-based classifiers to identify intents and entities from user input.
• Transform the extracted information into detailed prompts for the policy generator.

7

Intent & Entity Classifier Policy Generator

Create a policy on the nginx Pod to deny all
egress traffic to the endpoints on port 80

kind: CiliumNetworkPolicy\n
spec:\n endpointSelector:\n
matchLabels:\n app: nginx\n
egress:\n - toPorts:\n
- ports:\n - port: \"80\"\n
protocol: TCP

$ k describe pod nginx
Name: nginx
Namespace: default
Labels: app=nginx
Containers:

Port: 80/TCP

INTENT
Classifier (BERT)

Create a CiliumNetworkPolicy on the nginx
Pod labeled 'app: nginx' to deny all egress
traffic to the endpoints on port 80/TCP in
the 'default' namespace.

POLICY POD NAME ACTION

DIRECTION PORTENDPOINT

ENTITY
Classifier (BERT)

Create a policy on the nginx Pod to deny all
egress traffic to the endpoints on port 80

Prompt
Processor

INTENT:

ENTITY:

Network

Network: Cilium, Calico, ..
System: KubeArmor, ..

LLM

https://cclab-inu.com

Kunerva+ DESIGN: Policy Validation and Enforcement

• Verify CRD syntax, resource existence, and property conditions.
• Ensure that the policy is correctly configured and applicable.

8

kind: CiliumNetworkPolicy
metadata:

name: deny-egress-port-80
namespace: default

spec:
endpointSelector:

matchLabels:
app: nginx

egress:
- toPorts:

- ports:
- port: "80"

protocol: TCP

CRD
Validator

Resource
Validator

Property
Validator

$ k describe pod nginx
Name: nginx
Labels: app=nginx
Containers:

Port: 80/TCP

$ k get pod
NAME READY STATUS …
nginx 1/1 Running …

…“schema”: { …
“egress”:

"toPorts": { ...
"ports": {

"port": {
"pattern": "^(6553[0-5]|655[0-2][0-9]| … ",
"type": "string"

},
"protocol": {

"enum": ["TCP", "UDP", "SCTP", "ANY"],
"type": "string"

} …

Policy Processor Validator

1

2

3

Policy
Enforcer

https://cclab-inu.com

Kunerva+ DESIGN: Select Dataset and Model

• Scraped policy files from GitHub, modified fields, and generated instructions.
• Choose an open text-to-text model for policy creation:

1. Models with small size and low parameter count for high accuracy
2. Models with above-average policy performance for a wide range of generation requirements

9

Table 1. Summary of Datasets

Table 2. Summary of Model Features

Model Name Size (params) Purpose

bert-intent-classification 425 MB Intent Classification

bert-ner-classification 425 MB NER Classification

Meta/Meta-Llama-3-8B-Instruct 16GB (8.03B) Policy Generation

DeepSeek/deepseek-coder-7b-instruct-v1.5 14GB (6.91B) Policy Generation

MistralAI/Mistral-7B-Instruct-v0.2 15GB (7.24B) Policy Generation

Google/codegemma-7b-it 17GB (8.54B) Policy Generation

Meta/codeLlama-7b-Instruct-hf 14GB (6.74B) Policy Generation

Dataset Name Type Size

Network Policy JSON
Lines

166,064개 187.3 MB

System Policy 2,914개 3.27 MB

Network Policy
CSV

1,500개 4.10 MB
(3,000개)System Policy 1,500개

https://cclab-inu.com

EVALUATION: Performance of models (BLEU)

• On average, the fine-tuned model
outperformed the baseline model by
approximately 27%.

10

Test Instruction Desired Output

Create a CiliumNetworkPolicy allow all
of egress traffic from endpoints labeled
with ‘app: myService’ to the external
IP ‘10.0.10.2/32’.

Kind: CiliumNetworkPolicy\n spec:\n
endpointSelector:\n matchLabels:
\napp: myService\n egress:\n - toCIDR:\n
- 10.0.10.2/32

kind: CiliumNetworkPolicy
spec:
endpointSelector:
matchLabels:
app: mySerivce

egress:
- toEndPoints:
- matchLabels:

ip: 10.0.10.2/32

kind: CiliumNetworkPolicy
spec:
endpointSelector:
matchLabels:
app: mySerivce

egress:
- toCIDR:
- 10.0.10.2/32

Baseline
Model

Fine-tuned
Model

Predicted
Output

https://cclab-inu.com

EVALUATION: Use Case

• Example: Blocking access to the /etc/resolv.conf file in the nginx pod.
• Demonstrated policy creation, validation, and enforcement process to show the

ability of Kunerva+ to effectively manage security policies in real-world scenarios.

11

https://cclab-inu.com

CONCLUSION AND FUTURE WORK

12

• Provide an intelligent security policy generation framework to reduce complexity and
human error in containerized environments.

• Propose an automated policy validation and enforcement mechanism to ensure
reliability and accuracy in dynamic cloud-native environments.

• Demonstrate the practical utility of AI in security management by using fine-tuned
LLMs to effectively translate natural language input into accurate security policies.

• Future work focuses on automatically inferring optimal security policies based solely
on resource configuration files to further reduce user input while improving the
system's adaptability to security needs.

13

